Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 | /* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/poison.h> #include <linux/pfn.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/memblock.h> struct memblock memblock __initdata_memblock; int memblock_debug __initdata_memblock; int memblock_can_resize __initdata_memblock; static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; /* inline so we don't get a warning when pr_debug is compiled out */ static inline const char *memblock_type_name(struct memblock_type *type) { if (type == &memblock.memory) return "memory"; else if (type == &memblock.reserved) return "reserved"; else return "unknown"; } /* * Address comparison utilities */ static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size) { return addr & ~(size - 1); } static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size) { return (addr + (size - 1)) & ~(size - 1); } static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, phys_addr_t size2) { return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } static long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { unsigned long i; for (i = 0; i < type->cnt; i++) { phys_addr_t rgnbase = type->regions[i].base; phys_addr_t rgnsize = type->regions[i].size; if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) break; } return (i < type->cnt) ? i : -1; } /* * Find, allocate, deallocate or reserve unreserved regions. All allocations * are top-down. */ static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align) { phys_addr_t base, res_base; long j; /* In case, huge size is requested */ if (end < size) return MEMBLOCK_ERROR; base = memblock_align_down((end - size), align); /* Prevent allocations returning 0 as it's also used to * indicate an allocation failure */ if (start == 0) start = PAGE_SIZE; while (start <= base) { j = memblock_overlaps_region(&memblock.reserved, base, size); if (j < 0) return base; res_base = memblock.reserved.regions[j].base; if (res_base < size) break; base = memblock_align_down(res_base - size, align); } return MEMBLOCK_ERROR; } static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end) { long i; BUG_ON(0 == size); /* Pump up max_addr */ if (end == MEMBLOCK_ALLOC_ACCESSIBLE) end = memblock.current_limit; /* We do a top-down search, this tends to limit memory * fragmentation by keeping early boot allocs near the * top of memory */ for (i = memblock.memory.cnt - 1; i >= 0; i--) { phys_addr_t memblockbase = memblock.memory.regions[i].base; phys_addr_t memblocksize = memblock.memory.regions[i].size; phys_addr_t bottom, top, found; if (memblocksize < size) continue; if ((memblockbase + memblocksize) <= start) break; bottom = max(memblockbase, start); top = min(memblockbase + memblocksize, end); if (bottom >= top) continue; found = memblock_find_region(bottom, top, size, align); if (found != MEMBLOCK_ERROR) return found; } return MEMBLOCK_ERROR; } /* * Find a free area with specified alignment in a specific range. */ u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align) { return memblock_find_base(size, align, start, end); } /* * Free memblock.reserved.regions */ int __init_memblock memblock_free_reserved_regions(void) { if (memblock.reserved.regions == memblock_reserved_init_regions) return 0; return memblock_free(__pa(memblock.reserved.regions), sizeof(struct memblock_region) * memblock.reserved.max); } /* * Reserve memblock.reserved.regions */ int __init_memblock memblock_reserve_reserved_regions(void) { if (memblock.reserved.regions == memblock_reserved_init_regions) return 0; return memblock_reserve(__pa(memblock.reserved.regions), sizeof(struct memblock_region) * memblock.reserved.max); } static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) { unsigned long i; for (i = r; i < type->cnt - 1; i++) { type->regions[i].base = type->regions[i + 1].base; type->regions[i].size = type->regions[i + 1].size; } type->cnt--; /* Special case for empty arrays */ if (type->cnt == 0) { type->cnt = 1; type->regions[0].base = 0; type->regions[0].size = 0; } } /* Defined below but needed now */ static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size); static int __init_memblock memblock_double_array(struct memblock_type *type) { struct memblock_region *new_array, *old_array; phys_addr_t old_size, new_size, addr; int use_slab = slab_is_available(); /* We don't allow resizing until we know about the reserved regions * of memory that aren't suitable for allocation */ if (!memblock_can_resize) return -1; /* Calculate new doubled size */ old_size = type->max * sizeof(struct memblock_region); new_size = old_size << 1; /* Try to find some space for it. * * WARNING: We assume that either slab_is_available() and we use it or * we use MEMBLOCK for allocations. That means that this is unsafe to use * when bootmem is currently active (unless bootmem itself is implemented * on top of MEMBLOCK which isn't the case yet) * * This should however not be an issue for now, as we currently only * call into MEMBLOCK while it's