Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 | /* * linux/mm/compaction.c * * Memory compaction for the reduction of external fragmentation. Note that * this heavily depends upon page migration to do all the real heavy * lifting * * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> */ #include <linux/swap.h> #include <linux/migrate.h> #include <linux/compaction.h> #include <linux/mm_inline.h> #include <linux/backing-dev.h> #include <linux/sysctl.h> #include <linux/sysfs.h> #include <linux/balloon_compaction.h> #include <linux/page-isolation.h> #include "internal.h" #ifdef CONFIG_COMPACTION static inline void count_compact_event(enum vm_event_item item) { count_vm_event(item); } static inline void count_compact_events(enum vm_event_item item, long delta) { count_vm_events(item, delta); } #else #define count_compact_event(item) do { } while (0) #define count_compact_events(item, delta) do { } while (0) #endif #if defined CONFIG_COMPACTION || defined CONFIG_CMA #define CREATE_TRACE_POINTS #include <trace/events/compaction.h> static unsigned long release_freepages(struct list_head *freelist) { struct page *page, *next; unsigned long count = 0; list_for_each_entry_safe(page, next, freelist, lru) { list_del(&page->lru); __free_page(page); count++; } return count; } static void map_pages(struct list_head *list) { struct page *page; list_for_each_entry(page, list, lru) { arch_alloc_page(page, 0); kernel_map_pages(page, 1, 1); } } static inline bool migrate_async_suitable(int migratetype) { return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; } /* * Check that the whole (or subset of) a pageblock given by the interval of * [start_pfn, end_pfn) is valid and within the same zone, before scanning it * with the migration of free compaction scanner. The scanners then need to * use only pfn_valid_within() check for arches that allow holes within * pageblocks. * * Return struct page pointer of start_pfn, or NULL if checks were not passed. * * It's possible on some configurations to have a setup like node0 node1 node0 * i.e. it's possible that all pages within a zones range of pages do not * belong to a single zone. We assume that a border between node0 and node1 * can occur within a single pageblock, but not a node0 node1 node0 * interleaving within a single pageblock. It is therefore sufficient to check * the first and last page of a pageblock and avoid checking each individual * page in a pageblock. */ static struct page *pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone) { struct page *start_page; struct page *end_page; /* end_pfn is one past the range we are checking */ end_pfn--; if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) return NULL; start_page = pfn_to_page(start_pfn); if (page_zone(start_page) != zone) return NULL; end_page = pfn_to_page(end_pfn); /* This gives a shorter code than deriving page_zone(end_page) */ if (page_zone_id(start_page) != page_zone_id(end_page)) return NULL; return start_page; } #ifdef CONFIG_COMPACTION /* Returns true if the pageblock should be scanned for pages to isolate. */ static inline bool isolation_suitable(struct compact_control *cc, struct page *page) { if (cc->ignore_skip_hint) return true; return !get_pageblock_skip(page); } /* * This function is called to clear all cached information on pageblocks that * should be skipped for page isolation when the migrate and free page scanner * meet. */ static void __reset_isolation_suitable(struct zone *zone) { unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); unsigned long pfn; zone->compact_cached_migrate_pfn[0] = start_pfn; zone->compact_cached_migrate_pfn[1] = start_pfn; zone->compact_cached_free_pfn = end_pfn; zone->compact_blockskip_flush = false; /* Walk the zone and mark every pageblock as suitable for isolation */ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { struct page *page; cond_resched(); if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); if (zone != page_zone(page)) continue; clear_pageblock_skip(page); } } void reset_isolation_suitable(pg_data_t *pgdat) { int zoneid; for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { struct zone *zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; /* Only flush if a full compaction finished recently */ if (zone->compact_blockskip_flush) __reset_isolation_suitable(zone); } } /* * If no pages were isolated then mark this pageblock to be skipped in the * future. The information is later cleared by __reset_isolation_suitable(). */ static void update_pageblock_skip(struct compact_control *cc, struct page *page, unsigned long nr_isolated, bool migrate_scanner) { struct zone *zone = cc->zone; unsigned long pfn; if (cc->ignore_skip_hint) return; if (!page) return; if (nr_isolated) return; set_pageblock_skip(page); pfn = page_to_pfn(page); /* Update where async and sync compaction should restart */ if (migrate_scanner) { if (cc->finished_update_migrate) return; if (pfn > zone->compact_cached_migrate_pfn[0]) zone->compact_cached_migrate_pfn[0] = pfn; if (cc->mode != MIGRATE_ASYNC && pfn > zone->compact_cached_migrate_pfn[1]) zone->compact_cached_migrate_pfn[1] = pfn; } else { if (cc->finished_update_free) return; if (pfn < zone->compact_cached_free_pfn) zone->compact_cached_free_pfn = pfn; } } #else static inline bool isolation_suitable(struct compact_control *cc, struct page *page) { return true; } static void update_pageblock_skip(struct compact_control *cc, struct page *page, unsigned long nr_isolated, bool migrate_scanner) { } #endif /* CONFIG_COMPACTION */ /* * Compaction requires the taking of some coarse locks that are potentially * very heavily contended. For async compaction, back out if the lock cannot * be taken immediately. For sync compaction, spin on the lock if needed. * * Returns true if the lock is held * Returns false if the lock is not held and compaction should abort */ static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, struct compact_control *cc) { if (cc->mode == MIGRATE_ASYNC) { if (!spin_trylock_irqsave(lock, *flags)) { cc->contended = COMPACT_CONTENDED_LOCK; return false; } } else { spin_lock_irqsave(lock, *flags); } return true; } /* * Compaction requires the taking of some coarse locks that are potentially * very heavily contended. The lock should be periodically unlocked to avoid * having disabled IRQs for a long time, even when there is nobody waiting on * the lock. It might also be that allowing the IRQs will result in * need_resched() becoming true. If scheduling is needed, async compaction * aborts. Sync compaction schedules. * Either compaction type will also abort if a fatal signal is pending. * In either case if the lock was locked, it is dropped and not regained. * * Returns true if compaction should abort due to fatal signal pending, or * async compaction due to need_resched() * Returns false when compaction can continue (sync compaction might have * scheduled) */ static bool compact_unlock_should_abort(spinlock_t *lock, unsigned long flags, bool *locked, struct compact_control *cc) { if (*locked) { spin_unlock_irqrestore(lock, flags); *locked = false; } if (fatal_signal_pending(current)) { cc->contended = COMPACT_CONTENDED_SCHED; return true; } if (need_resched()) { if (cc->mode == MIGRATE_ASYNC) { cc->contended = COMPACT_CONTENDED_SCHED; return true; } cond_resched(); } return false; } /* * Aside from avoiding lock contention, compaction also periodically checks * need_resched() and either schedules in sync compaction or aborts async * compaction. This is similar to what compact_unlock_should_abort() does, but * is used where no lock is concerned. * * Returns false when no scheduling was needed, or sync compaction scheduled. * Returns true when async compaction should abort. */ static inline bool compact_should_abort(struct compact_control *cc) { /* async compaction aborts if contended */ if (need_resched()) { if (cc->mode == MIGRATE_ASYNC) { cc->contended = COMPACT_CONTENDED_SCHED; return true; } cond_resched(); } return false; } /* Returns true if the page is within a block suitable for migration to */ static bool suitable_migration_target(struct page *page) { /* If the page is a large free page, then disallow migration */ if (PageBuddy(page)) { /* * We are checking page_order without zone->lock taken. But * the only small danger is that we skip a potentially suitable * pageblock, so it's not worth to check order for valid range. */ if (page_order_unsafe(page) >= pageblock_order) return false; } /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ if (migrate_async_suitable(get_pageblock_migratetype(page))) return true; /* Otherwise skip the block */ return false; } /* * Isolate free pages onto a private freelist. If @strict is true, will abort * returning 0 on any invalid PFNs or non-free pages inside of the pageblock * (even though it may still end up isolating some pages). */ static unsigned long isolate_freepages_block(struct compact_control *cc, unsigned long *start_pfn, unsigned long end_pfn, struct list_head *freelist, bool strict) { int nr_scanned = 0, total_isolated = 0; struct page *cursor, *valid_page = NULL; unsigned long flags = 0; bool locked = false; unsigned long blockpfn = *start_pfn; cursor = pfn_to_page(blockpfn); /* Isolate free pages. */ for (; blockpfn < end_pfn; blockpfn++, cursor++) { int isolated, i; struct page *page = cursor; /* * Periodically drop the lock (if held) regardless of its * contention, to give chance to IRQs. Abort if fatal signal * pending or async compaction detects need_resched() */ if (!