Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/tcp.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <net/inetpeer.h> #include <net/tcp.h> int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE; struct tcp_fastopen_context __rcu *tcp_fastopen_ctx; static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock); void tcp_fastopen_init_key_once(bool publish) { static u8 key[TCP_FASTOPEN_KEY_LENGTH]; /* tcp_fastopen_reset_cipher publishes the new context * atomically, so we allow this race happening here. * * All call sites of tcp_fastopen_cookie_gen also check * for a valid cookie, so this is an acceptable risk. */ if (net_get_random_once(key, sizeof(key)) && publish) tcp_fastopen_reset_cipher(key, sizeof(key)); } static void tcp_fastopen_ctx_free(struct rcu_head *head) { struct tcp_fastopen_context *ctx = container_of(head, struct tcp_fastopen_context, rcu); crypto_free_cipher(ctx->tfm); kfree(ctx); } int tcp_fastopen_reset_cipher(void *key, unsigned int len) { int err; struct tcp_fastopen_context *ctx, *octx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->tfm)) { err = PTR_ERR(ctx->tfm); error: kfree(ctx); pr_err("TCP: TFO aes cipher alloc error: %d\n", err); return err; } err = crypto_cipher_setkey(ctx->tfm, key, len); if (err) { pr_err("TCP: TFO cipher key error: %d\n", err); crypto_free_cipher(ctx->tfm); goto error; } memcpy(ctx->key, key, len); spin_lock(&tcp_fastopen_ctx_lock); octx = rcu_dereference_protected(tcp_fastopen_ctx, lockdep_is_held(&tcp_fastopen_ctx_lock)); rcu_assign_pointer(tcp_fastopen_ctx, ctx); spin_unlock(&tcp_fastopen_ctx_lock); if (octx) call_rcu(&octx->rcu, tcp_fastopen_ctx_free); return err; } static bool __tcp_fastopen_cookie_gen(const void *path, struct tcp_fastopen_cookie *foc) { struct tcp_fastopen_context *ctx; bool ok = false; tcp_fastopen_init_key_once(true); rcu_read_lock(); ctx = rcu_dereference(tcp_fastopen_ctx); if (ctx) { crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); foc->len = TCP_FASTOPEN_COOKIE_SIZE; ok = true; } rcu_read_unlock(); return ok; } /* Generate the fastopen cookie by doing aes128 encryption on both * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 * addresses. For the longer IPv6 addresses use CBC-MAC. * * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. */ static bool tcp_fastopen_cookie_gen(struct request_sock *req, struct sk_buff *syn, struct tcp_fastopen_cookie *foc) { if (req->rsk_ops->family == AF_INET) { const struct iphdr *iph = ip_hdr(syn); __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; return __tcp_fastopen_cookie_gen(path, foc); } #if IS_ENABLED(CONFIG_IPV6) if (req->rsk_ops->family == AF_INET6) { const struct ipv6hdr *ip6h = ipv6_hdr(syn); struct tcp_fastopen_cookie tmp; if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) { struct in6_addr *buf = (struct in6_addr *) tmp.val; int i; for (i = 0; i < 4; i++) buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; return __tcp_fastopen_cookie_gen(buf, foc); } } #endif return false; } static bool tcp_fastopen_create_child(struct sock *sk, struct sk_buff *skb, struct dst_entry *dst, struct request_sock *req) { struct tcp_sock *tp; struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; struct sock *child; req->num_retrans = 0; req->num_timeout = 0; req->sk = NULL; child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); if (child == NULL) return false; spin_lock(&queue->fastopenq->lock); queue->fastopenq->qlen++; spin_unlock(&queue->fastopenq->lock); /* Initialize the child socket. Have to fix some values to take * into account the child is a Fast Open socket and is created * only out of the bits carried in the SYN packet. */ tp = tcp_sk(child); tp->fastopen_rsk = req; /* Do a hold on the listner sk so that if the listener is being * closed, the child that has been accepted can live on and still * access listen_lock. */ sock_hold(sk); tcp_rsk(req)->listener = sk; /* RFC1323: The