Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 | /* * An async IO implementation for Linux * Written by Benjamin LaHaise <bcrl@kvack.org> * * Implements an efficient asynchronous io interface. * * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. * * See ../COPYING for licensing terms. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/time.h> #include <linux/aio_abi.h> #include <linux/module.h> #include <linux/syscalls.h> #include <linux/backing-dev.h> #include <linux/uio.h> #define DEBUG 0 #include <linux/sched.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/mmu_context.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/aio.h> #include <linux/highmem.h> #include <linux/workqueue.h> #include <linux/security.h> #include <linux/eventfd.h> #include <linux/blkdev.h> #include <linux/compat.h> #include <asm/kmap_types.h> #include <asm/uaccess.h> #if DEBUG > 1 #define dprintk printk #else #define dprintk(x...) do { ; } while (0) #endif /*------ sysctl variables----*/ static DEFINE_SPINLOCK(aio_nr_lock); unsigned long aio_nr; /* current system wide number of aio requests */ unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ /*----end sysctl variables---*/ static struct kmem_cache *kiocb_cachep; static struct kmem_cache *kioctx_cachep; static struct workqueue_struct *aio_wq; /* Used for rare fput completion. */ static void aio_fput_routine(struct work_struct *); static DECLARE_WORK(fput_work, aio_fput_routine); static DEFINE_SPINLOCK(fput_lock); static LIST_HEAD(fput_head); static void aio_kick_handler(struct work_struct *); static void aio_queue_work(struct kioctx *); /* aio_setup * Creates the slab caches used by the aio routines, panic on * failure as this is done early during the boot sequence. */ static int __init aio_setup(void) { kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ BUG_ON(!aio_wq); pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); return 0; } __initcall(aio_setup); static void aio_free_ring(struct kioctx *ctx) { struct aio_ring_info *info = &ctx->ring_info; long i; for (i=0; i<info->nr_pages; i++) put_page(info->ring_pages[i]); if (info->mmap_size) { down_write(&ctx->mm->mmap_sem); do_munmap(ctx->mm, info->mmap_base, info->mmap_size); up_write(&ctx->mm->mmap_sem); } if (info->ring_pages && info->ring_pages != info->internal_pages) kfree(info->ring_pages); info->ring_pages = NULL; info->nr = 0; } static int aio_setup_ring(struct kioctx *ctx) { struct aio_ring *ring; struct aio_ring_info *info = &ctx->ring_info; unsigned nr_events = ctx->max_reqs; unsigned long size; int nr_pages; /* Compensate for the ring buffer's head/tail overlap entry */ nr_events += 2; /* 1 is required, 2 for good luck */ size = sizeof(struct aio_ring); size += sizeof(struct io_event) * nr_events; nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; if (nr_pages < 0) return -EINVAL; nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); info->nr = 0; info->ring_pages = info->internal_pages; if (nr_pages > AIO_RING_PAGES) { info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!info->ring_pages) return -ENOMEM; } info->mmap_size = nr_pages * PAGE_SIZE; dprintk("attempting mmap of %lu bytes\n", info->mmap_size); down_write(&ctx->mm->mmap_sem); info->mmap_base = do_mmap(NULL, 0, info->mmap_size, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 0); if (IS_ERR((void *)info->mmap_base)) { up_write(&ctx->mm->mmap_sem); info->mmap_size = 0; aio_free_ring(ctx); return -EAGAIN; } dprintk("mmap address: 0x%08lx\n", info->mmap_base); info->nr_pages = get_user_pages(current, ctx->mm, info->mmap_base, nr_pages, 1, 0, info->ring_pages, NULL); up_write(&ctx->mm->mmap_sem); if (unlikely(info->nr_pages != nr_pages)) { aio_free_ring(ctx); return -EAGAIN; } ctx->user_id = info->mmap_base; info->nr = nr_events; /* trusted copy */ ring = kmap_atomic(info->ring_pages[0], KM_USER0); ring->nr = nr_events; /* user copy */ ring->id = ctx->user_id; ring->head = ring->tail = 0; ring->magic = AIO_RING_MAGIC; ring->compat_features = AIO_RING_COMPAT_FEATURES; ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; ring->header_length = sizeof(struct aio_ring); kunmap_atomic(ring, KM_USER0); return 0; } /* aio_ring_event: returns a pointer to the event at the given index from * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); */ #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) #define aio_ring_event(info, nr, km) ({ \ unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ struct io_event *__event; \ __event = kmap_atomic( \ (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ __event += pos % AIO_EVENTS_PER_PAGE; \ __event; \ }) #define put_aio_ring_event(event, km) do { \ struct io_event *__event = (event); \ (void)__event; \ kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ } while(0) static void ctx_rcu_free(struct rcu_head *head) { struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); unsigned nr_events = ctx->max_reqs; kmem_cache_free(kioctx_cachep, ctx); if (nr_events) { spin_lock(&aio_nr_lock); BUG_ON(aio_nr - nr_events > aio_nr); aio_nr -= nr_events; spin_unlock(&aio_nr_lock); } } /* __put_ioctx * Called when the last user of an aio context has gone away, * and the struct needs to be freed. */ static void __put_ioctx(struct kioctx *ctx) { BUG_ON(ctx->reqs_active); cancel_delayed_work(&ctx->wq); cancel_work_sync(&ctx->wq.work); aio_free_ring(ctx); mmdrop(ctx->mm); ctx->mm = NULL; pr_debug("__put_ioctx: freeing %p\n", ctx); call_rcu(&ctx->rcu_head, ctx_rcu_free); } static inline int try_get_ioctx(struct kioctx *kioctx) { return atomic_inc_not_zero(&kioctx->users); } static inline void put_ioctx(struct