Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 * Driver for SMM665 Power Controller / Monitor
 *
 * Copyright (C) 2010 Ericsson AB.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
 * for those chips. Only monitoring functionality is implemented.
 *
 * Datasheets:
 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/delay.h>
#include <linux/jiffies.h>

/* Internal reference voltage (VREF, x 1000 */
#define SMM665_VREF_ADC_X1000	1250

/* module parameters */
static int vref = SMM665_VREF_ADC_X1000;
module_param(vref, int, 0);
MODULE_PARM_DESC(vref, "Reference voltage in mV");

enum chips { smm465, smm665, smm665c, smm764, smm766 };

/*
 * ADC channel addresses
 */
#define	SMM665_MISC16_ADC_DATA_A	0x00
#define	SMM665_MISC16_ADC_DATA_B	0x01
#define	SMM665_MISC16_ADC_DATA_C	0x02
#define	SMM665_MISC16_ADC_DATA_D	0x03
#define	SMM665_MISC16_ADC_DATA_E	0x04
#define	SMM665_MISC16_ADC_DATA_F	0x05
#define	SMM665_MISC16_ADC_DATA_VDD	0x06
#define	SMM665_MISC16_ADC_DATA_12V	0x07
#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a

/*
 * Command registers
 */
#define	SMM665_MISC8_CMD_STS		0x80
#define	SMM665_MISC8_STATUS1		0x81
#define	SMM665_MISC8_STATUSS2		0x82
#define	SMM665_MISC8_IO_POLARITY	0x83
#define	SMM665_MISC8_PUP_POLARITY	0x84
#define	SMM665_MISC8_ADOC_STATUS1	0x85
#define	SMM665_MISC8_ADOC_STATUS2	0x86
#define	SMM665_MISC8_WRITE_PROT		0x87
#define	SMM665_MISC8_STS_TRACK		0x88

/*
 * Configuration registers and register groups
 */
#define SMM665_ADOC_ENABLE		0x0d
#define SMM665_LIMIT_BASE		0x80	/* First limit register */

/*
 * Limit register bit masks
 */
#define SMM665_TRIGGER_RST		0x8000
#define SMM665_TRIGGER_HEALTHY		0x4000
#define SMM665_TRIGGER_POWEROFF		0x2000
#define SMM665_TRIGGER_SHUTDOWN		0x1000
#define SMM665_ADC_MASK			0x03ff

#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
					| SMM665_TRIGGER_POWEROFF \
					| SMM665_TRIGGER_SHUTDOWN))
/*
 * Fault register bit definitions
 * Values are merged from status registers 1/2,
 * with status register 1 providing the upper 8 bits.
 */
#define SMM665_FAULT_A		0x0001
#define SMM665_FAULT_B		0x0002
#define SMM665_FAULT_C		0x0004
#define SMM665_FAULT_D		0x0008
#define SMM665_FAULT_E		0x0010
#define SMM665_FAULT_F		0x0020
#define SMM665_FAULT_VDD	0x0040
#define SMM665_FAULT_12V	0x0080
#define SMM665_FAULT_TEMP	0x0100
#define SMM665_FAULT_AIN1	0x0200
#define SMM665_FAULT_AIN2	0x0400

/*
 * I2C Register addresses
 *
 * The configuration register needs to be the configured base register.
 * The command/status register address is derived from it.
 */
#define SMM665_REGMASK		0x78
#define SMM665_CMDREG_BASE	0x48
#define SMM665_CONFREG_BASE	0x50

/*
 *  Equations given by chip manufacturer to calculate voltage/temperature values
 *  vref = Reference voltage on VREF_ADC pin (module parameter)
 *  adc  = 10bit ADC value read back from registers
 */

/* Voltage A-F and VDD */
#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)

/* Voltage 12VIN */
#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)

/* Voltage AIN1, AIN2 */
#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)

/* Temp Sensor */
#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
					 ((int)(adc) * 1000 / 4) :	   \
					 (((int)(adc) - 0x400) * 1000 / 4))

