Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 | /* * Slab allocator functions that are independent of the allocator strategy * * (C) 2012 Christoph Lameter <cl@linux.com> */ #include <linux/slab.h> #include <linux/mm.h> #include <linux/poison.h> #include <linux/interrupt.h> #include <linux/memory.h> #include <linux/compiler.h> #include <linux/module.h> #include <linux/cpu.h> #include <linux/uaccess.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> #include <linux/memcontrol.h> #define CREATE_TRACE_POINTS #include <trace/events/kmem.h> #include "slab.h" enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; /* * Set of flags that will prevent slab merging */ #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ SLAB_FAILSLAB) #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ SLAB_CACHE_DMA | SLAB_NOTRACK) /* * Merge control. If this is set then no merging of slab caches will occur. * (Could be removed. This was introduced to pacify the merge skeptics.) */ static int slab_nomerge; static int __init setup_slab_nomerge(char *str) { slab_nomerge = 1; return 1; } #ifdef CONFIG_SLUB __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); #endif __setup("slab_nomerge", setup_slab_nomerge); /* * Determine the size of a slab object */ unsigned int kmem_cache_size(struct kmem_cache *s) { return s->object_size; } EXPORT_SYMBOL(kmem_cache_size); #ifdef CONFIG_DEBUG_VM static int kmem_cache_sanity_check(const char *name, size_t size) { struct kmem_cache *s = NULL; if (!name || in_interrupt() || size < sizeof(void *) || size > KMALLOC_MAX_SIZE) { pr_err("kmem_cache_create(%s) integrity check failed\n", name); return -EINVAL; } list_for_each_entry(s, &slab_caches, list) { char tmp; int res; /* * This happens when the module gets unloaded and doesn't * destroy its slab cache and no-one else reuses the vmalloc * area of the module. Print a warning. */ res = probe_kernel_address(s->name, tmp); if (res) { pr_err("Slab cache with size %d has lost its name\n", s->object_size); continue; } } WARN_ON(strchr(name, ' ')); /* It confuses parsers */ return 0; } #else static inline int kmem_cache_sanity_check(const char *name, size_t size) { return 0; } #endif #ifdef CONFIG_MEMCG_KMEM static int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache) { size_t size; if (!memcg_kmem_enabled()) return 0; if (!memcg) { size = offsetof(struct memcg_cache_params, memcg_caches); size += memcg_limited_groups_array_size * sizeof(void *); } else size = sizeof(struct memcg_cache_params); s->memcg_params = kzalloc(size, GFP_KERNEL); if (!s->memcg_params) return -ENOMEM; if (memcg) { s->memcg_params->memcg = memcg; s->memcg_params->root_cache = root_cache; } else s->memcg_params->is_root_cache = true; return 0; } static void memcg_free_cache_params(struct kmem_cache *s) { kfree(s->memcg_params); } static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs) { int size; struct memcg_cache_params *new_params, *cur_params; BUG_ON(!is_root_cache(s)); size = offsetof(struct memcg_cache_params, memcg_caches); size += num_memcgs * sizeof(void *); new_params = kzalloc(size, GFP_KERNEL); if (!new_params) return -ENOMEM; cur_params = s->memcg_params; memcpy(new_params->memcg_caches, cur_params->memcg_caches, memcg_limited_groups_array_size * sizeof(void *)); new_params->is_root_cache = true; rcu_assign_pointer(s->memcg_params, new_params); if (cur_params) kfree_rcu(cur_params, rcu_head); return 0; } int memcg_update_all_caches(int num_memcgs) { struct kmem_cache *s; int ret = 0; mutex_lock(&slab_mutex); list_for_each_entry(s, &slab_caches, list) { if (!is_root_cache(s)) continue; ret = memcg_update_cache_params(s, num_memcgs); /* * Instead of freeing the memory, we'll just leave the caches * up to this point in an updated state. */ if (ret) goto out; } memcg_update_array_size(num_memcgs); out: mutex_unlock(&slab_mutex); return ret; } #else static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache) { return 0; } static inline void memcg_free_cache_params(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG_KMEM */ /* * Find a mergeable slab cache */ int slab_unmergeable(struct kmem_cache *s) { if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) return 