kioctx *kioctx) { BUG_ON(atomic_read(&kioctx->users) <= 0); if (unlikely(atomic_dec_and_test(&kioctx->users))) __put_ioctx(kioctx); } /* ioctx_alloc * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. */ static struct kioctx *ioctx_alloc(unsigned nr_events) { struct mm_struct *mm; struct kioctx *ctx; int did_sync = 0; /* Prevent overflows */ if ((nr_events > (0x10000000U / sizeof(struct io_event))) || (nr_events > (0x10000000U / sizeof(struct kiocb)))) { pr_debug("ENOMEM: nr_events too high\n"); return ERR_PTR(-EINVAL); } if ((unsigned long)nr_events > aio_max_nr) return ERR_PTR(-EAGAIN); ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->max_reqs = nr_events; mm = ctx->mm = current->mm; atomic_inc(&mm->mm_count); atomic_set(&ctx->users, 2); spin_lock_init(&ctx->ctx_lock); spin_lock_init(&ctx->ring_info.ring_lock); init_waitqueue_head(&ctx->wait); INIT_LIST_HEAD(&ctx->active_reqs); INIT_LIST_HEAD(&ctx->run_list); INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); if (aio_setup_ring(ctx) < 0) goto out_freectx; /* limit the number of system wide aios */ do { spin_lock_bh(&aio_nr_lock); if (aio_nr + nr_events > aio_max_nr || aio_nr + nr_events < aio_nr) ctx->max_reqs = 0; else aio_nr += ctx->max_reqs; spin_unlock_bh(&aio_nr_lock); if (ctx->max_reqs || did_sync) break; /* wait for rcu callbacks to have completed before giving up */ synchronize_rcu(); did_sync = 1; ctx->max_reqs = nr_events; } while (1); if (ctx->max_reqs == 0) goto out_cleanup; /* now link into global list. */ spin_lock(&mm->ioctx_lock); hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); spin_unlock(&mm->ioctx_lock); dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", ctx, ctx->user_id, current->mm, ctx->ring_info.nr); return ctx; out_cleanup: __put_ioctx(ctx); return ERR_PTR(-EAGAIN); out_freectx: mmdrop(mm); kmem_cache_free(kioctx_cachep, ctx); ctx = ERR_PTR(-ENOMEM); dprintk("aio: error allocating ioctx %p\n", ctx); return ctx; } /* aio_cancel_all * Cancels all outstanding aio requests on an aio context. Used * when the processes owning a context have all exited to encourage * the rapid destruction of the kioctx. */ static void aio_cancel_all(struct kioctx *ctx) { int (*cancel)(struct kiocb *, struct io_event *); struct io_event res; spin_lock_irq(&ctx->ctx_lock); ctx->dead = 1; while (!list_empty(&ctx->active_reqs)) { struct list_head *pos = ctx->active_reqs.next; struct kiocb *iocb = list_kiocb(pos); list_del_init(&iocb->ki_list); cancel = iocb->ki_cancel; kiocbSetCancelled(iocb); if (cancel) { iocb->ki_users++; spin_unlock_irq(&ctx->ctx_lock); cancel(iocb, &res); spin_lock_irq(&ctx->ctx_lock); } } spin_unlock_irq(&ctx->ctx_lock); } static void wait_for_all_aios(struct kioctx *ctx) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); spin_lock_irq(&ctx->ctx_lock); if (!ctx->reqs_active) goto out; add_wait_queue(&ctx->wait, &wait); set_task_state(tsk, TASK_UNINTERRUPTIBLE); while (ctx->reqs_active) { spin_unlock_irq(&ctx->ctx_lock); io_schedule(); set_task_state(tsk, TASK_UNINTERRUPTIBLE); spin_lock_irq(&ctx->ctx_lock); } __set_task_state(tsk, TASK_RUNNING); remove_wait_queue(&ctx->wait, &wait); out: spin_unlock_irq(&ctx->ctx_lock); } /* wait_on_sync_kiocb: * Waits on the given sync kiocb to complete. */ ssize_t wait_on_sync_kiocb(struct kiocb *iocb) { while (iocb->ki_users) { set_current_state(TASK_UNINTERRUPTIBLE); if (!iocb->ki_users) break; io_schedule(); } __set_current_state(TASK_RUNNING); return iocb->ki_user_data; } EXPORT_SYMBOL(wait_on_sync_kiocb); /* exit_aio: called when the last user of mm goes away. At this point, * there is no way for any new requests to be submited or any of the * io_* syscalls to be called on the context. However, there may be * outstanding requests which hold references to the context; as they * go away, they will call put_ioctx and release any pinned memory * associated with the request (held via struct page * references). */ void exit_aio(struct mm_struct *mm) { struct kioctx *ctx; while (!hlist_empty(&mm->ioctx_list)) { ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); hlist_del_rcu(&ctx->list); aio_cancel_all(ctx); wait_for_all_aios(ctx); /* * Ensure we don't leave the ctx on the aio_wq */ cancel_work_sync(&ctx->wq.work); if (1 != atomic_read(&ctx->users)) printk(KERN_DEBUG "exit_aio:ioctx still alive: %d %d %d\n", atomic_read(&ctx->users), ctx->dead, ctx->reqs_active); put_ioctx(ctx); } } /* aio_get_req * Allocate a slot for an aio request. Increments the users count * of the kioctx so that the kioctx stays around until all requests are * complete. Returns NULL if no requests are free. * * Returns with kiocb->users set to 2. The io submit code path holds * an extra reference while submitting the i/o. * This prevents races between the aio code path referencing the * req (after submitting it) and aio_complete() freeing the req. */ static struct kiocb *__aio_get_req(struct kioctx *ctx) { struct kiocb *req = NULL; req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); if (unlikely(!req)) return NULL; req->ki_flags = 0; req->ki_users = 2; req->ki_key = 0; req->ki_ctx = ctx; req->ki_cancel = NULL; req->ki_retry = NULL; req->ki_dtor = NULL; req->private = NULL; req->ki_iovec = NULL; INIT_LIST_HEAD(&req->ki_run_list); req->ki_eventfd = NULL; return req; } /* * struct kiocb's are allocated in batches to reduce the number of * times the ctx lock is acquired and released. */ #define KIOCB_BATCH_SIZE 32L struct kiocb_batch { struct list_head head; long count; /* number of requests left to allocate */ }; static void kiocb_batch_init(struct kiocb_batch *batch, long total) { INIT_LIST_HEAD(&batch->head); batch->count = total; } static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) { struct kiocb *req, *n; if (list_empty(&batch->head)) return; spin_lock_irq(&ctx->ctx_lock); list_for_each_entry_safe(req, n, &batch->head, ki_batch) { list_del(&req->ki_batch); list_del(&req->ki_list); kmem_cache_free(kiocb_cachep, req); ctx->reqs_active--; } if (unlikely(!ctx->reqs_active && ctx->dead)) wake_up_all(&ctx->wait); spin_unlock_irq(&ctx->ctx_lock); } /* * Allocate a batch of kiocbs. This avoids taking and dropping the * context lock a lot during setup. */ static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) { unsigned short allocated, to_alloc; long avail; bool called_fput = false; struct kiocb *req, *n; struct aio_ring *ring; to_alloc = min(batch->count, KIOCB_BATCH_SIZE); for (allocated = 0; allocated < to_alloc; allocated++) { req = __aio_get_req(ctx); if (!req) /* allocation failed, go with what we've got */ break; list_add(&req->ki_batch, &batch->head); } if (allocated == 0) goto out; retry: spin_lock_irq(&ctx->ctx_lock); ring = kmap_atomic(ctx->ring_info.ring_pages[0]); avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; BUG_ON(avail < 0); if (avail == 0 && !called_fput) { /* * Handle a potential starvation case. It is possible that * we hold the last reference on a struct file, causing us * to delay the final fput to non-irq context. In this case, * ctx->reqs_active is artificially high. Calling the fput * routine here may free up a slot in the event completion * ring, allowing this allocation to succeed. */ kunmap_atomic(ring); spin_unlock_irq(&ctx->ctx_lock); aio_fput_routine(NULL); called_fput = true; goto retry; } if (avail < allocated) { /* Trim back the number of requests. */ list_for_each_entry_safe(req, n, &batch->head, ki_batch) { list_del(&req->ki_batch); kmem_cache_free(kiocb_cachep, req); if (--allocated <= avail) break; } } batch->count -= allocated; list_for_each_entry(req, &batch->head, ki_batch) { list_add(&req->ki_list, &ctx->active_reqs); ctx->reqs_active++; } kunmap_atomic(ring); spin_unlock_irq(&ctx->ctx_lock); out: return allocated; } static inline struct kiocb *aio_get_req(struct kioctx *ctx, struct kiocb_batch *batch) { struct kiocb *req; if (list_empty(&batch->head)) if (kiocb_batch_refill(ctx, batch) == 0) return NULL; req = list_first_entry(&batch->head, struct kiocb, ki_batch); list_del(&req->ki_batch); return req; } static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) { assert_spin_locked(&ctx->ctx_lock); if (req->ki_eventfd != NULL) eventfd_ctx_put(req->ki_eventfd); if (req->ki_dtor) req->ki_dtor(req); if (req->ki_iovec != &req->ki_inline_vec) kfree(req->ki_iovec); kmem_cache_free(kiocb_cachep, req); ctx->reqs_active--; if (unlikely(!ctx->reqs_active && ctx->dead)) wake_up_all(&ctx->wait); } static void aio_fput_routine(struct work_struct *data) { spin_lock_irq(&fput_lock); while (likely(!list_empty(&fput_head))) { struct kiocb *req = list_kiocb(fput_head.next); struct kioctx *ctx = req->ki_ctx; list_del(&req->ki_list); spin_unlock_irq(&fput_lock); /* Complete the fput(s) */ if (req->ki_filp != NULL) fput(req->ki_filp); /* Link the iocb into the context's free list */ rcu_read_lock(); spin_lock_irq(&ctx->ctx_lock); really_put_req(ctx, req); /* * at that point ctx might've been killed, but actual * freeing is RCU'd */ spin_unlock_irq(&ctx->ctx_lock); rcu_read_unlock(); spin_lock_irq(&fput_lock); } spin_unlock_irq(&fput_lock); } /* __aio_put_req * Returns true if this put was the last user of the request. */ static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) { dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", req, atomic_long_read(&req->ki_filp->f_count)); assert_spin_locked(&ctx->ctx_lock); req->ki_users--; BUG_ON(req->ki_users < 0); if (likely(req->ki_users)) return 0; list_del(&req->ki_list); /* remove from active_reqs */ req->ki_cancel = NULL; req->ki_retry = NULL; /* * Try to optimize the aio and eventfd file* puts, by avoiding to * schedule work in case it is not final fput() time. In normal cases, * we would not be holding the last reference to the file*, so * this function will be executed w/out any aio kthread wakeup. */ if (unlikely(!fput_atomic(req->ki_filp))) { spin_lock(&fput_lock); list_add(&req->ki_list, &fput_head); spin_unlock(&fput_lock); schedule_work(&fput_work); } else { req->ki_filp = NULL; really_put_req(ctx, req); } return 1; } /* aio_put_req * Returns true if this put was the last user of the kiocb, * false if the request is still in use. */ int aio_put_req(struct kiocb *req) { struct kioctx *ctx = req->ki_ctx; int ret; spin_lock_irq(&ctx->ctx_lock); ret = __aio_put_req(ctx, req); spin_unlock_irq(&ctx->ctx_lock); return ret; } EXPORT_SYMBOL(aio_put_req); static struct kioctx *lookup_ioctx(unsigned long ctx_id) { struct mm_struct *mm = current->mm; struct kioctx *ctx, *ret = NULL; struct hlist_node *n; rcu_read_lock(); hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { /* * RCU protects us against accessing freed memory but * we have to be careful not to get a reference when the * reference count already dropped to 0 (ctx->dead test * is unreliable because of races). */ if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ ret = ctx; break; } } rcu_read_unlock(); return ret; } /* * Queue up a kiocb to be retried. Assumes that the kiocb * has already been marked as kicked, and places it on * the retry run list for the corresponding ioctx, if it * isn't already queued. Returns 1 if it actually queued * the kiocb (to tell the caller to activate the work * queue to process it), or 0, if it found that it was * already queued. */ static