Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | /* * This file contains the light-weight system call handlers (fsyscall-handlers). * * Copyright (C) 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * 25-Sep-03 davidm Implement fsys_rt_sigprocmask(). * 18-Feb-03 louisk Implement fsys_gettimeofday(). * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more, * probably broke it along the way... ;-) * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make * it capable of using memory based clocks without falling back to C code. * 08-Feb-07 Fenghua Yu Implement fsys_getcpu. * */ #include <asm/asmmacro.h> #include <asm/errno.h> #include <asm/asm-offsets.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/sal.h> #include <asm/signal.h> #include <asm/unistd.h> #include "entry.h" #include "paravirt_inst.h" /* * See Documentation/ia64/fsys.txt for details on fsyscalls. * * On entry to an fsyscall handler: * r10 = 0 (i.e., defaults to "successful syscall return") * r11 = saved ar.pfs (a user-level value) * r15 = system call number * r16 = "current" task pointer (in normal kernel-mode, this is in r13) * r32-r39 = system call arguments * b6 = return address (a user-level value) * ar.pfs = previous frame-state (a user-level value) * PSR.be = cleared to zero (i.e., little-endian byte order is in effect) * all other registers may contain values passed in from user-mode * * On return from an fsyscall handler: * r11 = saved ar.pfs (as passed into the fsyscall handler) * r15 = system call number (as passed into the fsyscall handler) * r32-r39 = system call arguments (as passed into the fsyscall handler) * b6 = return address (as passed into the fsyscall handler) * ar.pfs = previous frame-state (as passed into the fsyscall handler) */ ENTRY(fsys_ni_syscall) .prologue .altrp b6 .body mov r8=ENOSYS mov r10=-1 FSYS_RETURN END(fsys_ni_syscall) ENTRY(fsys_getpid) .prologue .altrp b6 .body add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16 ;; ld8 r17=[r17] // r17 = current->group_leader add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] add r17=IA64_TASK_TGIDLINK_OFFSET,r17 ;; and r9=TIF_ALLWORK_MASK,r9 ld8 r17=[r17] // r17 = current->group_leader->pids[PIDTYPE_PID].pid ;; add r8=IA64_PID_LEVEL_OFFSET,r17 ;; ld4 r8=[r8] // r8 = pid->level add r17=IA64_PID_UPID_OFFSET,r17 // r17 = &pid->numbers[0] ;; shl r8=r8,IA64_UPID_SHIFT ;; add r17=r17,r8 // r17 = &pid->numbers[pid->level] ;; ld4 r8=[r17] // r8 = pid->numbers[pid->level].nr ;; mov r17=0 ;; cmp.ne p8,p0=0,r9 (p8) br.spnt.many fsys_fallback_syscall FSYS_RETURN END(fsys_getpid) ENTRY(fsys_set_tid_address) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 add r17=IA64_TASK_TGIDLINK_OFFSET,r16 ;; ld4 r9=[r9] tnat.z p6,p7=r32 // check argument register for being NaT ld8 r17=[r17] // r17 = current->pids[PIDTYPE_PID].pid ;; and r9=TIF_ALLWORK_MASK,r9 add r8=IA64_PID_LEVEL_OFFSET,r17 add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16 ;; ld4 r8=[r8] // r8 = pid->level add r17=IA64_PID_UPID_OFFSET,r17 // r17 = &pid->numbers[0] ;; shl r8=r8,IA64_UPID_SHIFT ;; add r17=r17,r8 // r17 = &pid->numbers[pid->level] ;; ld4 r8=[r17] // r8 = pid->numbers[pid->level].nr ;; cmp.ne p8,p0=0,r9 mov r17=-1 ;; (p6) st8 [r18]=r32 (p7) st8 [r18]=r17 (p8) br.spnt.many fsys_fallback_syscall ;; mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... FSYS_RETURN END(fsys_set_tid_address) #if IA64_GTOD_SEQ_OFFSET !