(blockpfn % SWAP_CLUSTER_MAX) && compact_unlock_should_abort(&cc->zone->lock, flags, &locked, cc)) break; nr_scanned++; if (!pfn_valid_within(blockpfn)) goto isolate_fail; if (!valid_page) valid_page = page; /* * For compound pages such as THP and hugetlbfs, we can save * potentially a lot of iterations if we skip them at once. * The check is racy, but we can consider only valid values * and the only danger is skipping too much. */ if (PageCompound(page)) { unsigned int comp_order = compound_order(page); if (likely(comp_order < MAX_ORDER)) { blockpfn += (1UL << comp_order) - 1; cursor += (1UL << comp_order) - 1; } goto isolate_fail; } if (!PageBuddy(page)) goto isolate_fail; /* * If we already hold the lock, we can skip some rechecking. * Note that if we hold the lock now, checked_pageblock was * already set in some previous iteration (or strict is true), * so it is correct to skip the suitable migration target * recheck as well. */ if (!locked) { /* * The zone lock must be held to isolate freepages. * Unfortunately this is a very coarse lock and can be * heavily contended if there are parallel allocations * or parallel compactions. For async compaction do not * spin on the lock and we acquire the lock as late as * possible. */ locked = compact_trylock_irqsave(&cc->zone->lock, &flags, cc); if (!locked) break; /* Recheck this is a buddy page under lock */ if (!PageBuddy(page)) goto isolate_fail; } /* Found a free page, break it into order-0 pages */ isolated = split_free_page(page); if (!isolated) break; total_isolated += isolated; cc->nr_freepages += isolated; for (i = 0; i < isolated; i++) { list_add(&page->lru, freelist); page++; } if (!strict && cc->nr_migratepages <= cc->nr_freepages) { blockpfn += isolated; break; } /* Advance to the end of split page */ blockpfn += isolated - 1; cursor += isolated - 1; continue; isolate_fail: if (strict) break; else continue; } if (locked) spin_unlock_irqrestore(&cc->zone->lock, flags); /* * There is a tiny chance that we have read bogus compound_order(), * so be careful to not go outside of the pageblock. */ if (unlikely(blockpfn > end_pfn)) blockpfn = end_pfn; /* Record how far we have got within the block */ *start_pfn = blockpfn; trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); /* * If strict isolation is requested by CMA then check that all the * pages requested were isolated. If there were any failures, 0 is * returned and CMA will fail. */ if (strict && blockpfn < end_pfn) total_isolated = 0; /* Update the pageblock-skip if the whole pageblock was scanned */ if (blockpfn == end_pfn) update_pageblock_skip(cc, valid_page, total_isolated, false); count_compact_events(COMPACTFREE_SCANNED, nr_scanned); if (total_isolated) count_compact_events(COMPACTISOLATED, total_isolated); return total_isolated; } /** * isolate_freepages_range() - isolate free pages. * @start_pfn: The first PFN to start isolating. * @end_pfn: The one-past-last PFN. * * Non-free pages, invalid PFNs, or zone boundaries within the * [start_pfn, end_pfn) range are considered errors, cause function to * undo its actions and return zero. * * Otherwise, function returns one-past-the-last PFN of isolated page * (which may be greater then end_pfn if end fell in a middle of * a free page). */ unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn) { unsigned long isolated, pfn, block_end_pfn; LIST_HEAD(freelist); pfn = start_pfn; block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); for (; pfn < end_pfn; pfn += isolated, block_end_pfn += pageblock_nr_pages) { /* Protect pfn from changing by isolate_freepages_block */ unsigned long isolate_start_pfn = pfn; block_end_pfn = min(block_end_pfn, end_pfn); /* * pfn could pass the block_end_pfn if isolated freepage * is more than pageblock order. In this case, we adjust * scanning range to right one. */ if (pfn >= block_end_pfn) { block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); block_end_pfn = min(block_end_pfn, end_pfn); } if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) break; isolated = isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, &freelist, true); /* * In strict mode, isolate_freepages_block() returns 0 if * there are any holes in the block (ie. invalid PFNs or * non-free pages). */ if (!isolated) break; /* * If we managed to isolate pages, it is always (1 << n) * * pageblock_nr_pages for some non-negative n. (Max order * page may span two pageblocks). */ } /* split_free_page does not map the pages */ map_pages(&freelist); if (pfn < end_pfn) { /* Loop terminated early, cleanup. */ release_freepages(&freelist); return 0; } /* We don't use freelists for anything. */ return pfn; } /* Update the number of anon and file isolated pages in the zone */ static void acct_isolated(struct zone *zone, struct compact_control *cc) { struct page *page; unsigned int count[2] = { 0, }; if (list_empty(&cc->migratepages)) return; list_for_each_entry(page, &cc->migratepages, lru) count[!!page_is_file_cache(page)]++; mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); } /* Similar to reclaim, but different enough that they don't share logic */ static bool too_many_isolated(struct zone *zone) { unsigned long active, inactive, isolated; inactive = zone_page_state(zone, NR_INACTIVE_FILE) + zone_page_state(zone, NR_INACTIVE_ANON); active = zone_page_state(zone, NR_ACTIVE_FILE) + zone_page_state(zone, NR_ACTIVE_ANON); isolated = zone_page_state(zone, NR_ISOLATED_FILE) + zone_page_state(zone, NR_ISOLATED_ANON); return isolated > (inactive + active) / 2; } /** * isolate_migratepages_block() - isolate all migrate-able pages within * a single pageblock * @cc: Compaction control structure. * @low_pfn: The first PFN to isolate * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock * @isolate_mode: Isolation mode to be used. * * Isolate all pages that can be migrated from the range specified by * [low_pfn, end_pfn). The range is expected to be within same pageblock. * Returns zero if there is a fatal signal pending, otherwise PFN of the * first page that was not scanned (which may be both less, equal to or more * than end_pfn). * * The pages are isolated on cc->migratepages list (not required to be empty), * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field * is neither read nor updated. */ static unsigned long isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn, isolate_mode_t isolate_mode) { struct zone *zone = cc->zone; unsigned long nr_scanned = 0, nr_isolated = 0; struct list_head *migratelist = &cc->migratepages; struct lruvec *lruvec; unsigned long flags = 0; bool locked = false; struct page *page = NULL, *valid_page = NULL; /* * Ensure that there are not too many pages isolated from the LRU * list by either parallel reclaimers or compaction. If there are, * delay for some time until fewer pages are isolated */ while (unlikely(too_many_isolated(zone))) { /* async migration should just abort */ if (cc->mode == MIGRATE_ASYNC) return 0; congestion_wait(BLK_RW_ASYNC, HZ/10); if (fatal_signal_pending(current)) return 0; } if (compact_should_abort(cc)) return 0; /* Time to isolate some pages for migration */ for (; low_pfn < end_pfn; low_pfn++) { /* * Periodically drop the lock (if held) regardless of its * contention, to give chance to IRQs. Abort async compaction * if contended. */ if (!(low_pfn % SWAP_CLUSTER_MAX) && compact_unlock_should_abort(&zone->lru_lock, flags, &locked, cc)) break; if (!pfn_valid_within(low_pfn)) continue; nr_scanned++; page = pfn_to_page(low_pfn); if (!valid_page) valid_page = page; /* * Skip if free. We read page order here without zone lock * which is generally unsafe, but the race window is small and * the worst thing that can happen is that we skip some * potential isolation targets. */ if (PageBuddy(page)) { unsigned long freepage_order = page_order_unsafe(page); /* * Without lock, we cannot be sure that what we got is * a valid page order. Consider only values in the * valid order range to prevent low_pfn overflow. */ if (freepage_order > 0 && freepage_order < MAX_ORDER) low_pfn += (1UL << freepage_order) - 1; continue; } /* * Check may be lockless but that's ok as we recheck later. * It's possible to migrate LRU pages and balloon pages * Skip any other type of page */ if (!PageLRU(page)) { if (unlikely(balloon_page_movable(page))) { if (balloon_page_isolate(page)) { /* Successfully isolated */ goto isolate_success; } } continue; } /* * PageLRU is set. lru_lock normally excludes isolation * splitting and collapsing (collapsing has already happened * if PageLRU is set) but the lock is not necessarily taken * here and it is wasteful to take it just to check transhuge. * Check TransHuge without lock and skip the whole pageblock if * it's either a transhuge or hugetlbfs page, as calling * compound_order() without preventing THP from splitting the * page underneath us may return surprising results. */ if (PageTransHuge(page)) { if (!locked) low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; else low_pfn += (1 << compound_order(page)) - 1; continue; } /* * Migration will fail if an anonymous page is pinned in memory, * so avoid taking lru_lock and isolating it unnecessarily in an * admittedly racy check. */ if (!page_mapping(page) && page_count(page) > page_mapcount(page)) continue; /* If we already hold the lock, we can skip some rechecking */ if (!locked) { locked = compact_trylock_irqsave(&zone->lru_lock, &flags, cc); if (!locked) break; /* Recheck PageLRU and PageTransHuge under lock */ if (!PageLRU(page)) continue; if (PageTransHuge(page)) { low_pfn += (1 << compound_order(page)) - 1; continue; } } lruvec = mem_cgroup_page_lruvec(page, zone); /* Try isolate the page */ if (__isolate_lru_page(page, isolate_mode) != 0) continue; VM_BUG_ON_PAGE(PageTransCompound(page), page); /* Successfully isolated */ del_page_from_lru_list(page, lruvec, page_lru(page)); isolate_success: cc->finished_update_migrate = true; list_add(&page->lru, migratelist); cc->nr_migratepages++; nr_isolated++; /* Avoid isolating too much */ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { ++low_pfn; break; } } /* * The PageBuddy() check could have potentially brought us outside * the range to be scanned. */ if (unlikely(low_pfn > end_pfn)) low_pfn = end_pfn; if (locked) spin_unlock_irqrestore(&zone->lru_lock, flags); /* * Update the pageblock-skip information and cached scanner pfn, * if the whole pageblock was scanned without isolating any page. */ if (low_pfn == end_pfn) update_pageblock_skip(cc, valid_page, nr_isolated, true); trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); if (nr_isolated) count_compact_events(COMPACTISOLATED, nr_isolated); return low_pfn; } /** * isolate_migratepages_range() - isolate migrate-able pages in a PFN range * @cc: Compaction control structure. * @start_pfn: The first PFN to start isolating. * @end_pfn: The one-past-last PFN. * * Returns zero if isolation fails fatally due to e.g. pending signal. * Otherwise, function returns one-past-the-last PFN of isolated page * (which may be greater than end_pfn if end fell in a middle of a THP page). */ unsigned long isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn, block_end_pfn; /* Scan block by block. First and last block may be incomplete */ pfn = start_pfn; block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); for (; pfn < end_pfn; pfn = block_end_pfn, block_end_pfn += pageblock_nr_pages) { block_end_pfn = min(block_end_pfn, end_pfn); if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) continue; pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, ISOLATE_UNEVICTABLE); if (!pfn) break; if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) break; } acct_isolated(cc->zone, cc); return pfn; } #endif /* CONFIG_COMPACTION || CONFIG_CMA */ #ifdef CONFIG_COMPACTION /* * Based on information in the current compact_control, find blocks * suitable for isolating free pages from and then isolate them. */ static void isolate_freepages(struct compact_control *cc) { struct zone *zone = cc->zone; struct page *page; unsigned long block_start_pfn; /* start of current pageblock */ unsigned long isolate_start_pfn; /* exact pfn we start at */ unsigned long block_end_pfn; /* end of current pageblock */ unsigned long low_pfn; /* lowest pfn scanner is able to scan */ int nr_freepages = cc->nr_freepages; struct list_head *freelist = &cc->freepages; /* * Initialise the free scanner. The starting point is where we last * successfully isolated from, zone-cached value, or the end of the * zone when isolating for the first time. For looping we also need * this pfn aligned down to the pageblock boundary, because we do * block_start_pfn -= pageblock_nr_pages in the for loop. * For ending point, take care when isolating in last pageblock of a * a zone which ends in the middle of a pageblock. * The low boundary is the end of the pageblock the migration scanner * is using. */ isolate_start_pfn = cc->free_pfn; block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); block_end_pfn = min(block_start_pfn + pageblock_nr_pages, zone_end_pfn(zone)); low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); /* * Isolate free pages until enough are available to migrate the * pages on cc->migratepages. We stop searching if the migrate * and free page scanners meet or enough free pages are isolated. */ for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages; block_end_pfn = block_start_pfn, block_start_pfn -= pageblock_nr_pages, isolate_start_pfn = block_start_pfn) { unsigned long isolated; /* * This can iterate a massively long zone without finding any * suitable migration targets, so periodically check if we need * to schedule, or even abort async compaction. */ if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) && compact_should_abort(cc)) break; page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, zone); if (!page) continue; /* Check the block is suitable for migration */ if (!suitable_migration_target(page)) continue; /* If isolation recently failed, do not retry */ if (!isolation_suitable(cc, page)) continue; /* Found a block suitable for isolating free pages from. */ isolated = isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, freelist, false); /* If isolation failed early, do not continue needlessly */ if (!isolated && isolate_start_pfn < block_end_pfn && cc->nr_migratepages > cc->nr_freepages) break; nr_freepages += isolated; /* * Remember where the free scanner should restart next time, * which is where isolate_freepages_block() left off. * But if it scanned the whole pageblock, isolate_start_pfn * now points at block_end_pfn, which is the start of the next * pageblock. * In that case we will however want to restart at the start * of the previous pageblock. */ cc->free_pfn = (isolate_start_pfn < block_end_pfn) ? isolate_start_pfn : block_start_pfn - pageblock_nr_pages; /* * Set a flag that we successfully isolated in this pageblock. * In the next loop iteration, zone->compact_cached_free_pfn * will not be updated and thus it will effectively contain the * highest pageblock we isolated pages from. */ if (isolated) cc->finished_update_free = true; /* * isolate_freepages_block() might have aborted due to async * compaction being contended */ if (cc->contended) break; } /* split_free_page does not map the pages */ map_pages(freelist); /* * If we crossed the migrate scanner, we want to keep it that way * so that compact_finished() may detect this */ if (block_start_pfn < low_pfn) cc->free_pfn = cc->migrate_pfn; cc->nr_freepages = nr_freepages; } /* * This is a migrate-callback that "allocates" freepages by taking pages * from the isolated freelists in the block we are migrating to. */ static struct page *compaction_alloc(struct page *migratepage, unsigned long data, int **result) { struct compact_control *cc = (struct compact_control *)data; struct page *freepage; /* * Isolate free pages if necessary, and if we are not aborting due to * contention. */ if (list_empty(&cc->freepages)) { if (!cc->contended) isolate_freepages(cc); if (list_empty(&cc->freepages)) return NULL; } freepage = list_entry(cc->freepages.next, struct page, lru); list_del(&freepage->lru); cc->nr_freepages--; return freepage; } /* * This is a migrate-callback that "frees" freepages back to the isolated * freelist. All pages on the freelist are from the same zone, so there is no * special handling needed for NUMA. */ static void compaction_free(struct page *page, unsigned long data) { struct compact_control *cc = (struct compact_control *)data; list_add(&page->lru, &cc->freepages); cc->nr_freepages++; } /* possible outcome of isolate_migratepages */ typedef enum { ISOLATE_ABORT, /* Abort compaction now */ ISOLATE_NONE, /* No pages isolated, continue scanning */ ISOLATE_SUCCESS, /* Pages isolated, migrate */ } isolate_migrate_t; /* * Isolate all pages that can be migrated from the first suitable block, * starting at the block pointed to by the migrate scanner pfn within * compact_control. */ static isolate_migrate_t isolate_migratepages(struct zone *zone, struct compact_control *cc) { unsigned long low_pfn, end_pfn; struct page *page; const isolate_mode_t isolate_mode = (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); /* * Start at where we last stopped, or beginning of the zone as * initialized by compact_zone() */ low_pfn = cc->migrate_pfn; /* Only scan within a pageblock boundary */ end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); /* * Iterate over whole pageblocks until we find the first suitable. * Do not cross the free scanner. */ for (; end_pfn <= cc->free_pfn; low_pfn = end_pfn, end_pfn += pageblock_nr_pages) { /* * This can potentially iterate a massively long zone with * many pageblocks unsuitable, so periodically check if we * need to schedule, or even abort async compaction. */ if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) && compact_should_abort(cc)) break; page = pageblock_pfn_to_page(low_pfn, end_pfn, zone); if (!page) continue; /* If isolation recently failed, do not retry */ if (!isolation_suitable(cc, page)) continue; /* * For async compaction, also only scan in MOVABLE blocks. * Async compaction is optimistic to see if the minimum amount * of work satisfies the allocation. */ if (cc->mode == MIGRATE_ASYNC && !migrate_async_suitable(get_pageblock_migratetype(page))) continue; /* Perform the isolation */ low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn, isolate_mode); if (!low_pfn || cc->contended) { acct_isolated(zone, cc); return ISOLATE_ABORT; } /* * Either we isolated something and proceed with migration. Or * we failed and compact_zone should decide if we should * continue or not. */ break; } acct_isolated(zone, cc); /* * Record where migration scanner will be restarted. If we end up in * the same pageblock as the free scanner, make the scanners fully * meet so that compact_finished() terminates compaction. */ cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn; return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; } static int compact_finished(struct zone *zone, struct compact_control *cc, const int migratetype) { unsigned int order; unsigned long watermark; if (cc->contended || fatal_signal_pending(current)) return COMPACT_PARTIAL; /* Compaction run completes if the migrate and free scanner meet */ if (cc->free_pfn <= cc->migrate_pfn) { /* Let the next compaction start anew. */ zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; zone->compact_cached_free_pfn = zone_end_pfn(zone); /* * Mark that the PG_migrate_skip information should be cleared * by kswapd when it goes to sleep. kswapd does not set the * flag itself as the decision to be clear should be directly * based on an allocation request. */ if (!current_is_kswapd()) zone->compact_blockskip_flush = true; return COMPACT_COMPLETE; } /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (cc->order == -1) return COMPACT_CONTINUE; /* Compaction run is not finished if the watermark is not met */ watermark = low_wmark_pages(zone); watermark += (1 << cc->order); if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) return COMPACT_CONTINUE; /* Direct compactor: Is a suitable page free? */ for (order = cc->order; order < MAX_ORDER; order++) { struct free_area *area = &zone->free_area[order]; /* Job done if page is free of the right migratetype */ if (!list_empty(&area->free_list[migratetype])) return COMPACT_PARTIAL; /* Job done if allocation would set block type */ if (order >= pageblock_order && area->nr_free) return COMPACT_PARTIAL; } return