#define SMM665_NUM_ADC		11

/*
 * Chip dependent ADC conversion time, in uS
 */
#define SMM665_ADC_WAIT_SMM665	70
#define SMM665_ADC_WAIT_SMM766	185

struct smm665_data {
	enum chips type;
	int conversion_time;		/* ADC conversion time */
	struct i2c_client *client;
	struct mutex update_lock;
	bool valid;
	unsigned long last_updated;	/* in jiffies */
	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
	u16 faults;			/* fault status */
	/* The following values are in mV */
	int critical_min_limit[SMM665_NUM_ADC];
	int alarm_min_limit[SMM665_NUM_ADC];
	int critical_max_limit[SMM665_NUM_ADC];
	int alarm_max_limit[SMM665_NUM_ADC];
	struct i2c_client *cmdreg;
};

/*
 * smm665_read16()
 *
 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
 */
static int smm665_read16(struct i2c_client *client, int reg)
{
	int rv, val;

	rv = i2c_smbus_read_byte_data(client, reg);
	if (rv < 0)
		return rv;
	val = rv << 8;
	rv = i2c_smbus_read_byte_data(client, reg + 1);
	if (rv < 0)
		return rv;
	val |= rv;
	return val;
}

/*
 * Read adc value.
 */
static int smm665_read_adc(struct smm665_data *data, int adc)
{
	struct i2c_client *client = data->cmdreg;
	int rv;
	int radc;

	/*
	 * Algorithm for reading ADC, per SMM665 datasheet
	 *
	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
	 * [wait conversion time]
	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
	 *
	 * To implement the first part of this exchange,
	 * do a full read transaction and expect a failure/Nack.
	 * This sets up the address pointer on the SMM665
	 * and starts the ADC conversion.
	 * Then do a two-byte read transaction.
	 */
	rv = i2c_smbus_read_byte_data(client, adc << 3);
	if (rv != -ENXIO) {
		/*
		 * We expect ENXIO to reflect NACK
		 * (per Documentation/i2c/fault-codes).
		 * Everything else is an error.
		 */
		dev_dbg(&client->dev,
			"Unexpected return code %d when setting ADC index", rv);
		return (rv < 0) ? rv : -EIO;
	}

	udelay(data->conversion_time);

	/*
	 * Now read two bytes.
	 *
	 * Neither i2c_smbus_read_byte() nor
	 * i2c_smbus_read_block_data() worked here,
	 * so use i2c_smbus_read_word_swapped() instead.
	 * We could also try to use i2c_master_recv(),
	 * but that is not always supported.
	 */
	rv = i2c_smbus_read_word_swapped(client, 0);
	if (rv < 0) {
		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
		return rv;
	}
	/*
	 * Validate/verify readback adc channel (in bit 11..14).
	 */
	radc = (rv >> 11) & 0x0f;
	if (radc != adc) {
		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
			adc, radc);
		return -EIO;
	}

	return rv & SMM665_ADC_MASK;
}

static struct smm665_data *smm665_update_device(struct device *dev)
{
	struct smm665_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	struct smm665_data *ret = data;

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
		int i, val;

		/*
		 * read status registers
		 */
		val = smm665_read16(client, SMM665_MISC8_STATUS1);
		if (unlikely(val < 0)) {
			ret = ERR_PTR(val);
			goto abort;
		}
		data->faults = val;

		/* Read adc registers */
		for (i = 0; i < SMM665_NUM_ADC; i++) {
			val = smm665_read_adc(data, i);
			if (unlikely(val < 0)) {
				ret = ERR_PTR(val);
				goto abort;
			}
			data->adc[i] = val;
		}
		data->last_updated = jiffies;
		data->valid = 1;
	}
abort:
	mutex_unlock(&data->update_lock);
	return ret;
}

/* Return converted value from given adc */
static int smm665_convert(u16 adcval, int index)
{
	int val = 0;

	switch (index) {
	case SMM665_MISC16_ADC_DATA_12V:
		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
		break;

	case SMM665_MISC16_ADC_DATA_VDD:
	case SMM665_MISC16_ADC_DATA_A:
	case SMM665_MISC16_ADC_DATA_B:
	case SMM665_MISC16_ADC_DATA_C:
	case SMM665_MISC16_ADC_DATA_D:
	case SMM665_MISC16_ADC_DATA_E:
	case SMM665_MISC16_ADC_DATA_F:
		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
		break;

	case SMM665_MISC16_ADC_DATA_AIN1:
	case SMM665_MISC16_ADC_DATA_AIN2:
		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
		break;

	case SMM665_MISC16_ADC_DATA_INT_TEMP:
		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
		break;