1; if (!is_root_cache(s)) return 1; if (s->ctor) return 1; /* * We may have set a slab to be unmergeable during bootstrap. */ if (s->refcount < 0) return 1; return 0; } struct kmem_cache *find_mergeable(size_t size, size_t align, unsigned long flags, const char *name, void (*ctor)(void *)) { struct kmem_cache *s; if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) return NULL; if (ctor) return NULL; size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); flags = kmem_cache_flags(size, flags, name, NULL); list_for_each_entry_reverse(s, &slab_caches, list) { if (slab_unmergeable(s)) continue; if (size > s->size) continue; if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) continue; /* * Check if alignment is compatible. * Courtesy of Adrian Drzewiecki */ if ((s->size & ~(align - 1)) != s->size) continue; if (s->size - size >= sizeof(void *)) continue; if (IS_ENABLED(CONFIG_SLAB) && align && (align > s->align || s->align % align)) continue; return s; } return NULL; } /* * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. */ unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size) { /* * If the user wants hardware cache aligned objects then follow that * suggestion if the object is sufficiently large. * * The hardware cache alignment cannot override the specified * alignment though. If that is greater then use it. */ if (flags & SLAB_HWCACHE_ALIGN) { unsigned long ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; align = max(align, ralign); } if (align < ARCH_SLAB_MINALIGN) align = ARCH_SLAB_MINALIGN; return ALIGN(align, sizeof(void *)); } static struct kmem_cache * do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align, unsigned long flags, void (*ctor)(void *), struct mem_cgroup *memcg, struct kmem_cache *root_cache) { struct kmem_cache *s; int err; err = -ENOMEM; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); if (!s) goto out; s->name = name; s->object_size = object_size; s->size = size; s->align = align; s->ctor = ctor; err = memcg_alloc_cache_params(memcg, s, root_cache); if (err) goto out_free_cache; err = __kmem_cache_create(s, flags); if (err) goto out_free_cache; s->refcount = 1; list_add(&s->list, &slab_caches); out: if (err) return ERR_PTR(err); return s; out_free_cache: memcg_free_cache_params(s); kfree(s); goto out; } /* * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Returns a ptr to the cache on success, NULL on failure. * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. */ struct kmem_cache * kmem_cache_create(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { struct kmem_cache *s; char *cache_name; int err; get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); err = kmem_cache_sanity_check(name, size); if (err) { s = NULL; /* suppress uninit var warning */ goto out_unlock; } /* * Some allocators will constraint the set of valid flags to a subset * of all flags. We expect them to define CACHE_CREATE_MASK in this * case, and we'll just provide them with a sanitized version of the * passed flags. */ flags &= CACHE_CREATE_MASK; s = __kmem_cache_alias(name, size, align, flags, ctor); if (s) goto out_unlock; cache_name = kstrdup(name, GFP_KERNEL); if (!cache_name) { err = -ENOMEM; goto out_unlock; } s = do_kmem_cache_create(cache_name, size, size, calculate_alignment(flags, align, size), flags, ctor, NULL, NULL); if (IS_ERR(s)) { err = PTR_ERR(s); kfree(cache_name); } out_unlock: mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); else { printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", name, err); dump_stack(); } return NULL; } return s; } EXPORT_SYMBOL(kmem_cache_create); #ifdef CONFIG_MEMCG_KMEM /* * memcg_create_kmem_cache - Create a cache for a memory cgroup. * @memcg: The memory cgroup the new cache is for. * @root_cache: The parent of the new cache. * @memcg_name: The name of the memory cgroup (used for naming the new cache). * * This function attempts to create a kmem cache that will serve allocation * requests going from @memcg to @root_cache. The new cache inherits properties * from its parent. */ struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, struct kmem_cache *root_cache, const char *memcg_name) { struct