inline int __queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; assert_spin_locked(&ctx->ctx_lock); if (list_empty(&iocb->ki_run_list)) { list_add_tail(&iocb->ki_run_list, &ctx->run_list); return 1; } return 0; } /* aio_run_iocb * This is the core aio execution routine. It is * invoked both for initial i/o submission and * subsequent retries via the aio_kick_handler. * Expects to be invoked with iocb->ki_ctx->lock * already held. The lock is released and reacquired * as needed during processing. * * Calls the iocb retry method (already setup for the * iocb on initial submission) for operation specific * handling, but takes care of most of common retry * execution details for a given iocb. The retry method * needs to be non-blocking as far as possible, to avoid * holding up other iocbs waiting to be serviced by the * retry kernel thread. * * The trickier parts in this code have to do with * ensuring that only one retry instance is in progress * for a given iocb at any time. Providing that guarantee * simplifies the coding of individual aio operations as * it avoids various potential races. */ static ssize_t aio_run_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; ssize_t (*retry)(struct kiocb *); ssize_t ret; if (!(retry = iocb->ki_retry)) { printk("aio_run_iocb: iocb->ki_retry = NULL\n"); return 0; } /* * We don't want the next retry iteration for this * operation to start until this one has returned and * updated the iocb state. However, wait_queue functions * can trigger a kick_iocb from interrupt context in the * meantime, indicating that data is available for the next * iteration. We want to remember that and enable the * next retry iteration _after_ we are through with * this one. * * So, in order to be able to register a "kick", but * prevent it from being queued now, we clear the kick * flag, but make the kick code *think* that the iocb is * still on the run list until we are actually done. * When we are done with this iteration, we check if * the iocb was kicked in the meantime and if so, queue * it up afresh. */ kiocbClearKicked(iocb); /* * This is so that aio_complete knows it doesn't need to * pull the iocb off the run list (We can't just call * INIT_LIST_HEAD because we don't want a kick_iocb to * queue this on the run list yet) */ iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; spin_unlock_irq(&ctx->ctx_lock); /* Quit retrying if the i/o has been cancelled */ if (kiocbIsCancelled(iocb)) { ret = -EINTR; aio_complete(iocb, ret, 0); /* must not access the iocb after this */ goto out; } /* * Now we are all set to call the retry method in async * context. */ ret = retry(iocb); if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { /* * There's no easy way to restart the syscall since other AIO's * may be already running. Just fail this IO with EINTR. */ if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) ret = -EINTR; aio_complete(iocb, ret, 0); } out: spin_lock_irq(&ctx->ctx_lock); if (-EIOCBRETRY == ret) { /* * OK, now that we are done with this iteration * and know that there is more left to go, * this is where we let go so that a subsequent * "kick" can start the next iteration */ /* will make __queue_kicked_iocb succeed from here on */ INIT_LIST_HEAD(&iocb->ki_run_list); /* we must queue the next iteration ourselves, if it * has already been kicked */ if (kiocbIsKicked(iocb)) { __queue_kicked_iocb(iocb); /* * __queue_kicked_iocb will always return 1 here, because * iocb->ki_run_list is empty at this point so it should * be safe to unconditionally queue the context into the * work queue. */ aio_queue_work(ctx); } } return ret; } /* * __aio_run_iocbs: * Process all pending retries queued on the ioctx * run list. * Assumes it is operating within the aio issuer's mm * context. */ static int __aio_run_iocbs(struct kioctx *ctx) { struct kiocb *iocb; struct list_head run_list; assert_spin_locked(&ctx->ctx_lock); list_replace_init(&ctx->run_list, &run_list); while (!list_empty(&run_list)) { iocb = list_entry(run_list.next, struct kiocb, ki_run_list); list_del(&iocb->ki_run_list); /* * Hold an extra reference while retrying i/o. */ iocb->ki_users++; /* grab extra reference */ aio_run_iocb(iocb); __aio_put_req(ctx, iocb); } if (!list_empty(&ctx->run_list)) return 1; return 0; } static void aio_queue_work(struct kioctx * ctx) { unsigned long timeout; /* * if someone is waiting, get the work started right * away, otherwise, use a longer delay */ smp_mb(); if (waitqueue_active(&ctx->wait)) timeout = 1; else timeout = HZ/10; queue_delayed_work(aio_wq, &ctx->wq, timeout); } /* * aio_run_all_iocbs: * Process all pending retries queued on the ioctx * run list, and keep running them until the list * stays empty. * Assumes it is operating within the aio issuer's mm context. */ static inline void aio_run_all_iocbs(struct kioctx *ctx) { spin_lock_irq(&ctx->ctx_lock); while (__aio_run_iocbs(ctx)) ; spin_unlock_irq(&ctx->ctx_lock); } /* * aio_kick_handler: * Work queue handler triggered to process pending * retries on an ioctx. Takes on the aio issuer's * mm context before running the iocbs, so that * copy_xxx_user operates on the issuer's address * space. * Run on aiod's context. */ static void aio_kick_handler(struct work_struct *work) { struct kioctx *ctx = container_of(work, struct kioctx, wq.work); mm_segment_t oldfs = get_fs(); struct mm_struct *mm; int requeue; set_fs(USER_DS); use_mm(ctx->mm); spin_lock_irq(&ctx->ctx_lock); requeue =__aio_run_iocbs(ctx); mm = ctx->mm; spin_unlock_irq(&ctx->ctx_lock); unuse_mm(mm); set_fs(oldfs); /* * we're in a worker thread already, don't use queue_delayed_work, */ if (requeue) queue_delayed_work(aio_wq, &ctx->wq, 0); } /* * Called by kick_iocb to queue the kiocb for retry * and if required activate the aio work queue to process * it */ static void try_queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; unsigned long flags; int run = 0; spin_lock_irqsave(&ctx->ctx_lock, flags); /* set this inside the lock so that we can't race with aio_run_iocb() * testing it and putting the iocb on the run list under the lock */ if (!kiocbTryKick(iocb)) run = __queue_kicked_iocb(iocb); spin_unlock_irqrestore(&ctx->ctx_lock, flags); if (run) aio_queue_work(ctx); } /* * kick_iocb: * Called typically from a wait queue callback context * to trigger a retry of the iocb. * The retry is usually executed by aio workqueue * threads (See aio_kick_handler). */ void kick_iocb(struct kiocb *iocb) { /* sync iocbs are easy: they can only ever be executing from a * single context. */ if (is_sync_kiocb(iocb)) { kiocbSetKicked(iocb); wake_up_process(iocb->ki_obj.tsk); return; } try_queue_kicked_iocb(iocb); } EXPORT_SYMBOL(kick_iocb); /* aio_complete * Called when the io request on the given iocb is complete. * Returns true if this is the last user of the request. The * only other user of the request can be the cancellation code. */ int aio_complete(struct kiocb *iocb, long res, long res2) { struct kioctx *ctx = iocb->ki_ctx; struct aio_ring_info *info; struct aio_ring *ring; struct io_event *event; unsigned long flags; unsigned long tail; int ret; /* * Special case handling for sync iocbs: * - events go directly into the iocb for fast handling * - the sync task with the iocb in its stack holds the single iocb * ref, no other paths have a way to get another ref * - the sync task helpfully left a reference to itself in the iocb */ if (is_sync_kiocb(iocb)) { BUG_ON(iocb->ki_users != 1); iocb->ki_user_data = res; iocb->ki_users = 0; wake_up_process(iocb->ki_obj.tsk); return 1; } info = &ctx->ring_info; /* add a completion event to the ring buffer. * must be done holding ctx->ctx_lock to prevent * other code from messing with the tail * pointer since we might be called from irq * context. */ spin_lock_irqsave(&ctx->ctx_lock, flags); if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) list_del_init(&iocb->ki_run_list); /* * cancelled requests don't get events, userland was given one * when the event got cancelled. */ if (kiocbIsCancelled(iocb)) goto put_rq; ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); tail = info->tail; event = aio_ring_event(info, tail, KM_IRQ0); if (++tail >= info->nr) tail = 0; event->obj = (u64)(unsigned long)iocb->ki_obj.user; event->data = iocb->ki_user_data; event->res = res; event->res2 = res2; dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, res, res2); /* after flagging the request as done, we * must never even look at it again */ smp_wmb(); /* make event visible before updating tail */ info->tail = tail; ring->tail = tail; put_aio_ring_event(event, KM_IRQ0); kunmap_atomic(ring, KM_IRQ1); pr_debug("added to ring %p at [%lu]\n", iocb, tail); /* * Check if the user asked us to deliver the result through an * eventfd. The eventfd_signal() function is safe to be called * from IRQ context. */ if (iocb->ki_eventfd != NULL) eventfd_signal(iocb->ki_eventfd, 1); put_rq: /* everything turned out well, dispose of the aiocb. */ ret = __aio_put_req(ctx, iocb); /* * We have to order our ring_info tail store above and test * of the wait list below outside the wait lock. This is * like in wake_up_bit() where clearing a bit has to be * ordered with the unlocked test. */ smp_mb(); if (waitqueue_active(&ctx->wait)) wake_up(&ctx->wait); spin_unlock_irqrestore(&ctx->ctx_lock, flags); return ret; } EXPORT_SYMBOL(aio_complete); /* aio_read_evt * Pull an event off of the ioctx's event ring. Returns the number of * events fetched (0 or 1 ;-) * FIXME: make this use cmpxchg. * TODO: make the ringbuffer user mmap()able (requires FIXME). */ static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) { struct aio_ring_info *info = &ioctx->ring_info; struct aio_ring *ring; unsigned long head; int ret = 0; ring = kmap_atomic(info->ring_pages[0], KM_USER0); dprintk("in aio_read_evt h%lu t%lu m%lu\n", (unsigned long)ring->head, (unsigned long)ring->tail, (unsigned long)ring->nr); if (ring->head == ring->tail) goto out; spin_lock(&info->ring_lock); head = ring->head % info->nr; if (head != ring->tail) { struct io_event *evp = aio_ring_event(info, head, KM_USER1); *ent = *evp; head = (head + 1) % info->nr; smp_mb(); /* finish reading the event before updatng the head */ ring->head = head; ret = 1; put_aio_ring_event(evp, KM_USER1); } spin_unlock(&info->ring_lock); out: kunmap_atomic(ring, KM_USER0); dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, (unsigned long)ring->head, (unsigned long)ring->tail); return ret; } struct aio_timeout { struct timer_list timer; int timed_out; struct task_struct *p; }; static void timeout_func(unsigned long data) { struct aio_timeout *to = (struct aio_timeout *)data; to->timed_out = 1; wake_up_process(to->p); } static inline void init_timeout(struct aio_timeout *to) { setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); to->timed_out = 0; to->p = current; } static inline void set_timeout(long start_jiffies, struct aio_timeout *to, const struct timespec *ts) { to->timer.expires = start_jiffies + timespec_to_jiffies(ts); if (time_after(to->timer.expires, jiffies)) add_timer(&to->timer); else to->timed_out = 1; } static inline void clear_timeout(struct aio_timeout *to) { del_singleshot_timer_sync(&to->timer); } static int read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, struct timespec __user *timeout) { long start_jiffies = jiffies; struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); int ret; int i = 0; struct io_event ent; struct aio_timeout to; int retry = 0; /* needed to zero any padding within an entry (there shouldn't be * any, but C is fun! */ memset(&ent, 0, sizeof(ent)); retry: ret = 0; while (likely(i < nr)) { ret = aio_read_evt(ctx, &ent); if (unlikely(ret <= 0)) break; dprintk("read event: %Lx %Lx %Lx %Lx\n", ent.data, ent.obj, ent.res, ent.res2); /* Could we split the check in two? */ ret = -EFAULT; if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { dprintk("aio: lost an event due to EFAULT.