still active, or much later when slab is * active for memory hotplug operations */ if (use_slab) { new_array = kmalloc(new_size, GFP_KERNEL); addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array); } else addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE); if (addr == MEMBLOCK_ERROR) { pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", memblock_type_name(type), type->max, type->max * 2); return -1; } new_array = __va(addr); memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); /* Found space, we now need to move the array over before * we add the reserved region since it may be our reserved * array itself that is full. */ memcpy(new_array, type->regions, old_size); memset(new_array + type->max, 0, old_size); old_array = type->regions; type->regions = new_array; type->max <<= 1; /* If we use SLAB that's it, we are done */ if (use_slab) return 0; /* Add the new reserved region now. Should not fail ! */ BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size)); /* If the array wasn't our static init one, then free it. We only do * that before SLAB is available as later on, we don't know whether * to use kfree or free_bootmem_pages(). Shouldn't be a big deal * anyways */ if (old_array != memblock_memory_init_regions && old_array != memblock_reserved_init_regions) memblock_free(__pa(old_array), old_size); return 0; } int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1, phys_addr_t addr2, phys_addr_t size2) { return 1; } static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size; int i, slot = -1; /* First try and coalesce this MEMBLOCK with others */ for (i = 0; i < type->cnt; i++) { struct memblock_region *rgn = &type->regions[i]; phys_addr_t rend = rgn->base + rgn->size; /* Exit if there's no possible hits */ if (rgn->base > end || rgn->size == 0) break; /* Check if we are fully enclosed within an existing * block */ if (rgn->base <= base && rend >= end) return 0; /* Check if we overlap or are adjacent with the bottom * of a block. */ if (base < rgn->base && end >= rgn->base) { /* If we can't coalesce, create a new block */ if (!memblock_memory_can_coalesce(base, size, rgn->base, rgn->size)) { /* Overlap & can't coalesce are mutually * exclusive, if you do that, be prepared * for trouble */ WARN_ON(end != rgn->base); goto new_block; } /* We extend the bottom of the block down to our * base */ rgn->base = base; rgn->size = rend - base; /* Return if we have nothing else to allocate * (fully coalesced) */ if (rend >= end) return 0; /* We continue processing from the end of the * coalesced block. */ base = rend; size = end - base; } /* Now check if we overlap or are adjacent with the * top of a block */ if (base <= rend && end >= rend) { /* If we can't coalesce, create a new block */ if (!memblock_memory_can_coalesce(rgn->base, rgn->size, base, size)) { /* Overlap & can't coalesce are mutually * exclusive, if you do that, be prepared * for trouble */ WARN_ON(rend != base); goto new_block; } /* We adjust our base down to enclose the * original block and destroy it. It will be * part of our new allocation. Since we've * freed an entry, we know we won't fail * to allocate one later, so we won't risk * losing the original block allocation. */ size += (base - rgn->base); base = rgn->base; memblock_remove_region(type, i--); } } /* If the array is empty, special case, replace the fake * filler region and return */ if ((type->cnt == 1) && (type->regions[0].size == 0)) { type->regions[0].base = base; type->regions[0].size = size; return 0; } new_block: /* If we are out of space, we fail. It's too late to resize the array * but then this shouldn't have happened in the first place. */ if (WARN_ON(type->cnt >= type->max)) return -1; /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ for (i = type->cnt - 1; i >= 0; i--) { if (base < type->regions[i].base) { type->regions[i+1].base = type->regions[i].base; type->regions[i+1].size = type->regions[i].size; } else { type->regions[i+1].base = base; type->regions[i+1].size = size; slot = i + 1; break; } } if (base < type->regions[0].base) { type->regions[0].base = base; type->regions[0].size = size; slot = 0; } type->cnt++; /* The array is full ? Try to resize it. If that fails, we undo * our allocation and return an error */ if (type->cnt == type->max && memblock_double_array(type)) { BUG_ON(slot < 0); memblock_remove_region(type, slot); return -1; } return 0; } long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) { return memblock_add_region(&memblock.memory, base, size); } static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size; int i; /* Walk through the array for collisions */ for (i = 0; i < type->cnt; i++) { struct memblock_region *rgn = &type->regions[i]; phys_addr_t rend = rgn->base + rgn->size; /* Nothing more to do, exit */ if (rgn->base > end || rgn->size == 0) break; /* If we fully enclose the block, drop it */ if (base <= rgn->base && end >= rend) { memblock_remove_region(type, i--); continue; } /* If we are fully enclosed within a