	default:
		/* If we get here, the developer messed up */
		WARN_ON_ONCE(1);
		break;
	}

	return val;
}

static int smm665_get_min(struct device *dev, int index)
{
	struct smm665_data *data = dev_get_drvdata(dev);

	return data->alarm_min_limit[index];
}

static int smm665_get_max(struct device *dev, int index)
{
	struct smm665_data *data = dev_get_drvdata(dev);

	return data->alarm_max_limit[index];
}

static int smm665_get_lcrit(struct device *dev, int index)
{
	struct smm665_data *data = dev_get_drvdata(dev);

	return data->critical_min_limit[index];
}

static int smm665_get_crit(struct device *dev, int index)
{
	struct smm665_data *data = dev_get_drvdata(dev);

	return data->critical_max_limit[index];
}

static ssize_t smm665_show_crit_alarm(struct device *dev,
				      struct device_attribute *da, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	struct smm665_data *data = smm665_update_device(dev);
	int val = 0;

	if (IS_ERR(data))
		return PTR_ERR(data);

	if (data->faults & (1 << attr->index))
		val = 1;

	return snprintf(buf, PAGE_SIZE, "%d\n", val);
}

static ssize_t smm665_show_input(struct device *dev,
				 struct device_attribute *da, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	struct smm665_data *data = smm665_update_device(dev);
	int adc = attr->index;
	int val;

	if (IS_ERR(data))
		return PTR_ERR(data);

	val = smm665_convert(data->adc[adc], adc);
	return snprintf(buf, PAGE_SIZE, "%d\n", val);
}

#define SMM665_SHOW(what) \
static ssize_t smm665_show_##what(struct device *dev, \
				    struct device_attribute *da, char *buf) \
{ \
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
	const int val = smm665_get_##what(dev, attr->index); \
	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
}

SMM665_SHOW(min);
SMM665_SHOW(max);
SMM665_SHOW(lcrit);
SMM665_SHOW(crit);

/*
 * These macros are used below in constructing device attribute objects
 * for use with sysfs_create_group() to make a sysfs device file
 * for each register.
 */

#define SMM665_ATTR(name, type, cmd_idx) \
	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
				  smm665_show_##type, NULL, cmd_idx)

/* Construct a sensor_device_attribute structure for each register */

/* Input voltages */
SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);

/* Input voltages min */
SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);

/* Input voltages max */
SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);

/* Input voltages lcrit */
SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);

/* Input voltages crit */
SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);

/* critical alarms */
SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);

/* Temperature */
SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);

/*
 * Finally, construct an array of pointers to members of the above objects,
 * as required for sysfs_create_group()
 */
static struct attribute *smm665_attrs[] = {
	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in1_min.dev_attr.attr,
	&sensor_dev_attr_in1_max.dev_attr.attr,
	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
	&sensor_dev_attr_in1_crit.dev_attr.attr,
	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in2_min.dev_attr.attr,
	&sensor_dev_attr_in2_max.dev_attr.attr,
	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
	&sensor_dev_attr_in2_crit.dev_attr.attr,
	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in3_min.dev_attr.attr,
	&sensor_dev_attr_in3_max.dev_attr.attr,
	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
	&sensor_dev_attr_in3_crit.dev_attr.attr,
	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in4_min.dev_attr.attr,
	&sensor_dev_attr_in4_max.dev_attr.attr,
	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
	&sensor_dev_attr_in4_crit.dev_attr.attr,
	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in5_min.dev_attr.attr,
	&sensor_dev_attr_in5_max.dev_attr.attr,
	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
	&sensor_dev_attr_in5_crit.dev_attr.attr,
	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_in6_min.dev_attr.attr,
	&sensor_dev_attr_in6_max.dev_attr.attr,
	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
	&sensor_dev_attr_in6_crit.dev_attr.attr,
	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in7_input.dev_attr.attr,
	&sensor_dev_attr_in7_min.dev_attr.attr,
	&sensor_dev_attr_in7_max.dev_attr.attr,
	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
	&sensor_dev_attr_in7_crit.dev_attr.attr,
	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in8_input.dev_attr.attr,
	&sensor_dev_attr_in8_min.dev_attr.attr,
	&sensor_dev_attr_in8_max.dev_attr.attr,
	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
	&sensor_dev_attr_in8_crit.dev_attr.attr,
	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in9_input.dev_attr.attr,
	&sensor_dev_attr_in9_min.dev_attr.attr,
	&sensor_dev_attr_in9_max.dev_attr.attr,
	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
	&sensor_dev_attr_in9_crit.dev_attr.attr,
	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_in10_input.dev_attr.attr,
	&sensor_dev_attr_in10_min.dev_attr.attr,
	&sensor_dev_attr_in10_max.dev_attr.attr,
	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
	&sensor_dev_attr_in10_crit.dev_attr.attr,
	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,