=0 #error fsys_gettimeofday incompatible with changes to struct fsyscall_gtod_data_t #endif #if IA64_ITC_JITTER_OFFSET !=0 #error fsys_gettimeofday incompatible with changes to struct itc_jitter_data_t #endif #define CLOCK_REALTIME 0 #define CLOCK_MONOTONIC 1 #define CLOCK_DIVIDE_BY_1000 0x4000 #define CLOCK_ADD_MONOTONIC 0x8000 ENTRY(fsys_gettimeofday) .prologue .altrp b6 .body mov r31 = r32 tnat.nz p6,p0 = r33 // guard against NaT argument (p6) br.cond.spnt.few .fail_einval mov r30 = CLOCK_DIVIDE_BY_1000 ;; .gettime: // Register map // Incoming r31 = pointer to address where to place result // r30 = flags determining how time is processed // r2,r3 = temp r4-r7 preserved // r8 = result nanoseconds // r9 = result seconds // r10 = temporary storage for clock difference // r11 = preserved: saved ar.pfs // r12 = preserved: memory stack // r13 = preserved: thread pointer // r14 = address of mask / mask value // r15 = preserved: system call number // r16 = preserved: current task pointer // r17 = (not used) // r18 = (not used) // r19 = address of itc_lastcycle // r20 = struct fsyscall_gtod_data (= address of gtod_lock.sequence) // r21 = address of mmio_ptr // r22 = address of wall_time or monotonic_time // r23 = address of shift / value // r24 = address mult factor / cycle_last value // r25 = itc_lastcycle value // r26 = address clocksource cycle_last // r27 = (not used) // r28 = sequence number at the beginning of critcal section // r29 = address of itc_jitter // r30 = time processing flags / memory address // r31 = pointer to result // Predicates // p6,p7 short term use // p8 = timesource ar.itc // p9 = timesource mmio64 // p10 = timesource mmio32 - not used // p11 = timesource not to be handled by asm code // p12 = memory time source ( = p9 | p10) - not used // p13 = do cmpxchg with itc_lastcycle // p14 = Divide by 1000 // p15 = Add monotonic // // Note that instructions are optimized for McKinley. McKinley can // process two bundles simultaneously and therefore we continuously // try to feed the CPU two bundles and then a stop. add r2 = TI_FLAGS+IA64_TASK_SIZE,r16 tnat.nz p6,p0 = r31 // guard against Nat argument (p6) br.cond.spnt.few .fail_einval movl r20 = fsyscall_gtod_data // load fsyscall gettimeofday data address ;; ld4 r2 = [r2] // process work pending flags movl r29 = itc_jitter_data // itc_jitter add r22 = IA64_GTOD_WALL_TIME_OFFSET,r20 // wall_time add r21 = IA64_CLKSRC_MMIO_OFFSET,r20 mov pr = r30,0xc000 // Set predicates according to function ;; and r2 = TIF_ALLWORK_MASK,r2 add r19 = IA64_ITC_LASTCYCLE_OFFSET,r29 (p15) add r22 = IA64_GTOD_MONO_TIME_OFFSET,r20 // monotonic_time ;; add r26 = IA64_CLKSRC_CYCLE_LAST_OFFSET,r20 // clksrc_cycle_last cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled (p6) br.cond.spnt.many fsys_fallback_syscall ;; // Begin critical section .time_redo: ld4.acq r28 = [r20] // gtod_lock.sequence, Must take first ;; and r28 = ~1,r28 // And make sequence even to force retry if odd ;; ld8 r30 = [r21] // clocksource->mmio_ptr add r24 = IA64_CLKSRC_MULT_OFFSET,r20 