COMPACT_CONTINUE; } /* * compaction_suitable: Is this suitable to run compaction on this zone now? * Returns * COMPACT_SKIPPED - If there are too few free pages for compaction * COMPACT_PARTIAL - If the allocation would succeed without compaction * COMPACT_CONTINUE - If compaction should run now */ unsigned long compaction_suitable(struct zone *zone, int order) { int fragindex; unsigned long watermark; /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (order == -1) return COMPACT_CONTINUE; /* * Watermarks for order-0 must be met for compaction. Note the 2UL. * This is because during migration, copies of pages need to be * allocated and for a short time, the footprint is higher */ watermark = low_wmark_pages(zone) + (2UL << order); if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) return COMPACT_SKIPPED; /* * fragmentation index determines if allocation failures are due to * low memory or external fragmentation * * index of -1000 implies allocations might succeed depending on * watermarks * index towards 0 implies failure is due to lack of memory * index towards 1000 implies failure is due to fragmentation * * Only compact if a failure would be due to fragmentation. */ fragindex = fragmentation_index(zone, order); if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) return COMPACT_SKIPPED; if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 0, 0)) return COMPACT_PARTIAL; return COMPACT_CONTINUE; } static int compact_zone(struct zone *zone, struct compact_control *cc) { int ret; unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); const bool sync = cc->mode != MIGRATE_ASYNC; ret = compaction_suitable(zone, cc->order); switch (ret) { case COMPACT_PARTIAL: case COMPACT_SKIPPED: /* Compaction is likely to fail */ return ret; case COMPACT_CONTINUE: /* Fall through to compaction */ ; } /* * Clear pageblock skip if there were failures recently and compaction * is about to be retried after being deferred. kswapd does not do * this reset as it'll reset the cached information when going to sleep. */ if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) __reset_isolation_suitable(zone); /* * Setup to move all movable pages to the end of the zone. Used cached * information on where the scanners should start but check that it * is initialised by ensuring the values are within zone boundaries. */ cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; cc->free_pfn = zone->compact_cached_free_pfn; if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); zone->compact_cached_free_pfn = cc->free_pfn; } if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { cc->migrate_pfn = start_pfn; zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; } trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); migrate_prep_local(); while ((ret = compact_finished(zone, cc, migratetype)) == COMPACT_CONTINUE) { int err; switch (isolate_migratepages(zone, cc)) { case ISOLATE_ABORT: ret = COMPACT_PARTIAL; putback_movable_pages(&cc->migratepages); cc->nr_migratepages = 0; goto out; case ISOLATE_NONE: continue; case ISOLATE_SUCCESS: ; } err = migrate_pages(&cc->migratepages, compaction_alloc, compaction_free, (unsigned long)cc, cc->mode, MR_COMPACTION); trace_mm_compaction_migratepages(cc->nr_migratepages, err, &cc->migratepages); /* All pages were either migrated or will be released */ cc->nr_migratepages = 0; if (err) { putback_movable_pages(&cc->migratepages); /* * migrate_pages() may return -ENOMEM when scanners meet * and we want compact_finished() to detect it */ if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { ret = COMPACT_PARTIAL; goto out; } } } out: /* Release free pages and check accounting */ cc->nr_freepages -= release_freepages(&cc->freepages); VM_BUG_ON(cc->nr_freepages != 0); trace_mm_compaction_end(ret); return ret; } static unsigned long compact_zone_order(struct zone *zone, int order, gfp_t gfp_mask, enum migrate_mode mode, int *contended) { unsigned long ret; struct compact_control cc = { .nr_freepages = 0, .nr_migratepages = 0, .order = order, .gfp_mask = gfp_mask, .zone = zone, .mode = mode, }; INIT_LIST_HEAD(&cc.freepages); INIT_LIST_HEAD(&cc.migratepages); ret = compact_zone(zone, &cc); VM_BUG_ON(!list_empty(&cc.freepages)); VM_BUG_ON(!list_empty(&cc.migratepages)); *contended = cc.contended; return ret; } int sysctl_extfrag_threshold = 500; /** * try_to_compact_pages - Direct compact to satisfy a high-order allocation * @zonelist: The zonelist used for the current allocation * @order: The order of the current allocation * @gfp_mask: The GFP mask of the current allocation * @nodemask: The allowed nodes to allocate from * @mode: The migration mode for async, sync light, or sync migration * @contended: Return value that determines if compaction was aborted due to * need_resched() or lock contention * @candidate_zone: Return the zone where we think allocation should succeed * * This is the main entry point for direct page compaction. */ unsigned long try_to_compact_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *nodemask, enum