	NULL,
};

ATTRIBUTE_GROUPS(smm665);

static int smm665_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct i2c_adapter *adapter = client->adapter;
	struct smm665_data *data;
	struct device *hwmon_dev;
	int i, ret;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
				     | I2C_FUNC_SMBUS_WORD_DATA))
		return -ENODEV;

	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
		return -ENODEV;

	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	i2c_set_clientdata(client, data);
	mutex_init(&data->update_lock);

	data->client = client;
	data->type = id->driver_data;
	data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
				     | SMM665_CMDREG_BASE);
	if (!data->cmdreg)
		return -ENOMEM;

	switch (data->type) {
	case smm465:
	case smm665:
		data->conversion_time = SMM665_ADC_WAIT_SMM665;
		break;
	case smm665c:
	case smm764:
	case smm766:
		data->conversion_time = SMM665_ADC_WAIT_SMM766;
		break;
	}

	ret = -ENODEV;
	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
		goto out_unregister;

	/*
	 * Read limits.
	 *
	 * Limit registers start with register SMM665_LIMIT_BASE.
	 * Each channel uses 8 registers, providing four limit values
	 * per channel. Each limit value requires two registers, with the
	 * high byte in the first register and the low byte in the second
	 * register. The first two limits are under limit values, followed
	 * by two over limit values.
	 *
	 * Limit register order matches the ADC register order, so we use
	 * ADC register defines throughout the code to index limit registers.
	 *
	 * We save the first retrieved value both as "critical" and "alarm"
	 * value. The second value overwrites either the critical or the
	 * alarm value, depending on its configuration. This ensures that both
	 * critical and alarm values are initialized, even if both registers are
	 * configured as critical or non-critical.
	 */
	for (i = 0; i < SMM665_NUM_ADC; i++) {
		int val;

		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
		if (unlikely(val < 0))
			goto out_unregister;
		data->critical_min_limit[i] = data->alarm_min_limit[i]
		  = smm665_convert(val, i);
		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
		if (unlikely(val < 0))
			goto out_unregister;
		if (smm665_is_critical(val))
			data->critical_min_limit[i] = smm665_convert(val, i);
		else
			data->alarm_min_limit[i] = smm665_convert(val, i);
		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
		if (unlikely(val < 0))
			goto out_unregister;
		data->critical_max_limit[i] = data->alarm_max_limit[i]
		  = smm665_convert(val, i);
		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
		if (unlikely(val < 0))
			goto out_unregister;
		if (smm665_is_critical(val))
			data->critical_max_limit[i] = smm665_convert(val, i);
		else
			data->alarm_max_limit[i] = smm665_convert(val, i);
	}

	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
							   client->name, data,
							   smm665_groups);
	if (IS_ERR(hwmon_dev)) {
		ret = PTR_ERR(hwmon_dev);
		goto out_unregister;
	}

	return 0;

out_unregister:
	i2c_unregister_device(data->cmdreg);
	return ret;
}

static int smm665_remove(struct i2c_client *client)
{
	struct smm665_data *data = i2c_get_clientdata(client);

	i2c_unregister_device(data->cmdreg);
	return 0;
}

static const struct i2c_device_id smm665_id[] = {
	{"smm465", smm465},
	{"smm665", smm665},
	{"smm665c", smm665c},
	{"smm764", smm764},
	{"smm766", smm766},
	{}
};

MODULE_DEVICE_TABLE(i2c, smm665_id);

/* This is the driver that will be inserted */
static struct i2c_driver smm665_driver = {
	.driver = {
		   .name = "smm665",
		   },
	.probe = smm665_probe,
	.remove = smm665_remove,
	.id_table = smm665_id,
};

module_i2c_driver(smm665_driver);

MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("SMM665 driver");
MODULE_LICENSE("GPL");