\n"); break; } ret = 0; /* Good, event copied to userland, update counts. */ event ++; i ++; } if (min_nr <= i) return i; if (ret) return ret; /* End fast path */ /* racey check, but it gets redone */ if (!retry && unlikely(!list_empty(&ctx->run_list))) { retry = 1; aio_run_all_iocbs(ctx); goto retry; } init_timeout(&to); if (timeout) { struct timespec ts; ret = -EFAULT; if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) goto out; set_timeout(start_jiffies, &to, &ts); } while (likely(i < nr)) { add_wait_queue_exclusive(&ctx->wait, &wait); do { set_task_state(tsk, TASK_INTERRUPTIBLE); ret = aio_read_evt(ctx, &ent); if (ret) break; if (min_nr <= i) break; if (unlikely(ctx->dead)) { ret = -EINVAL; break; } if (to.timed_out) /* Only check after read evt */ break; /* Try to only show up in io wait if there are ops * in flight */ if (ctx->reqs_active) io_schedule(); else schedule(); if (signal_pending(tsk)) { ret = -EINTR; break; } /*ret = aio_read_evt(ctx, &ent);*/ } while (1) ; set_task_state(tsk, TASK_RUNNING); remove_wait_queue(&ctx->wait, &wait); if (unlikely(ret <= 0)) break; ret = -EFAULT; if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { dprintk("aio: lost an event due to EFAULT.\n"); break; } /* Good, event copied to userland, update counts. */ event ++; i ++; } if (timeout) clear_timeout(&to); out: destroy_timer_on_stack(&to.timer); return i ? i : ret; } /* Take an ioctx and remove it from the list of ioctx's. Protects * against races with itself via ->dead. */ static void io_destroy(struct kioctx *ioctx) { struct mm_struct *mm = current->mm; int was_dead; /* delete the entry from the list is someone else hasn't already */ spin_lock(&mm->ioctx_lock); was_dead = ioctx->dead; ioctx->dead = 1; hlist_del_rcu(&ioctx->list); spin_unlock(&mm->ioctx_lock); dprintk("aio_release(%p)\n", ioctx); if (likely(!was_dead)) put_ioctx(ioctx); /* twice for the list */ aio_cancel_all(ioctx); wait_for_all_aios(ioctx); /* * Wake up any waiters. The setting of ctx->dead must be seen * by other CPUs at this point. Right now, we rely on the * locking done by the above calls to ensure this consistency. */ wake_up_all(&ioctx->wait); put_ioctx(ioctx); /* once for the lookup */ } /* sys_io_setup: * Create an aio_context capable of receiving at least nr_events. * ctxp must not point to an aio_context that already exists, and * must be initialized to 0 prior to the call. On successful * creation of the aio_context, *ctxp is filled in with the resulting * handle. May fail with -EINVAL if *ctxp is not initialized, * if the specified nr_events exceeds internal limits. May fail * with -EAGAIN if the specified nr_events exceeds the user's limit * of available events. May fail with -ENOMEM if insufficient kernel * resources are available. May fail with -EFAULT if an invalid * pointer is passed for ctxp. Will fail with -ENOSYS if not * implemented. */ SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) { struct kioctx *ioctx = NULL; unsigned long ctx; long ret; ret = get_user(ctx, ctxp); if (unlikely(ret)) goto out; ret = -EINVAL; if (unlikely(ctx || nr_events == 0)) { pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", ctx, nr_events); goto out; } ioctx = ioctx_alloc(nr_events); ret = PTR_ERR(ioctx); if (!IS_ERR(ioctx)) { ret = put_user(ioctx->user_id, ctxp); if (!ret) { put_ioctx(ioctx); return 0; } io_destroy(ioctx); } out: return ret; } /* sys_io_destroy: * Destroy the aio_context specified. May cancel any outstanding * AIOs and block on completion. Will fail with -ENOSYS if not * implemented. May fail with -EINVAL if the context pointed to * is invalid. */ SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) { struct kioctx *ioctx = lookup_ioctx(ctx); if (likely(NULL != ioctx)) { io_destroy(ioctx); return 0; } pr_debug("EINVAL: io_destroy: invalid context id\n"); return -EINVAL; } static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) { struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; BUG_ON(ret <= 0); while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { ssize_t this = min((ssize_t)iov->iov_len, ret); iov->iov_base += this; iov->iov_len -= this; iocb->ki_left -= this; ret -= this; if (iov->iov_len == 0) { iocb->ki_cur_seg++; iov++; } } /* the caller should not have done more io than what fit in * the remaining iovecs */ BUG_ON(ret > 0 && iocb->ki_left == 0); } static ssize_t aio_rw_vect_retry(struct kiocb *iocb) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; ssize_t (*rw_op)(struct kiocb *, const struct iovec *, unsigned long, loff_t); ssize_t ret = 0; unsigned short opcode; if ((iocb->ki_opcode == IOCB_CMD_PREADV) || (iocb->ki_opcode == IOCB_CMD_PREAD)) { rw_op = file->f_op->aio_read; opcode = IOCB_CMD_PREADV; } else { rw_op = file->f_op->aio_write; opcode = IOCB_CMD_PWRITEV; } /* This matches the pread()/pwrite() logic */ if (iocb->ki_pos < 0) return -EINVAL; do { ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], iocb->ki_nr_segs - iocb->ki_cur_seg, iocb->ki_pos); if (ret > 0) aio_advance_iovec(iocb, ret); /* retry all partial writes. retry partial reads as long as its a * regular file. */ } while (ret > 0 && iocb->ki_left > 0 && (opcode == IOCB_CMD_PWRITEV || (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); /* This means we must have transferred all that we could */ /* No need to retry anymore */ if ((ret == 0) || (iocb->ki_left == 0)) ret = iocb->ki_nbytes - iocb->ki_left; /* If we managed to write some out we return that, rather than * the eventual error. */ if (opcode == IOCB_CMD_PWRITEV && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY && iocb->ki_nbytes - iocb->ki_left) ret = iocb->ki_nbytes - iocb->ki_left; return ret; } static ssize_t aio_fdsync(struct kiocb *iocb) { struct file *file = iocb->ki_filp; ssize_t ret = -EINVAL; if (file->f_op->aio_fsync) ret = file->f_op->aio_fsync(iocb, 1); return ret; } static ssize_t aio_fsync(struct kiocb *iocb) { struct file *file = iocb->ki_filp; ssize_t ret = -EINVAL; if (file->f_op->aio_fsync) ret = file->f_op->aio_fsync(iocb, 0); return ret; } static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) { ssize_t ret; #ifdef CONFIG_COMPAT if (compat) ret = compat_rw_copy_check_uvector(type, (struct compat_iovec __user *)kiocb->ki_buf, kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, &kiocb->ki_iovec, 1); else #endif ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, &kiocb->ki_iovec, 1); if (ret < 0) goto out; ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret); if (ret < 0) goto out; kiocb->ki_nr_segs = kiocb->ki_nbytes; kiocb->ki_cur_seg = 0; /* ki_nbytes/left now reflect bytes instead of segs */ kiocb->ki_nbytes = ret; kiocb->ki_left = ret; ret = 0; out: return ret; } static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb) { int bytes; bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left); if (bytes < 0) return bytes; kiocb->ki_iovec = &kiocb->ki_inline_vec; kiocb->ki_iovec->iov_base = kiocb->ki_buf; kiocb->ki_iovec->iov_len = bytes; kiocb->ki_nr_segs = 1; kiocb->ki_cur_seg = 0; return 0; } /* * aio_setup_iocb: * Performs the initial checks and aio retry method * setup for the kiocb at the time of io submission. */ static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) { struct file *file = kiocb->ki_filp; ssize_t ret = 0; switch (kiocb->ki_opcode) { case IOCB_CMD_PREAD: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_READ))) break; ret = -EFAULT; if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, kiocb->ki_left))) break; ret = aio_setup_single_vector(READ, file, kiocb); if (ret) break; ret = -EINVAL; if (file->f_op->aio_read) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PWRITE: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_WRITE))) break; ret = -EFAULT; if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, kiocb->ki_left))) break; ret = aio_setup_single_vector(WRITE, file, kiocb); if (ret) break; ret = -EINVAL; if (file->f_op->aio_write) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PREADV: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_READ))) break; ret = aio_setup_vectored_rw(READ, kiocb, compat); if (ret) break; ret = -EINVAL; if (file->f_op->aio_read) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PWRITEV: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_WRITE))) break; ret = aio_setup_vectored_rw(WRITE, kiocb, compat); if (ret) break; ret = -EINVAL; if (file->f_op->aio_write) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_FDSYNC: ret = -EINVAL; if (file->f_op->aio_fsync) kiocb->ki_retry = aio_fdsync; break; case IOCB_CMD_FSYNC: ret = -EINVAL; if (file->f_op->aio_fsync) kiocb->ki_retry = aio_fsync; break; default: dprintk("EINVAL: io_submit: no operation provided\n"); ret = -EINVAL; } if (!kiocb->ki_retry) return ret; return 0; } static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, struct iocb *iocb, struct kiocb_batch *batch, bool compat) { struct kiocb *req; struct file *file; ssize_t ret; /* enforce forwards compatibility on users */ if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { pr_debug("EINVAL: io_submit: reserve field set\n"); return -EINVAL; } /* prevent overflows */ if (unlikely( (iocb->aio_buf != (unsigned long)iocb->aio_buf) || (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || ((ssize_t)iocb->aio_nbytes < 0) )) { pr_debug("EINVAL: io_submit: overflow check\n"); return -EINVAL; } file = fget(iocb->aio_fildes); if (unlikely(!file)) return -EBADF; req = aio_get_req(ctx, batch); /* returns with 2 references to req */ if (unlikely(!req)) { fput(file); return -EAGAIN; } req->ki_filp = file; if (iocb->aio_flags & IOCB_FLAG_RESFD) { /* * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an * instance of the file* now. The file descriptor must be * an eventfd() fd, and will be signaled for each completed * event using the eventfd_signal() function. */ req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); if (IS_ERR(req->ki_eventfd)) { ret = PTR_ERR(req->ki_eventfd); req->ki_eventfd = NULL; goto out_put_req; } } ret = put_user(req->ki_key, &user_iocb->aio_key); if (unlikely(ret)) { dprintk("EFAULT: aio_key\n"); goto out_put_req; } req->ki_obj.user = user_iocb; req->ki_user_data = iocb->aio_data; req->ki_pos = iocb->aio_offset; req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; req->ki_left = req->ki_nbytes = iocb->aio_nbytes; req->ki_opcode = iocb->aio_lio_opcode; ret = aio_setup_iocb(req, compat); if (ret) goto out_put_req; spin_lock_irq(&ctx->ctx_lock); /* * We could have raced with io_destroy() and are currently holding a * reference to ctx which should be destroyed. We cannot submit IO * since ctx gets freed as soon as io_submit() puts its reference. The * check here is reliable: io_destroy() sets ctx->dead before waiting * for outstanding IO and the barrier between these two is realized by * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we * increment ctx->reqs_active before checking for ctx->dead and the * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we * don't see ctx->dead set here, io_destroy() waits for our IO to * finish. */ if (ctx->dead) { spin_unlock_irq(&ctx->ctx_lock); ret = -EINVAL; goto out_put_req; } aio_run_iocb(req); if (!list_empty(&ctx->run_list)) { /* drain the run list */ while (__aio_run_iocbs(ctx)) ; } spin_unlock_irq(&ctx->ctx_lock); aio_put_req(req); /* drop extra ref to req */ return 0; out_put_req: aio_put_req(req); /* drop extra ref to req */ aio_put_req(req); /* drop i/o ref to req */ return ret; } long do_io_submit(aio_context_t ctx_id, long nr, struct iocb __user *__user *iocbpp, bool compat) { struct kioctx *ctx; long ret = 0; int i = 0; struct blk_plug plug; struct kiocb_batch batch; if (unlikely(nr < 0)) return -EINVAL; if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) nr = LONG_MAX/sizeof(*iocbpp); if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) return -EFAULT; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) { pr_debug("EINVAL: io_submit: invalid context id\n"); return -EINVAL; } kiocb_batch_init(&batch, nr); blk_start_plug(&plug); /* * AKPM: should this return a partial result if some of the IOs were * successfully submitted? */ for (i=0; i<nr; i++) { struct iocb __user *user_iocb; struct iocb tmp; if (unlikely(__get_user(user_iocb, iocbpp + i))) { ret = -EFAULT; break; } if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { ret = -EFAULT; break; } ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); if (ret) break; } blk_finish_plug(&plug); kiocb_batch_free(ctx, &batch); put_ioctx(ctx); return i ? i : ret; } /* sys_io_submit: * Queue the nr iocbs pointed to by iocbpp for processing. Returns * the number of iocbs queued. May return -EINVAL if the aio_context * specified by ctx_id is invalid, if nr is < 0, if the iocb at * *iocbpp[0] is not properly initialized, if the operation specified * is invalid for the file descriptor in the iocb. May fail with * -EFAULT if any of the data structures point to invalid data. May * fail with -EBADF if the file descriptor specified in the first * iocb is invalid. May fail with -EAGAIN if insufficient resources * are available to queue any iocbs. Will return 0 if nr is 0. Will * fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, struct iocb __user * __user *, iocbpp) { return do_io_submit(ctx_id, nr, iocbpp, 0); } /* lookup_kiocb * Finds a given iocb for cancellation. */ static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) { struct list_head *pos; assert_spin_locked(&ctx->ctx_lock); /* TODO: use a hash or array, this sucks. */ list_for_each(pos, &ctx->active_reqs) { struct kiocb *kiocb = list_kiocb(pos); if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) return kiocb; } return NULL; } /* sys_io_cancel: * Attempts to cancel an iocb previously passed to io_submit. If * the operation is successfully cancelled, the resulting event is * copied into the memory pointed to by result without being placed * into the completion queue and 0 is returned. May fail with * -EFAULT if any of the data structures pointed to are invalid. * May fail with -EINVAL if aio_context specified by ctx_id is * invalid. May fail with -EAGAIN if the iocb specified was not * cancelled. Will fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, struct io_event __user *, result) { int (*cancel)(struct kiocb *iocb, struct io_event *res); struct kioctx *ctx; struct kiocb *kiocb; u32 key; int ret; ret = get_user(key, &iocb->aio_key); if (unlikely(ret)) return -EFAULT; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) return -EINVAL; spin_lock_irq(&ctx->ctx_lock); ret = -EAGAIN; kiocb = lookup_kiocb(ctx, iocb, key); if (kiocb && kiocb->ki_cancel) { cancel = kiocb->ki_cancel; kiocb->ki_users ++; kiocbSetCancelled(kiocb); } else cancel = NULL; spin_unlock_irq(&ctx->ctx_lock); if (NULL != cancel) { struct io_event tmp; pr_debug("calling cancel\n"); memset(&tmp, 0, sizeof(tmp)); tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; tmp.data = kiocb->ki_user_data; ret = cancel(kiocb, &tmp); if (!ret) { /* Cancellation succeeded -- copy the result * into the user's buffer. */ if (copy_to_user(result, &tmp, sizeof(tmp))) ret = -EFAULT; } } else ret = -EINVAL; put_ioctx(ctx); return ret; } /* io_getevents: * Attempts to read at least min_nr events and up to nr events from * the completion queue for the aio_context specified by ctx_id. If * it succeeds, the number of read events is returned. May fail with * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is * out of range, if timeout is out of range. May fail with -EFAULT * if any of the memory specified is invalid. May return 0 or * < min_nr if the timeout specified by timeout has elapsed * before sufficient events are available, where timeout == NULL * specifies an infinite timeout. Note that the timeout pointed to by * timeout is relative and will be updated if not NULL and the * operation blocks. Will fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct timespec __user *, timeout) { struct kioctx *ioctx = lookup_ioctx(ctx_id); long ret = -EINVAL; if (likely(ioctx)) { if (likely(min_nr <= nr && min_nr >= 0)) ret = read_events(ioctx, min_nr, nr, events, timeout); put_ioctx(ioctx); } asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); return ret; } |