block * then we need to split it and we are done */ if (base > rgn->base && end < rend) { rgn->size = base - rgn->base; if (!memblock_add_region(type, end, rend - end)) return 0; /* Failure to split is bad, we at least * restore the block before erroring */ rgn->size = rend - rgn->base; WARN_ON(1); return -1; } /* Check if we need to trim the bottom of a block */ if (rgn->base < end && rend > end) { rgn->size -= end - rgn->base; rgn->base = end; break; } /* And check if we need to trim the top of a block */ if (base < rend) rgn->size -= rend - base; } return 0; } long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) { return __memblock_remove(&memblock.memory, base, size); } long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) { return __memblock_remove(&memblock.reserved, base, size); } long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) { struct memblock_type *_rgn = &memblock.reserved; BUG_ON(0 == size); return memblock_add_region(_rgn, base, size); } phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) { phys_addr_t found; /* We align the size to limit fragmentation. Without this, a lot of * small allocs quickly eat up the whole reserve array on sparc */ size = memblock_align_up(size, align); found = memblock_find_base(size, align, 0, max_addr); if (found != MEMBLOCK_ERROR && !memblock_add_region(&memblock.reserved, found, size)) return found; return 0; } phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) { phys_addr_t alloc; alloc = __memblock_alloc_base(size, align, max_addr); if (alloc == 0) panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", (unsigned long long) size, (unsigned long long) max_addr); return alloc; } phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) { return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); } /* * Additional node-local allocators. Search for node memory is bottom up * and walks memblock regions within that node bottom-up as well, but allocation * within an memblock region is top-down. XXX I plan to fix that at some stage * * WARNING: Only available after early_node_map[] has been populated, * on some architectures, that is after all the calls to add_active_range() * have been done to populate it. */ phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid) { #ifdef CONFIG_ARCH_POPULATES_NODE_MAP /* * This code originates from sparc which really wants use to walk by addresses * and returns the nid. This is not very convenient for early_pfn_map[] users * as the map isn't sorted yet, and it really wants to be walked by nid. * * For now, I implement the inefficient method below which walks the early * map multiple times. Eventually we may want to use an ARCH config option * to implement a completely different method for both case. */ unsigned long start_pfn, end_pfn; int i; for (i = 0; i < MAX_NUMNODES; i++) { get_pfn_range_for_nid(i, &start_pfn, &end_pfn); if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn)) continue; *nid = i; return min(end, PFN_PHYS(end_pfn)); } #endif *nid = 0; return end; } static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp, phys_addr_t size, phys_addr_t align, int nid) { phys_addr_t start, end; start = mp->base; end = start + mp->size; start = memblock_align_up(start, align); while (start < end) { phys_addr_t this_end; int this_nid; this_end = memblock_nid_range(start, end, &this_nid); if (this_nid == nid) { phys_addr_t ret = memblock_find_region(start, this_end, size, align); if (ret != MEMBLOCK_ERROR && !memblock_add_region(&memblock.reserved, ret, size)) return ret; } start = this_end; } return MEMBLOCK_ERROR; } phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) { struct memblock_type *mem = &memblock.memory; int i; BUG_ON(0 == size); /* We align the size to limit fragmentation. Without this, a lot of * small allocs quickly eat up the whole reserve array on sparc */ size = memblock_align_up(size, align); /* We do a bottom-up search for a region with the right * nid since that's easier considering how memblock_nid_range() * works */ for (i = 0; i < mem->cnt; i++) { phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i], size, align, nid); if (ret != MEMBLOCK_ERROR) return ret; } return 0; } phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) { phys_addr_t res = memblock_alloc_nid(size, align, nid); if (res) return res; return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); } /* * Remaining API functions */ /* You must call memblock_analyze() before this. */ phys_addr_t __init memblock_phys_mem_size(void) { return memblock.memory_size; } /* lowest address */ phys_addr_t __init_memblock memblock_start_of_DRAM(void) { return memblock.memory.regions[0].base; } phys_addr_t __init_memblock memblock_end_of_DRAM(void) { int idx = memblock.memory.cnt - 1; return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); } /* You must call memblock_analyze() after this. */ void __init memblock_enforce_memory_limit(phys_addr_t memory_limit) { unsigned long i; phys_addr_t limit; struct memblock_region *p; if (!memory_limit) return; /* Truncate the memblock regions to satisfy the memory limit. */ limit = memory_limit; for (i = 0; i < memblock.memory.cnt; i++) { if (limit > memblock.memory.regions[i].size) { limit -= memblock.memory.regions[i].size; continue; } memblock.memory.regions[i].size = limit; memblock.memory.cnt = i + 1; break; } memory_limit = memblock_end_of_DRAM(); /* And truncate any reserves above the limit also. */ for (i = 0; i < memblock.reserved.cnt; i++) { p = &memblock.reserved.regions[i]; if (p->base > memory_limit) p->size = 0; else if ((p->base + p->size) > memory_limit) p->size = memory_limit - p->base; if (p->size == 0) { memblock_remove_region(&memblock.reserved, i); i--; } } } static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) { unsigned int left = 0, right = type->cnt; do { unsigned int mid = (right + left) / 2; if (addr < type->regions[mid].base) right = mid; else if (addr >= (type->regions[mid].base + type->regions[mid].size)) left = mid + 1; else return mid; } while (left < right); return -1; } int __init memblock_is_reserved(phys_addr_t addr) { return memblock_search(&memblock.reserved, addr) != -1; } int __init_memblock memblock_is_memory(phys_addr_t addr) { return memblock_search(&memblock.memory, addr) != -1; } int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) { int idx = memblock_search(&memblock.memory, base); if (idx == -1) return 0; return memblock.memory.regions[idx].base <= base && (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size) >= (base + size); } int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) { return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; } void __init_memblock memblock_set_current_limit(phys_addr_t limit) { memblock.current_limit = limit; } static void __init_memblock memblock_dump(struct memblock_type *region, char *name) { unsigned long long base, size; int i; pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); for (i = 0; i < region->cnt; i++) { base = region->regions[i].base; size = region->regions[i].size; pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n", name, i, base, base + size - 1, size); } } void __init_memblock memblock_dump_all(void) { if (!memblock_debug) return; pr_info("MEMBLOCK configuration:\n"); pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size); memblock_dump(&memblock.memory, "memory"); memblock_dump(&memblock.reserved, "reserved"); } void __init memblock_analyze(void) { int i; /* Check marker in the unused last array entry */ WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base != MEMBLOCK_INACTIVE); WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base != MEMBLOCK_INACTIVE); memblock.memory_size = 0; for (i = 0; i < memblock.memory.cnt; i++) memblock.memory_size += memblock.memory.regions[i].size; /* We allow resizing from there */ memblock_can_resize = 1; } void __init memblock_init(void) { static int init_done __initdata = 0; if (init_done) return; init_done = 1; /* Hookup the initial arrays */ memblock.memory.regions = memblock_memory_init_regions; memblock.memory.max = INIT_MEMBLOCK_REGIONS; memblock.reserved.regions = memblock_reserved_init_regions; memblock.reserved.max = INIT_MEMBLOCK_REGIONS; /* Write a marker in the unused last array entry */ memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE; memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE; /* Create a dummy zero size MEMBLOCK which will get coalesced away later. * This simplifies the memblock_add() code below... */ memblock.memory.regions[0].base = 0; memblock.memory.regions[0].size = 0; memblock.memory.cnt = 1; /* Ditto. */ memblock.reserved.regions[0].base = 0; memblock.reserved.regions[0].size = 0; memblock.reserved.cnt = 1; memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE; } static int __init early_memblock(char *p) { if (p && strstr(p, "debug")) memblock_debug = 1; return 0; } early_param("memblock", early_memblock); #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK) static int memblock_debug_show(struct seq_file *m, void *private) { struct memblock_type *type = m->private; struct memblock_region *reg; int i; for (i = 0; i < type->cnt; i++) { reg = &type->regions[i]; seq_printf(m, "%4d: ", i); if (sizeof(phys_addr_t) == 4) seq_printf(m, "0x%08lx..0x%08lx\n", (unsigned long)reg->base, (unsigned long)(reg->base + reg->size - 1)); else seq_printf(m, "0x%016llx..0x%016llx\n", (unsigned long long)reg->base, (unsigned long long)(reg->base + reg->size - 1)); } return 0; } static int memblock_debug_open(struct inode *inode, struct file *file) { return single_open(file, memblock_debug_show, inode->i_private); } static const struct file_operations memblock_debug_fops = { .open = memblock_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init memblock_init_debugfs(void) { struct dentry *root = debugfs_create_dir("memblock", NULL); if (!root) return -ENXIO; debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); return 0; } __initcall(memblock_init_debugfs); #endif /* CONFIG_DEBUG_FS */ |