migrate_mode mode, int *contended, struct zone **candidate_zone) { enum zone_type high_zoneidx = gfp_zone(gfp_mask); int may_enter_fs = gfp_mask & __GFP_FS; int may_perform_io = gfp_mask & __GFP_IO; struct zoneref *z; struct zone *zone; int rc = COMPACT_DEFERRED; int alloc_flags = 0; int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ *contended = COMPACT_CONTENDED_NONE; /* Check if the GFP flags allow compaction */ if (!order || !may_enter_fs || !may_perform_io) return COMPACT_SKIPPED; #ifdef CONFIG_CMA if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) alloc_flags |= ALLOC_CMA; #endif /* Compact each zone in the list */ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, nodemask) { int status; int zone_contended; if (compaction_deferred(zone, order)) continue; status = compact_zone_order(zone, order, gfp_mask, mode, &zone_contended); rc = max(status, rc); /* * It takes at least one zone that wasn't lock contended * to clear all_zones_contended. */ all_zones_contended &= zone_contended; /* If a normal allocation would succeed, stop compacting */ if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, alloc_flags)) { *candidate_zone = zone; /* * We think the allocation will succeed in this zone, * but it is not certain, hence the false. The caller * will repeat this with true if allocation indeed * succeeds in this zone. */ compaction_defer_reset(zone, order, false); /* * It is possible that async compaction aborted due to * need_resched() and the watermarks were ok thanks to * somebody else freeing memory. The allocation can * however still fail so we better signal the * need_resched() contention anyway (this will not * prevent the allocation attempt). */ if (zone_contended == COMPACT_CONTENDED_SCHED) *contended = COMPACT_CONTENDED_SCHED; goto break_loop; } if (mode != MIGRATE_ASYNC) { /* * We think that allocation won't succeed in this zone * so we defer compaction there. If it ends up * succeeding after all, it will be reset. */ defer_compaction(zone, order); } /* * We might have stopped compacting due to need_resched() in * async compaction, or due to a fatal signal detected. In that * case do not try further zones and signal need_resched() * contention. */ if ((zone_contended == COMPACT_CONTENDED_SCHED) || fatal_signal_pending(current)) { *contended = COMPACT_CONTENDED_SCHED; goto break_loop; } continue; break_loop: /* * We might not have tried all the zones, so be conservative * and assume they are not all lock contended. */ all_zones_contended = 0; break; } /* * If at least one zone wasn't deferred or skipped, we report if all * zones that were tried were lock contended. */ if (rc > COMPACT_SKIPPED && all_zones_contended) *contended = COMPACT_CONTENDED_LOCK; return rc; } /* Compact all zones within a node */ static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) { int zoneid; struct zone *zone; for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; cc->nr_freepages = 0; cc->nr_migratepages = 0; cc->zone = zone; INIT_LIST_HEAD(&cc->freepages); INIT_LIST_HEAD(&cc->migratepages); if (cc->order == -1 || !compaction_deferred(zone, cc->order)) compact_zone(zone, cc); if (cc->order > 0) { if (zone_watermark_ok(zone, cc->order, low_wmark_pages(zone), 0, 0)) compaction_defer_reset(zone, cc->order, false); } VM_BUG_ON(!list_empty(&cc->freepages)); VM_BUG_ON(!list_empty(&cc->migratepages)); } } void compact_pgdat(pg_data_t *pgdat, int order) { struct compact_control cc = { .order = order, .mode = MIGRATE_ASYNC, }; if (!order) return; __compact_pgdat(pgdat, &cc); } static void compact_node(int nid) { struct compact_control cc = { .order = -1, .mode = MIGRATE_SYNC, .ignore_skip_hint = true, }; __compact_pgdat(NODE_DATA(nid), &cc); } /* Compact all nodes in the system */ static void compact_nodes(void) { int nid; /* Flush pending updates to the LRU lists */ lru_add_drain_all(); for_each_online_node(nid) compact_node(nid); } /* The written value is actually unused, all memory is compacted */ int sysctl_compact_memory; /* This is the entry point for compacting all nodes via /proc/sys/vm */ int sysctl_compaction_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { if (write) compact_nodes(); return 0; } int sysctl_extfrag_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec_minmax(table, write, buffer, length, ppos); return 0; } #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) static ssize_t sysfs_compact_node(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nid = dev->id; if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { /* Flush pending updates to the LRU lists */ lru_add_drain_all(); compact_node(nid); } return count; } static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); int compaction_register_node(struct node *node) { return device_create_file(&node->dev, &dev_attr_compact); } void compaction_unregister_node(struct node *node) { return device_remove_file(&node->dev, &dev_attr_compact); } #endif /* CONFIG_SYSFS && CONFIG_NUMA */ #endif /* CONFIG_COMPACTION */ |