Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. * * Routines used by ia64 machines with contiguous (or virtually contiguous) * memory. */ #include <linux/bootmem.h> #include <linux/efi.h> #include <linux/mm.h> #include <linux/nmi.h> #include <linux/swap.h> #include <asm/meminit.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/sections.h> #include <asm/mca.h> #ifdef CONFIG_VIRTUAL_MEM_MAP static unsigned long max_gap; #endif /** * show_mem - give short summary of memory stats * * Shows a simple page count of reserved and used pages in the system. * For discontig machines, it does this on a per-pgdat basis. */ void show_mem(unsigned int filter) { int i, total_reserved = 0; int total_shared = 0, total_cached = 0; unsigned long total_present = 0; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(filter); printk(KERN_INFO "Node memory in pages:\n"); if (filter & SHOW_MEM_FILTER_PAGE_COUNT) return; for_each_online_pgdat(pgdat) { unsigned long present; unsigned long flags; int shared = 0, cached = 0, reserved = 0; int nid = pgdat->node_id; if (skip_free_areas_node(filter, nid)) continue; pgdat_resize_lock(pgdat, &flags); present = pgdat->node_present_pages; for(i = 0; i < pgdat->node_spanned_pages; i++) { struct page *page; if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); if (pfn_valid(pgdat->node_start_pfn + i)) page = pfn_to_page(pgdat->node_start_pfn + i); else { #ifdef CONFIG_VIRTUAL_MEM_MAP if (max_gap < LARGE_GAP) continue; #endif i = vmemmap_find_next_valid_pfn(nid, i) - 1; continue; } if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page)-1; } pgdat_resize_unlock(pgdat, &flags); total_present += present; total_reserved += reserved; total_cached += cached; total_shared += shared; printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " "shrd: %10d, swpd: %10d\n", nid, present, reserved, shared, cached); } printk(KERN_INFO "%ld pages of RAM\n", total_present); printk(KERN_INFO "%d reserved pages\n", total_reserved); printk(KERN_INFO "%d pages shared\n", total_shared); printk(KERN_INFO "%d pages swap cached\n", total_cached); printk(KERN_INFO "Total of %ld pages in page table cache\n", quicklist_total_size()); printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); } /* physical address where the bootmem map is located */ unsigned long bootmap_start; /** * find_bootmap_location - callback to find a memory area for the bootmap * @start: start of region * @end: end of region * @arg: unused callback data * * Find a place to put the bootmap and return its starting address in * bootmap_start. This address must be page-aligned. */ static int __init find_bootmap_location (u64 start, u64 end, void *arg) { u64 needed = *(unsigned long *)arg; u64 range_start, range_end, free_start; int i; #if IGNORE_PFN0 if (start == PAGE_OFFSET) { start += PAGE_SIZE; if (start >= end) return 0; } #endif free_start = PAGE_OFFSET; for (i = 0; i < num_rsvd_regions; i++) { range_start = max(start, free_start); range_end = min(end, rsvd_region[i].start & PAGE_MASK); free_start = PAGE_ALIGN(rsvd_region[i].end); if (range_end <= range_start) continue; /* skip over empty range */ if (range_end - range_start >= needed) { bootmap_start = __pa(range_start); return -1; /* done */ } /* nothing more available in this segment */ if (range_end == end) return 0; } return 0; } #ifdef CONFIG_SMP static void *cpu_data; /** * per_cpu_init - setup per-cpu variables * * Allocate and setup per-cpu data areas. */ void * __cpuinit per_cpu_init (void) { static bool first_time = true; void *cpu0_data = __cpu0_per_cpu; unsigned int cpu; if (!first_time) goto skip; first_time = false; /* * get_free_pages() cannot be used before cpu_init() done. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs * to avoid that AP calls get_zeroed_page(). */ for_each_possible_cpu(cpu) { void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; /* * percpu area for cpu0 is moved from the __init area * which is setup by head.S and used till this point. * Update ar.k3. This move is ensures that percpu * area for cpu0 is on the correct node and its * virtual address isn't insanely far from other * percpu areas which is important for congruent * percpu allocator. */ if (cpu == 0) ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - (unsigned long)__per_cpu_start); cpu_data += PERCPU_PAGE_SIZE; } skip: return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } static inline void alloc_per_cpu_data(void) { cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); } /** * setup_per_cpu_areas - setup percpu areas * * Arch code has already allocated and initialized percpu areas. All * this function has to do is to teach the determined layout to the * dynamic percpu allocator, which happens to be more complex than * creating whole new ones using helpers. */ void __init setup_per_cpu_areas(void) { struct pcpu_alloc_info *ai; struct pcpu_group_info *gi; unsigned int cpu; ssize_t static_size, reserved_size, dyn_size; int rc; ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); if (!ai) panic("failed to allocate pcpu_alloc_info"); gi = &ai->groups[0]; /* units are assigned consecutively to possible cpus */ for_each_possible_cpu(cpu) gi->cpu_map[gi->nr_units++] = cpu; /* set parameters */ static_size = __per_cpu_end - __per_cpu_start; reserved_size = PERCPU_MODULE_RESERVE; dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; if (dyn_size < 0) panic("percpu area overflow static=%zd reserved=%zd\n", static_size, reserved_size); ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = PERCPU_PAGE_SIZE; ai->atom_size = PAGE_SIZE; ai->alloc_size = PERCPU_PAGE_SIZE; rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); if (rc) panic("failed to setup percpu area (err=%d)", rc); pcpu_free_alloc_info(ai); } #else #define alloc_per_cpu_data() do { } while (0) #endif /* CONFIG_SMP */ /** * find_memory - setup memory map * * Walk the EFI memory map and find usable memory for the system, taking * into account reserved areas. */ void __init find_memory (void) { unsigned long bootmap_size; reserve_memory(); /* first find highest page frame number */ min_low_pfn = ~0UL; max_low_pfn = 0; efi_memmap_walk(find_max_min_low_pfn, NULL); max_pfn = max_low_pfn; /* how many bytes to cover all the pages */ bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; /* look for a location to hold the bootmap */ bootmap_start = ~0UL; efi_memmap_walk(find_bootmap_location, &bootmap_size); if (bootmap_start == ~0UL) panic("Cannot find %ld bytes for bootmap\n", bootmap_size); bootmap_size = init_bootmem_node(NODE_DATA(0), (bootmap_start >> PAGE_SHIFT), 0, max_pfn); /* Free all available memory, then mark bootmem-map as being in use. */ efi_memmap_walk(filter_rsvd_memory, free_bootmem); reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); find_initrd(); alloc_per_cpu_data(); } static int count_pages(u64 start, u64 end, void *arg) { unsigned long *count = arg; *count += (end - start) >> PAGE_SHIFT; return 0; } /* * Set up the page tables. */ void __init paging_init (void) { unsigned long max_dma; unsigned long max_zone_pfns[MAX_NR_ZONES]; num_physpages = 0; efi_memmap_walk(count_pages, &num_physpages); memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_zone_pfns[ZONE_DMA] = max_dma; #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_VIRTUAL_MEM_MAP efi_memmap_walk(filter_memory, register_active_ranges); efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); if (max_gap < LARGE_GAP) { vmem_map = (struct page *) 0; free_area_init_nodes(max_zone_pfns); } else { unsigned long map_size; /* allocate virtual_mem_map */ map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page)); VMALLOC_END -= map_size; vmem_map = (struct page *) VMALLOC_END; efi_memmap_walk(create_mem_map_page_table, NULL); /* * alloc_node_mem_map makes an adjustment for mem_map * which isn't compatible with vmem_map. */ NODE_DATA(0)->node_mem_map = vmem_map + find_min_pfn_with_active_regions(); free_area_init_nodes(max_zone_pfns); printk("Virtual mem_map starts at 0x%p\n", mem_map); } #else /* !CONFIG_VIRTUAL_MEM_MAP */ add_active_range(0, 0, max_low_pfn); free_area_init_nodes(max_zone_pfns); #endif /* !CONFIG_VIRTUAL_MEM_MAP */ zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); } |