window in SYN & SYN/ACK segments is never * scaled. So correct it appropriately. */ tp->snd_wnd = ntohs(tcp_hdr(skb)->window); /* Activate the retrans timer so that SYNACK can be retransmitted. * The request socket is not added to the SYN table of the parent * because it's been added to the accept queue directly. */ inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, TCP_TIMEOUT_INIT, TCP_RTO_MAX); /* Add the child socket directly into the accept queue */ inet_csk_reqsk_queue_add(sk, req, child); /* Now finish processing the fastopen child socket. */ inet_csk(child)->icsk_af_ops->rebuild_header(child); tcp_init_congestion_control(child); tcp_mtup_init(child); tcp_init_metrics(child); tcp_init_buffer_space(child); /* Queue the data carried in the SYN packet. We need to first * bump skb's refcnt because the caller will attempt to free it. * * XXX (TFO) - we honor a zero-payload TFO request for now, * (any reason not to?) but no need to queue the skb since * there is no data. How about SYN+FIN? */ if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1) { skb = skb_get(skb); skb_dst_drop(skb); __skb_pull(skb, tcp_hdr(skb)->doff * 4); skb_set_owner_r(skb, child); __skb_queue_tail(&child->sk_receive_queue, skb); tp->syn_data_acked = 1; } tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; sk->sk_data_ready(sk); bh_unlock_sock(child); sock_put(child); WARN_ON(req->sk == NULL); return true; } EXPORT_SYMBOL(tcp_fastopen_create_child); static bool tcp_fastopen_queue_check(struct sock *sk) { struct fastopen_queue *fastopenq; /* Make sure the listener has enabled fastopen, and we don't * exceed the max # of pending TFO requests allowed before trying * to validating the cookie in order to avoid burning CPU cycles * unnecessarily. * * XXX (TFO) - The implication of checking the max_qlen before * processing a cookie request is that clients can't differentiate * between qlen overflow causing Fast Open to be disabled * temporarily vs a server not supporting Fast Open at all. */ fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq; if (fastopenq == NULL || fastopenq->max_qlen == 0) return false; if (fastopenq->qlen >= fastopenq->max_qlen) { struct request_sock *req1; spin_lock(&fastopenq->lock); req1 = fastopenq->rskq_rst_head; if ((req1 == NULL) || time_after(req1->expires, jiffies)) { spin_unlock(&fastopenq->lock); NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); return false; } fastopenq->rskq_rst_head = req1->dl_next; fastopenq->qlen--; spin_unlock(&fastopenq->lock); reqsk_free(req1); } return true; } /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) * may be updated and return the client in the SYN-ACK later. E.g., Fast Open * cookie request (foc->len == 0). */ bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct tcp_fastopen_cookie *foc, struct dst_entry *dst) { struct tcp_fastopen_cookie valid_foc = { .len = -1 }; bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) && (syn_data || foc->len >= 0) && tcp_fastopen_queue_check(sk))) { foc->len = -1; return false; } if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD)) goto fastopen; if (tcp_fastopen_cookie_gen(req, skb, &valid_foc) && foc->len == TCP_FASTOPEN_COOKIE_SIZE && foc->len == valid_foc.len && !memcmp(foc->val, valid_foc.val, foc->len)) { /* Cookie is valid. Create a (full) child socket to accept * the data in SYN before returning a SYN-ACK to ack the * data. If we fail to create the socket, fall back and * ack the ISN only but includes the same cookie. * * Note: Data-less SYN with valid cookie is allowed to send * data in SYN_RECV state. */ fastopen: if (tcp_fastopen_create_child(sk, skb, dst, req)) { foc->len = -1; NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); return true; } } NET_INC_STATS_BH(sock_net(sk), foc->len ? LINUX_MIB_TCPFASTOPENPASSIVEFAIL : LINUX_MIB_TCPFASTOPENCOOKIEREQD); *foc = valid_foc; return false; } EXPORT_SYMBOL(tcp_try_fastopen); |