kmem_cache *s = NULL; char *cache_name; get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, memcg_cache_id(memcg), memcg_name); if (!cache_name) goto out_unlock; s = do_kmem_cache_create(cache_name, root_cache->object_size, root_cache->size, root_cache->align, root_cache->flags, root_cache->ctor, memcg, root_cache); if (IS_ERR(s)) { kfree(cache_name); s = NULL; } out_unlock: mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); return s; } static int memcg_cleanup_cache_params(struct kmem_cache *s) { int rc; if (!s->memcg_params || !s->memcg_params->is_root_cache) return 0; mutex_unlock(&slab_mutex); rc = __memcg_cleanup_cache_params(s); mutex_lock(&slab_mutex); return rc; } #else static int memcg_cleanup_cache_params(struct kmem_cache *s) { return 0; } #endif /* CONFIG_MEMCG_KMEM */ void slab_kmem_cache_release(struct kmem_cache *s) { kfree(s->name); kmem_cache_free(kmem_cache, s); } void kmem_cache_destroy(struct kmem_cache *s) { get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); s->refcount--; if (s->refcount) goto out_unlock; if (memcg_cleanup_cache_params(s) != 0) goto out_unlock; if (__kmem_cache_shutdown(s) != 0) { printk(KERN_ERR "kmem_cache_destroy %s: " "Slab cache still has objects\n", s->name); dump_stack(); goto out_unlock; } list_del(&s->list); mutex_unlock(&slab_mutex); if (s->flags & SLAB_DESTROY_BY_RCU) rcu_barrier(); memcg_free_cache_params(s); #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_remove(s); #else slab_kmem_cache_release(s); #endif goto out; out_unlock: mutex_unlock(&slab_mutex); out: put_online_mems(); put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); /** * kmem_cache_shrink - Shrink a cache. * @cachep: The cache to shrink. * * Releases as many slabs as possible for a cache. * To help debugging, a zero exit status indicates all slabs were released. */ int kmem_cache_shrink(struct kmem_cache *cachep) { int ret; get_online_cpus(); get_online_mems(); ret = __kmem_cache_shrink(cachep); put_online_mems(); put_online_cpus(); return ret; } EXPORT_SYMBOL(kmem_cache_shrink); int slab_is_available(void) { return slab_state >= UP; } #ifndef CONFIG_SLOB /* Create a cache during boot when no slab services are available yet */ void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, unsigned long flags) { int err; s->name = name; s->size = s->object_size = size; s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); err = __kmem_cache_create(s, flags); if (err) panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", name, size, err); s->refcount = -1; /* Exempt from merging for now */ } struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, unsigned long flags) { struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); if (!s) panic("Out of memory when creating slab %s\n", name); create_boot_cache(s, name, size, flags); list_add(&s->list, &slab_caches); s->refcount = 1; return s; } struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; EXPORT_SYMBOL(kmalloc_caches); #ifdef CONFIG_ZONE_DMA struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; EXPORT_SYMBOL(kmalloc_dma_caches); #endif /* * Conversion table for small slabs sizes / 8 to the index in the * kmalloc array. This is necessary for slabs < 192 since we have non power * of two cache sizes there. The size of larger slabs can be determined using * fls. */ static s8 size_index[24] = { 3, /* 8 */ 4, /* 16 */ 5, /* 24 */ 5, /* 32 */ 6, /* 40 */ 6, /* 48 */ 6, /* 56 */ 6, /* 64 */ 1, /* 72 */ 1, /* 80 */ 1, /* 88 */ 1, /* 96 */ 7, /* 104 */ 7, /* 112 */ 7, /* 120 */ 7, /* 128 */ 2, /* 136 */ 2, /* 144 */ 2, /* 152 */ 2, /* 160 */ 2, /* 168 */ 2, /* 176 */ 2, /* 184 */ 2 /* 192 */ }; static inline int size_index_elem(size_t bytes) { return (bytes - 1) / 8; } /* * Find the kmem_cache structure that serves a given size of * allocation */ struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) { int index; if (unlikely(size > KMALLOC_MAX_SIZE)) { WARN_ON_ONCE(!