Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | #define pr_fmt(fmt) "list_sort_test: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/list_sort.h> #include <linux/slab.h> #include <linux/list.h> #define MAX_LIST_LENGTH_BITS 20 /* * Returns a list organized in an intermediate format suited * to chaining of merge() calls: null-terminated, no reserved or * sentinel head node, "prev" links not maintained. */ static struct list_head *merge(void *priv, int (*cmp)(void *priv, struct list_head *a, struct list_head *b), struct list_head *a, struct list_head *b) { struct list_head head, *tail = &head; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp)(priv, a, b) <= 0) { tail->next = a; a = a->next; } else { tail->next = b; b = b->next; } tail = tail->next; } tail->next = a?:b; return head.next; } /* * Combine final list merge with restoration of standard doubly-linked * list structure. This approach duplicates code from merge(), but * runs faster than the tidier alternatives of either a separate final * prev-link restoration pass, or maintaining the prev links * throughout. */ static void merge_and_restore_back_links(void *priv, int (*cmp)(void *priv, struct list_head *a, struct list_head *b), struct list_head *head, struct list_head *a, struct list_head *b) { struct list_head *tail = head; u8 count = 0; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp)(priv, a, b) <= 0) { tail->next = a; a->prev = tail; a = a->next; } else { tail->next = b; b->prev = tail; b = b->next; } tail = tail->next; } tail->next = a ? : b; do { /* * In worst cases this loop may run many iterations. * Continue callbacks to the client even though no * element comparison is needed, so the client's cmp() * routine can invoke cond_resched() periodically. */ if (unlikely(!(++count))) (*cmp)(priv, tail->next, tail->next); tail->next->prev = tail; tail = tail->next; } while (tail->next); tail->next = head; head->prev = tail; } /** * list_sort - sort a list * @priv: private data, opaque to list_sort(), passed to @cmp * @head: the list to sort * @cmp: the elements comparison function * * This function implements "merge sort", which has O(nlog(n)) * complexity. * * The comparison function @cmp must return a negative value if @a * should sort before @b, and a positive value if @a should sort after * @b. If @a and @b are equivalent, and their original relative * ordering is to be preserved, @cmp must return 0. */ void list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, struct list_head *a, struct list_head *b)) { struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists -- last slot is a sentinel */ int lev; /* index into part[] */ int max_lev = 0; struct list_head *list; if (list_empty(head)) return; memset(part, 0, sizeof(part)); head->prev->next = NULL; list = head->next; while (list) { struct list_head *cur = list; list = list->next; cur->next = NULL; for (lev = 0; part[lev]; lev++) { cur = merge(priv, cmp, part[lev], cur); part[lev] = NULL; } if (lev > max_lev) { if (unlikely(lev >= ARRAY_SIZE(part)-1)) { printk_once(KERN_DEBUG "list too long for efficiency\n"); lev--; } max_lev = lev; } part[lev] = cur; } for (lev = 0; lev < max_lev; lev++) if (part[lev]) list = merge(priv, cmp, part[lev], list); merge_and_restore_back_links(priv, cmp, head, part[max_lev], list); } EXPORT_SYMBOL(list_sort); #ifdef CONFIG_TEST_LIST_SORT #include <linux/random.h> /* * The pattern of set bits in the list length determines which cases * are hit in list_sort(). */ #define TEST_LIST_LEN (512+128+2) /* not including head */ #define TEST_POISON1 0xDEADBEEF #define TEST_POISON2 0xA324354C struct debug_el { unsigned int poison1; struct list_head list; unsigned int poison2; int value; unsigned serial; }; /* Array, containing pointers to all elements in the test list */ static struct debug_el **elts __initdata; static int __init check(struct debug_el *ela, struct debug_el *elb) { if (ela->serial >= TEST_LIST_LEN) { pr_err("error: incorrect serial %d\n", ela->serial); return -EINVAL; } if (elb->serial >= TEST_LIST_LEN) { pr_err("error: incorrect serial %d\n", elb->serial); return -EINVAL; } if (elts[ela->serial] != ela || elts[elb->serial] != elb) { pr_err("error: phantom element\n"); return -EINVAL; } if (ela->poison1 != TEST_POISON1 || ela->poison2 != TEST_POISON2) { pr_err("error: bad poison: %#x/%#x\n", ela->poison1, ela->poison2); return -EINVAL; } if (elb->poison1 != TEST_POISON1 || elb->poison2 != TEST_POISON2) { pr_err("error: bad poison: %#x/%#x\n", elb->poison1, elb->poison2); return -EINVAL; } return 0; } static int __init cmp(void *priv, struct list_head *a, struct list_head *b) { struct debug_el *ela, *elb; ela = container_of(a, struct debug_el, list); elb = container_of(b, struct debug_el, list); check(ela, elb); return ela->value - elb->value; } static int __init list_sort_test(void) { int i, count = 1, err = -ENOMEM; struct debug_el *el; struct list_head *cur; LIST_HEAD(head); pr_debug("start testing list_sort()\n"); elts = kcalloc(TEST_LIST_LEN, sizeof(*elts), GFP_KERNEL); if (!elts) { pr_err("error: cannot allocate memory\n"); return err; } for (i = 0; i < TEST_LIST_LEN; i++) { el = kmalloc(sizeof(*el), GFP_KERNEL); if (!el) { pr_err("error: cannot allocate memory\n"); goto exit; } /* force some equivalencies */ el->value = prandom_u32() % (TEST_LIST_LEN / 3); el->serial = i; el->poison1 = TEST_POISON1; el->poison2 = TEST_POISON2; elts[i] = el; list_add_tail(&el->list, &head); } list_sort(NULL, &head, cmp); err = -EINVAL; for (cur = head.next; cur->next != &head; cur = cur->next) { struct debug_el *el1; int cmp_result; if (cur->next->prev != cur) { pr_err("error: list is corrupted\n"); goto exit; } cmp_result = cmp(NULL, cur, cur->next); if (cmp_result > 0) { pr_err("error: list is not sorted\n"); goto exit; } el = container_of(cur, struct debug_el, list); el1 = container_of(cur->next, struct debug_el, list); if (cmp_result == 0 && el->serial >= el1->serial) { pr_err("error: order of equivalent elements not " "preserved\n"); goto exit; } if (check(el, el1)) { pr_err("error: element check failed\n"); goto exit; } count++; } if (head.prev != cur) { pr_err("error: list is corrupted\n"); goto exit; } if (count != TEST_LIST_LEN) { pr_err("error: bad list length %d", count); goto exit; } err = 0; exit: for (i = 0; i < TEST_LIST_LEN; i++) kfree(elts[i]); kfree(elts); return err; } module_init(list_sort_test); #endif /* CONFIG_TEST_LIST_SORT */ |