ld4 r2 = [r29] // itc_jitter value add r23 = IA64_CLKSRC_SHIFT_OFFSET,r20 add r14 = IA64_CLKSRC_MASK_OFFSET,r20 ;; ld4 r3 = [r24] // clocksource mult value ld8 r14 = [r14] // clocksource mask value cmp.eq p8,p9 = 0,r30 // use cpu timer if no mmio_ptr ;; setf.sig f7 = r3 // Setup for mult scaling of counter (p8) cmp.ne p13,p0 = r2,r0 // need itc_jitter compensation, set p13 ld4 r23 = [r23] // clocksource shift value ld8 r24 = [r26] // get clksrc_cycle_last value (p9) cmp.eq p13,p0 = 0,r30 // if mmio_ptr, clear p13 jitter control ;; .pred.rel.mutex p8,p9 MOV_FROM_ITC(p8, p6, r2, r10) // CPU_TIMER. 36 clocks latency!!! (p9) ld8 r2 = [r30] // MMIO_TIMER. Could also have latency issues.. (p13) ld8 r25 = [r19] // get itc_lastcycle value ld8 r9 = [r22],IA64_TIMESPEC_TV_NSEC_OFFSET // tv_sec ;; ld8 r8 = [r22],-IA64_TIMESPEC_TV_NSEC_OFFSET // tv_nsec (p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm) ;; (p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared sub r10 = r2,r24 // current_cycle - last_cycle ;; (p6) sub r10 = r25,r24 // time we got was less than last_cycle (p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg ;; (p7) cmpxchg8.rel r3 = [r19],r2,ar.ccv ;; (p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful ;; (p7) sub r10 = r3,r24 // then use new last_cycle instead ;; and r10 = r10,r14 // Apply mask ;; setf.sig f8 = r10 nop.i 123 ;; // fault check takes 5 cycles and we have spare time EX(.fail_efault, probe.w.fault r31, 3) xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter) ;; getf.sig r2 = f8 mf ;; ld4 r10 = [r20] // gtod_lock.sequence shr.u r2 = r2,r23 // shift by factor ;; add r8 = r8,r2 // Add xtime.nsecs cmp4.ne p7,p0 = r28,r10 (p7) br.cond.dpnt.few .time_redo // sequence number changed, redo // End critical section. // Now r8=tv->tv_nsec and r9=tv->tv_sec mov r10 = r0 movl r2 = 1000000000 add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31 (p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack ;; .time_normalize: mov r21 = r8 cmp.ge p6,p0 = r8,r2 (p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting time ;; (p14) setf.sig f8 = r20 (p6) sub r8 = r8,r2 (p6) add r9 = 1,r9 // two nops before the branch. (p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod (p6) br.cond.dpnt.few .time_normalize ;; // Divided by 8 though shift. Now divide by 125 // The compiler was able to do that with a multiply // and a shift and we do the same EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles (p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it ;; (p14) getf.sig r2 = f8 ;; mov r8 = r0 (p14) shr.u r21 = r2, 4 ;; EX(.fail_efault, st8 [r31] = r9) EX(.fail_efault, st8 [r23] = r21) FSYS_RETURN .fail_einval: mov r8 = EINVAL mov r10 = -1 FSYS_RETURN .fail_efault: mov r8 = EFAULT mov r10 = -1 FSYS_RETURN END(fsys_gettimeofday) ENTRY(fsys_clock_gettime) .prologue .altrp b6 .body cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32 // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC (p6) br.spnt.few fsys_fallback_syscall mov r31 = r33 shl r30 = r32,15 br.many .gettime END(fsys_clock_gettime) /* * fsys_getcpu doesn't use the third parameter in this implementation. It reads * current_thread_info()->cpu and corresponding node in cpu_to_node_map. */ ENTRY(fsys_getcpu) .prologue .altrp b6 .body ;; add r2=TI_FLAGS+IA64_TASK_SIZE,r16 tnat.nz p6,p0 = r32 // guard against NaT argument add r3=TI_CPU+IA64_TASK_SIZE,r16 ;; ld4 r3=[r3] // M r3 = thread_info->cpu ld4 r2=[r2] // M r2 = thread_info->flags (p6) br.cond.spnt.few .fail_einval // B ;; tnat.nz p7,p0 = r33 // I guard against NaT argument (p7) br.cond.spnt.few .fail_einval // B ;; cmp.ne p6,p0=r32,r0 cmp.ne p7,p0=r33,r0 ;; #ifdef CONFIG_NUMA movl r17=cpu_to_node_map ;; EX(.fail_efault, (p6) probe.w.fault r32, 3) // M This takes 5 cycles EX(.fail_efault, (p7) probe.w.fault r33, 3) // M This takes 5 cycles shladd r18=r3,1,r17 ;; ld2 r20=[r18] // r20 = cpu_to_node_map[cpu] and r2 = TIF_ALLWORK_MASK,r2 ;; cmp.ne p8,p0=0,r2 (p8) br.spnt.many fsys_fallback_syscall ;; ;; EX(.fail_efault, (p6) st4 [r32] = r3) EX(.fail_efault, (p7) st2 [r33] = r20) mov r8=0 ;; #else EX(.fail_efault, (p6) probe.w.fault r32, 3) // M This takes 5 cycles EX(.fail_efault, (p7) probe.w.fault r33, 3) // M This takes 5 cycles and r2 = TIF_ALLWORK_MASK,r2 ;; cmp.ne p8,p0=0,r2 (p8) br.spnt.many fsys_fallback_syscall ;; EX(.fail_efault, (p6) st4 [r32] = r3) EX(.fail_efault, (p7) st2 [r33] = r0) mov r8=0 ;; #endif FSYS_RETURN END(fsys_getcpu) ENTRY(fsys_fallback_syscall) .prologue .altrp b6 .body /* * We only get here from light-weight syscall handlers. Thus, we already * know that r15 contains a valid syscall number. No need to re-check. */ adds r17=-1024,r15 movl r14=sys_call_table ;; RSM_PSR_I(p0, r26, r27) shladd r18=r17,3,r14 ;; ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point MOV_FROM_PSR(p0, r29, r26) // read psr (12 cyc load latency) mov r27=ar.rsc mov r21=ar.fpsr mov r26=ar.pfs END(fsys_fallback_syscall) /* FALL THROUGH */ GLOBAL_ENTRY(paravirt_fsys_bubble_down) .prologue .altrp b6 .body /* * We get here for syscalls that don't have a lightweight * handler. For those, we need to bubble down into the kernel * and that requires setting up a minimal pt_regs structure, * and initializing the CPU state more or less as if an * interruption had occurred. To make syscall-restarts work, * we setup pt_regs such that cr_iip points to the second * instruction in syscall_via_break. Decrementing the IP * hence will restart the syscall via break and not * decrementing IP will return us to the caller, as usual. * Note that we preserve the value of psr.pp rather than * initializing it from dcr.pp. This makes it possible to * distinguish fsyscall execution from other privileged * execution. * * On entry: * - normal fsyscall handler register usage, except * that we also have: * - r18: address of syscall entry point * - r21: ar.fpsr * - r26: ar.pfs * - r27: ar.rsc * - r29: psr * * We used to clear some PSR bits here but that requires slow * serialization. Fortuntely, that isn't really necessary. * The rationale is as follows: we used to clear bits * ~PSR_PRESERVED_BITS in PSR.L. Since * PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we * ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}. * However, * * PSR.BE : already is turned off in __kernel_syscall_via_epc() * PSR.AC : don't care (kernel normally turns PSR.AC on) * PSR.I : already turned off by the time paravirt_fsys_bubble_down gets * invoked * PSR.DFL: always 0 (kernel never turns it on) * PSR.DFH: don't care --- kernel never touches f32-f127 on its own * initiative * PSR.DI : always 0 (kernel never turns it on) * PSR.SI : always 0 (kernel never turns it on) * PSR.DB : don't care --- kernel never enables kernel-level * breakpoints * PSR.TB : must be 0 already; if it wasn't zero on entry to * __kernel_syscall_via_epc, the branch to paravirt_fsys_bubble_down * will trigger a taken branch; the taken-trap-handler then * converts the syscall into a break-based system-call. */ /* * Reading psr.l gives us only bits 0-31, psr.it, and psr.mc. * The rest we have to synthesize. */ # define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) \ | (0x1 << IA64_PSR_RI_BIT) \ | IA64_PSR_BN | IA64_PSR_I) invala // M0|1 movl r14=ia64_ret_from_syscall // X nop.m 0 movl r28=__kernel_syscall_via_break // X create cr.iip ;; mov r2=r16 // A get task addr to addl-addressable register adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // A mov r31=pr // I0 save pr (2 cyc) ;; st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag addl r22=IA64_RBS_OFFSET,r2 // A compute base of RBS add r3=TI_FLAGS+IA64_TASK_SIZE,r2 // A ;; ld4 r3=[r3] // M0|1 r3 = current_thread_info()->flags lfetch.fault.excl.nt1 [r22] // M0|1 prefetch register backing-store nop.i 0 ;; mov ar.rsc=0 // M2 set enforced lazy mode, pl 0, LE, loadrs=0 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE MOV_FROM_ITC(p0, p6, r30, r23) // M get cycle for accounting #else nop.m 0 #endif nop.i 0 ;; mov r23=ar.bspstore // M2 (12 cyc) save ar.bspstore mov.m r24=ar.rnat // M2 (5 cyc) read ar.rnat (dual-issues!) nop.i 0 ;; mov ar.bspstore=r22 // M2 (6 cyc) switch to kernel RBS movl r8=PSR_ONE_BITS // X ;; mov r25=ar.unat // M2 (5 cyc) save ar.unat mov r19=b6 // I0 save b6 (2 cyc) mov r20=r1 // A save caller's gp in r20 ;; or r29=r8,r29 // A construct cr.ipsr value to save mov b6=r18 // I0 copy syscall entry-point to b6 (7 cyc) addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // A compute base of memory stack mov r18=ar.bsp // M2 save (kernel) ar.bsp (12 cyc) cmp.ne pKStk,pUStk=r0,r0 // A set pKStk <- 0, pUStk <- 1 br.call.sptk.many b7=ia64_syscall_setup // B ;; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE // mov.m r30=ar.itc is called in advance add r16=TI_AC_STAMP+IA64_TASK_SIZE,r2 add r17=TI_AC_LEAVE+IA64_TASK_SIZE,r2 ;; ld8 r18=[r16],TI_AC_STIME-TI_AC_STAMP // time at last check in kernel ld8 r19=[r17],TI_AC_UTIME-TI_AC_LEAVE // time at leave kernel ;; ld8 r20=[r16],TI_AC_STAMP-TI_AC_STIME // cumulated stime ld8 r21=[r17] // cumulated utime sub r22=r19,r18 // stime before leave kernel ;; st8 [r16]=r30,TI_AC_STIME-TI_AC_STAMP // update stamp sub r18=r30,r19 // elapsed time in user mode ;; add r20=r20,r22 // sum stime add r21=r21,r18 // sum utime ;; st8 [r16]=r20 // update stime st8 [r17]=r21 // update utime ;; #endif mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0 mov rp=r14 // I0 set the real return addr and r3=_TIF_SYSCALL_TRACEAUDIT,r3 // A ;; SSM_PSR_I(p0, p6, r22) // M2 we're on kernel stacks now, reenable irqs cmp.eq p8,p0=r3,r0 // A (p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT nop.m 0 (p8) br.call.sptk.many b6=b6 // B (ignore return address) br.cond.spnt ia64_trace_syscall // B END(paravirt_fsys_bubble_down) .rodata .align 8 .globl paravirt_fsyscall_table data8 paravirt_fsys_bubble_down paravirt_fsyscall_table: data8 fsys_ni_syscall data8 0 // exit // 1025 data8 0 // read data8 0 // write data8 0 // open data8 0 // close data8 0 // creat // 1030 data8 0 // link data8 0 // unlink data8 0 // execve data8 0 // chdir data8 0 // fchdir // 1035 data8 0 // utimes data8 0 // mknod data8 0 // chmod data8 0 // chown data8 0 // lseek // 1040 data8 fsys_getpid // getpid data8 0 // getppid data8 0 // mount data8 0 // umount data8 0 // setuid // 1045 data8 0 // getuid data8 0 // geteuid data8 0 // ptrace data8 0 // access data8 0 // sync // 1050 data8 0 // fsync data8 0 // fdatasync data8 0 // kill data8 0 // rename data8 0 // mkdir // 1055 data8 0 // rmdir data8 0 // dup data8 0 // pipe data8 0 // times data8 0 // brk // 1060 data8 0 // setgid data8 0 // getgid data8 0 // getegid data8 0 // acct data8 0 // ioctl // 1065 data8 0 // fcntl data8 0 // umask data8 0 // chroot data8 0 // ustat data8 0 // dup2 // 1070 data8 0 // setreuid data8 0 // setregid data8 0 // getresuid data8 0 // setresuid data8 0 // getresgid // 1075 data8 0 // setresgid data8 0 // getgroups data8 0 // setgroups data8 0 // getpgid data8 0 // setpgid // 1080 data8 0 // setsid data8 0 // getsid data8 0 // sethostname data8 0 // setrlimit data8 0 // getrlimit // 1085 data8 0 // getrusage data8 fsys_gettimeofday // gettimeofday data8 0 // settimeofday data8 0 // select data8 0 // poll // 1090 data8 0 // symlink data8 0 // readlink data8 0 // uselib data8 0 // swapon data8 0 // swapoff // 1095 data8 0 // reboot data8 0 // truncate data8 0 // ftruncate data8 0 // fchmod data8 0 // fchown // 1100 data8 0 // getpriority data8 0 // setpriority data8 0 // statfs data8 0 // fstatfs data8 0 // gettid // 1105 data8 0 // semget data8 0 // semop data8 0 // semctl data8 0 // msgget data8 0 // msgsnd // 1110 data8 0 // msgrcv data8 0 // msgctl data8 0 // shmget data8 0 // shmat data8 0 // shmdt // 1115 data8 0 // shmctl data8 0 // syslog data8 0 // setitimer data8 0 // getitimer data8 0 // 1120 data8 0 data8 0 data8 0 // vhangup data8 0 // lchown data8 0 // remap_file_pages // 1125 data8 0 // wait4 data8 0 // sysinfo data8 0 // clone data8 0 // setdomainname data8 0 // newuname // 1130 data8 0 // adjtimex data8 0 data8 0 // init_module data8 0 // delete_module data8 0 // 1135 data8 0 data8 0 // quotactl data8 0 // bdflush data8 0 // sysfs data8 0 // personality // 1140 data8 0 // afs_syscall data8 0 // setfsuid data8 0 // setfsgid data8 0 // getdents data8 0 // flock // 1145 data8 0 // readv data8 0 // writev data8 0 // pread64 data8 0 // pwrite64 data8 0 // sysctl // 1150 data8 0 // mmap data8 0 // munmap data8 0 // mlock data8 0 // mlockall data8 0 // mprotect // 1155 data8 0 // mremap data8 0 // msync data8 0 // munlock data8 0 // munlockall data8 0 // sched_getparam // 1160 data8 0 // sched_setparam data8 0 // sched_getscheduler data8 0 // sched_setscheduler data8 0 // sched_yield data8 0 // sched_get_priority_max // 1165 data8 0 // sched_get_priority_min data8 0 // sched_rr_get_interval data8 0 // nanosleep data8 0 // nfsservctl data8 0 // prctl // 1170 data8 0 // getpagesize data8 0 // mmap2 data8 0 // pciconfig_read data8 0 // pciconfig_write data8 0 // perfmonctl // 1175 data8 0 // sigaltstack data8 0 // rt_sigaction data8 0 // rt_sigpending data8 0 // rt_sigprocmask data8 0 // rt_sigqueueinfo // 1180 data8 0 // rt_sigreturn data8 0 // rt_sigsuspend data8 0 // rt_sigtimedwait data8 0 // getcwd data8 0 // capget // 1185 data8 0 // capset data8 0 // sendfile data8 0 data8 0 data8 0 // socket // 1190 data8 0 // bind data8 0 // connect data8 0 // listen data8 0 // accept data8 0 // getsockname // 1195 data8 0 // getpeername data8 0 // socketpair data8 0 // send data8 0 // sendto data8 0 // recv // 1200 data8 0 // recvfrom data8 0 // shutdown data8 0 // setsockopt data8 0 // getsockopt data8 0 // sendmsg // 1205 data8 0 // recvmsg data8 0 // pivot_root data8 0 // mincore data8 0 // madvise data8 0 // newstat // 1210 data8 0 // newlstat data8 0 // newfstat data8 0 // clone2 data8 0 // getdents64 data8 0 // getunwind // 1215 data8 0 // readahead data8 0 // setxattr data8 0 // lsetxattr data8 0 // fsetxattr data8 0 // getxattr // 1220 data8 0 // lgetxattr data8 0 // fgetxattr data8 0 // listxattr data8 0 // llistxattr data8 0 // flistxattr // 1225 data8 0 // removexattr data8 0 // lremovexattr data8 0 // fremovexattr data8 0 // tkill data8 0 // futex // 1230 data8 0 // sched_setaffinity data8 0 // sched_getaffinity data8 fsys_set_tid_address // set_tid_address data8 0 // fadvise64_64 data8 0 // tgkill // 1235 data8 0 // exit_group data8 0 // lookup_dcookie data8 0 // io_setup data8 0 // io_destroy data8 0 // io_getevents // 1240 data8 0 // io_submit data8 0 // io_cancel data8 0 // epoll_create data8 0 // epoll_ctl data8 0 // epoll_wait // 1245 data8 0 // restart_syscall data8 0 // semtimedop data8 0 // timer_create data8 0 // timer_settime data8 0 // timer_gettime // 1250 data8 0 // timer_getoverrun data8 0 // timer_delete data8 0 // clock_settime data8 fsys_clock_gettime // clock_gettime data8 0 // clock_getres // 1255 data8 0 // clock_nanosleep data8 0 // fstatfs64 data8 0 // statfs64 data8 0 // mbind data8 0 // get_mempolicy // 1260 data8 0 // set_mempolicy data8 0 // mq_open data8 0 // mq_unlink data8 0 // mq_timedsend data8 0 // mq_timedreceive // 1265 data8 0 // mq_notify data8 0 // mq_getsetattr data8 0 // kexec_load data8 0 // vserver data8 0 // waitid // 1270 data8 0 // add_key data8 0 // request_key data8 0 // keyctl data8 0 // ioprio_set data8 0 // ioprio_get // 1275 data8 0 // move_pages data8 0 // inotify_init data8 0 // inotify_add_watch data8 0 // inotify_rm_watch data8 0 // migrate_pages // 1280 data8 0 // openat data8 0 // mkdirat data8 0 // mknodat data8 0 // fchownat data8 0 // futimesat // 1285 data8 0 // newfstatat data8 0 // unlinkat data8 0 // renameat data8 0 // linkat data8 0 // symlinkat // 1290 data8 0 // readlinkat data8 0 // fchmodat data8 0 // faccessat data8 0 data8 0 // 1295 data8 0 // unshare data8 0 // splice data8 0 // set_robust_list data8 0 // get_robust_list data8 0 // sync_file_range // 1300 data8 0 // tee data8 0 // vmsplice data8 0 data8 fsys_getcpu // getcpu // 1304 // fill in zeros for the remaining entries .zero: .space paravirt_fsyscall_table + 8*NR_syscalls - .zero, 0 |