(flags & __GFP_NOWARN)); return NULL; } if (size <= 192) { if (!size) return ZERO_SIZE_PTR; index = size_index[size_index_elem(size)]; } else index = fls(size - 1); #ifdef CONFIG_ZONE_DMA if (unlikely((flags & GFP_DMA))) return kmalloc_dma_caches[index]; #endif return kmalloc_caches[index]; } /* * Create the kmalloc array. Some of the regular kmalloc arrays * may already have been created because they were needed to * enable allocations for slab creation. */ void __init create_kmalloc_caches(unsigned long flags) { int i; /* * Patch up the size_index table if we have strange large alignment * requirements for the kmalloc array. This is only the case for * MIPS it seems. The standard arches will not generate any code here. * * Largest permitted alignment is 256 bytes due to the way we * handle the index determination for the smaller caches. * * Make sure that nothing crazy happens if someone starts tinkering * around with ARCH_KMALLOC_MINALIGN */ BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { int elem = size_index_elem(i); if (elem >= ARRAY_SIZE(size_index)) break; size_index[elem] = KMALLOC_SHIFT_LOW; } if (KMALLOC_MIN_SIZE >= 64) { /* * The 96 byte size cache is not used if the alignment * is 64 byte. */ for (i = 64 + 8; i <= 96; i += 8) size_index[size_index_elem(i)] = 7; } if (KMALLOC_MIN_SIZE >= 128) { /* * The 192 byte sized cache is not used if the alignment * is 128 byte. Redirect kmalloc to use the 256 byte cache * instead. */ for (i = 128 + 8; i <= 192; i += 8) size_index[size_index_elem(i)] = 8; } for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { if (!kmalloc_caches[i]) { kmalloc_caches[i] = create_kmalloc_cache(NULL, 1 << i, flags); } /* * Caches that are not of the two-to-the-power-of size. * These have to be created immediately after the * earlier power of two caches */ if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); } /* Kmalloc array is now usable */ slab_state = UP; for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache *s = kmalloc_caches[i]; char *n; if (s) { n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); BUG_ON(!n); s->name = n; } } #ifdef CONFIG_ZONE_DMA for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache *s = kmalloc_caches[i]; if (s) { int size = kmalloc_size(i); char *n = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", size); BUG_ON(!n); kmalloc_dma_caches[i] = create_kmalloc_cache(n, size, SLAB_CACHE_DMA | flags); } } #endif } #endif /* !CONFIG_SLOB */ /* * To avoid unnecessary overhead, we pass through large allocation requests * directly to the page allocator. We use __GFP_COMP, because we will need to * know the allocation order to free the pages properly in kfree. */ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) { void *ret; struct page *page; flags |= __GFP_COMP; page = alloc_kmem_pages(flags, order); ret = page ? page_address(page) : NULL; kmemleak_alloc(ret, size, 1, flags); return ret; } EXPORT_SYMBOL(kmalloc_order); #ifdef CONFIG_TRACING void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { void *ret = kmalloc_order(size, flags, order); trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); return ret; } EXPORT_SYMBOL(kmalloc_order_trace); #endif #ifdef CONFIG_SLABINFO #ifdef CONFIG_SLAB #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) #else #define SLABINFO_RIGHTS S_IRUSR #endif static void print_slabinfo_header(struct seq_file *m) { /* * Output format version, so at least we can change it * without _too_ many complaints. */ #ifdef CONFIG_DEBUG_SLAB seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else seq_puts(m, "slabinfo - version: 2.1\n"); #endif seq_puts(m, "# name <active_objs> <num_objs> <objsize> " "<objperslab> <pagesperslab>"); seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); #ifdef CONFIG_DEBUG_SLAB seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); #endif seq_putc(m, '\n'); } void *slab_start(struct seq_file *m, loff_t *pos) { mutex_lock(&slab_mutex); return seq_list_start(&slab_caches, *pos); } void *slab_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_caches, pos); } void slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } static void memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) { struct kmem_cache *c; struct slabinfo sinfo; int i; if (!is_root_cache(s)) return; for_each_memcg_cache_index(i) { c = cache_from_memcg_idx(s, i); if (!c) continue; memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(c, &sinfo); info->active_slabs += sinfo.active_slabs; info->num_slabs += sinfo.num_slabs; info->shared_avail += sinfo.shared_avail; info->active_objs += sinfo.active_objs; info->num_objs += sinfo.num_objs; } } static void cache_show(struct kmem_cache *s, struct seq_file *m) { struct slabinfo sinfo; memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(s, &sinfo); memcg_accumulate_slabinfo(s, &sinfo); seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, sinfo.objects_per_slab, (1 << sinfo.cache_order)); seq_printf(m, " : tunables %4u %4u %4u", sinfo.limit, sinfo.batchcount, sinfo.shared); seq_printf(m, " : slabdata %6lu %6lu %6lu", sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); slabinfo_show_stats(m, s); seq_putc(m, '\n'); } static int slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, list); if (p == slab_caches.next) print_slabinfo_header(m); if (is_root_cache(s)) cache_show(s, m); return 0; } #ifdef CONFIG_MEMCG_KMEM int memcg_slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, list); struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); if (p == slab_caches.next) print_slabinfo_header(m); if (!is_root_cache(s) && s->memcg_params->memcg == memcg) cache_show(s, m); return 0; } #endif /* * slabinfo_op - iterator that generates /proc/slabinfo * * Output layout: * cache-name * num-active-objs * total-objs * object size * num-active-slabs * total-slabs * num-pages-per-slab * + further values on SMP and with statistics enabled */ static const struct seq_operations slabinfo_op = { .start = slab_start, .next = slab_next, .stop = slab_stop, .show = slab_show, }; static int slabinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &slabinfo_op); } static const struct file_operations proc_slabinfo_operations = { .open = slabinfo_open, .read = seq_read, .write = slabinfo_write, .llseek = seq_lseek, .release = seq_release, }; static int __init slab_proc_init(void) { proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &proc_slabinfo_operations); return 0; } module_init(slab_proc_init); #endif /* CONFIG_SLABINFO */ static __always_inline void *__do_krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; size_t ks = 0; if (p) ks = ksize(p); if (ks >= new_size) return (void *)p; ret = kmalloc_track_caller(new_size, flags); if (ret && p) memcpy(ret, p, ks); return ret; } /** * __krealloc - like krealloc() but don't free @p. * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * This function is like krealloc() except it never frees the originally * allocated buffer. Use this if you don't want to free the buffer immediately * like, for example, with RCU. */ void *__krealloc(const void *p, size_t new_size, gfp_t flags) { if (unlikely(!new_size)) return ZERO_SIZE_PTR; return __do_krealloc(p, new_size, flags); } EXPORT_SYMBOL(__krealloc); /** * krealloc - reallocate memory. The contents will remain unchanged. * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * The contents of the object pointed to are preserved up to the * lesser of the new and old sizes. If @p is %NULL, krealloc() * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a * %NULL pointer, the object pointed to is freed. */ void *krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; if (unlikely(!new_size)) { kfree(p); return ZERO_SIZE_PTR; } ret = __do_krealloc(p, new_size, flags); if (ret && p != ret) kfree(p); return ret; } EXPORT_SYMBOL(krealloc); /** * kzfree - like kfree but zero memory * @p: object to free memory of * * The memory of the object @p points to is zeroed before freed. * If @p is %NULL, kzfree() does nothing. * * Note: this function zeroes the whole allocated buffer which can be a good * deal bigger than the requested buffer size passed to kmalloc(). So be * careful when using this function in performance sensitive code. */ void kzfree(const void *p) { size_t ks; void *mem = (void *)p; if (unlikely(ZERO_OR_NULL_PTR(mem))) return; ks = ksize(mem); memset(mem, 0, ks); kfree(mem); } EXPORT_SYMBOL(kzfree); /* Tracepoints definitions. */ EXPORT_TRACEPOINT_SYMBOL(kmalloc); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); EXPORT_TRACEPOINT_SYMBOL(kfree); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |