Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | /* * * Optimized version of the copy_user() routine. * It is used to copy date across the kernel/user boundary. * * The source and destination are always on opposite side of * the boundary. When reading from user space we must catch * faults on loads. When writing to user space we must catch * errors on stores. Note that because of the nature of the copy * we don't need to worry about overlapping regions. * * * Inputs: * in0 address of source buffer * in1 address of destination buffer * in2 number of bytes to copy * * Outputs: * ret0 0 in case of success. The number of bytes NOT copied in * case of error. * * Copyright (C) 2000-2001 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * * Fixme: * - handle the case where we have more than 16 bytes and the alignment * are different. * - more benchmarking * - fix extraneous stop bit introduced by the EX() macro. */ #include <asm/asmmacro.h> // // Tuneable parameters // #define COPY_BREAK 16 // we do byte copy below (must be >=16) #define PIPE_DEPTH 21 // pipe depth #define EPI p[PIPE_DEPTH-1] // // arguments // #define dst in0 #define src in1 #define len in2 // // local registers // #define t1 r2 // rshift in bytes #define t2 r3 // lshift in bytes #define rshift r14 // right shift in bits #define lshift r15 // left shift in bits #define word1 r16 #define word2 r17 #define cnt r18 #define len2 r19 #define saved_lc r20 #define saved_pr r21 #define tmp r22 #define val r23 #define src1 r24 #define dst1 r25 #define src2 r26 #define dst2 r27 #define len1 r28 #define enddst r29 #define endsrc r30 #define saved_pfs r31 GLOBAL_ENTRY(__copy_user) .prologue .save ar.pfs, saved_pfs alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] .rotp p[PIPE_DEPTH] adds len2=-1,len // br.ctop is repeat/until mov ret0=r0 ;; // RAW of cfm when len=0 cmp.eq p8,p0=r0,len // check for zero length .save ar.lc, saved_lc mov saved_lc=ar.lc // preserve ar.lc (slow) (p8) br.ret.spnt.many rp // empty mempcy() ;; add enddst=dst,len // first byte after end of source add endsrc=src,len // first byte after end of destination .save pr, saved_pr mov saved_pr=pr // preserve predicates .body mov dst1=dst // copy because of rotation mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov src1=src // copy because of rotation mov ar.lc=len2 // initialize lc for small count cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy xor tmp=src,dst // same alignment test prepare (p10) br.cond.dptk .long_copy_user ;; // RAW pr.rot/p16 ? // // Now we do the byte by byte loop with software pipeline // // p7 is necessarily false by now 1: EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 1b ;; mov ar.lc=saved_lc mov pr=saved_pr,0xffffffffffff0000 mov ar.pfs=saved_pfs // restore ar.ec br.ret.sptk.many rp // end of short memcpy // // Not 8-byte aligned // .diff_align_copy_user: // At this point we know we have more than 16 bytes to copy // and also that src and dest do _not_ have the same alignment. and src2=0x7,src1 // src offset and dst2=0x7,dst1 // dst offset ;; // The basic idea is that we copy byte-by-byte at the head so // that we can reach 8-byte alignment for both src1 and dst1. // Then copy the body using software pipelined 8-byte copy, // shifting the two back-to-back words right and left, then copy // the tail by copying byte-by-byte. // // Fault handling. If the byte-by-byte at the head fails on the // load, then restart and finish the pipleline by copying zeros // to the dst1. Then copy zeros for the rest of dst1. // If 8-byte software pipeline fails on the load, do the same as // failure_in3 does. If the byte-by-byte at the tail fails, it is // handled simply by failure_in_pipe1. // // The case p14 represents the source has more bytes in the // the first word (by the shifted part), whereas the p15 needs to // copy some bytes from the 2nd word of the source that has the // tail of the 1st of the destination. // // // Optimization. If dst1 is 8-byte aligned (quite common), we don't need // to copy the head to dst1, to start 8-byte copy software pipeline. // We know src1 is not 8-byte aligned in this case. // cmp.eq p14,p15=r0,dst2 (p15) br.cond.spnt 1f ;; sub t1=8,src2 mov t2=src2 ;; shl rshift=t2,3 sub len1=len,t1 // set len1 ;; sub lshift=64,rshift ;; br.cond.spnt .word_copy_user ;; 1: cmp.leu p14,p15=src2,dst2 sub t1=dst2,src2 ;; .pred.rel "mutex", p14, p15 (p14) sub word1=8,src2 // (8 - src offset) (p15) sub t1=r0,t1 // absolute value (p15) sub word1=8,dst2 // (8 - dst offset) ;; // For the case p14, we don't need to copy the shifted part to // the 1st word of destination. sub t2=8,t1 (p14) sub word1=word1,t1 ;; sub len1=len,word1 // resulting len (p15) shl rshift=t1,3 // in bits (p14) shl rshift=t2,3 ;; (p14) sub len1=len1,t1 adds cnt=-1,word1 ;; sub lshift=64,rshift mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov ar.lc=cnt ;; 2: EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 2b ;; clrrrb ;; .word_copy_user: cmp.gtu p9,p0=16,len1 (p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy ;; shr.u cnt=len1,3 // number of 64-bit words ;; adds cnt=-1,cnt ;; .pred.rel "mutex", p14, p15 (p14) sub src1=src1,t2 (p15) sub src1=src1,t1 // // Now both src1 and dst1 point to an 8-byte aligned address. And // we have more than 8 bytes to copy. // mov ar.lc=cnt mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false ;; 3: // // The pipleline consists of 3 stages: // 1 (p16): Load a word from src1 // 2 (EPI_1): Shift right pair, saving to tmp // 3 (EPI): Store tmp to dst1 // // To make it simple, use at least 2 (p16) loops to set up val1[n] // because we need 2 back-to-back val1[] to get tmp. // Note that this implies EPI_2 must be p18 or greater. // #define EPI_1 p[PIPE_DEPTH-2] #define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift #define CASE(pred, shift) \ (pred) br.cond.spnt .copy_user_bit##shift #define BODY(rshift) \ .copy_user_bit##rshift: \ 1: \ EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \ (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ EX(3f,(p16) ld8 val1[1]=[src1],8); \ (p16) mov val1[0]=r0; \ br.ctop.dptk 1b; \ ;; \ br.cond.sptk.many .diff_align_do_tail; \ 2: \ (EPI) st8 [dst1]=tmp,8; \ (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ 3: \ (p16) mov val1[1]=r0; \ (p16) mov val1[0]=r0; \ br.ctop.dptk 2b; \ ;; \ br.cond.sptk.many .failure_in2 // // Since the instruction 'shrp' requires a fixed 128-bit value // specifying the bits to shift, we need to provide 7 cases // below. // SWITCH(p6, 8) SWITCH(p7, 16) SWITCH(p8, 24) SWITCH(p9, 32) SWITCH(p10, 40) SWITCH(p11, 48) SWITCH(p12, 56) ;; CASE(p6, 8) CASE(p7, 16) CASE(p8, 24) CASE(p9, 32) CASE(p10, 40) CASE(p11, 48) CASE(p12, 56) ;; BODY(8) BODY(16) BODY(24) BODY(32) BODY(40) BODY(48) BODY(56) ;; .diff_align_do_tail: .pred.rel "mutex", p14, p15 (p14) sub src1=src1,t1 (p14) adds dst1=-8,dst1 (p15) sub dst1=dst1,t1 ;; 4: // Tail correction. // // The problem with this piplelined loop is that the last word is not // loaded and thus parf of the last word written is not correct. // To fix that, we simply copy the tail byte by byte. sub len1=endsrc,src1,1 clrrrb ;; mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov ar.lc=len1 ;; 5: EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 5b ;; mov ar.lc=saved_lc mov pr=saved_pr,0xffffffffffff0000 mov ar.pfs=saved_pfs br.ret.sptk.many rp // // Beginning of long mempcy (i.e. > 16 bytes) // .long_copy_user: tbit.nz p6,p7=src1,0 // odd alignment and tmp=7,tmp ;; cmp.eq p10,p8=r0,tmp mov len1=len // copy because of rotation (p8) br.cond.dpnt .diff_align_copy_user ;; // At this point we know we have more than 16 bytes to copy // and also that both src and dest have the same alignment // which may not be the one we want. So for now we must move // forward slowly until we reach 16byte alignment: no need to // worry about reaching the end of buffer. // EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned (p6) adds len1=-1,len1;; tbit.nz p7,p0=src1,1 ;; EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned (p7) adds len1=-2,len1;; tbit.nz p8,p0=src1,2 ;; // // Stop bit not required after ld4 because if we fail on ld4 // we have never executed the ld1, therefore st1 is not executed. // EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned ;; EX(.failure_out,(p6) st1 [dst1]=val1[0],1) tbit.nz p9,p0=src1,3 ;; // // Stop bit not required after ld8 because if we fail on ld8 // we have never executed the ld2, therefore st2 is not executed. // EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned EX(.failure_out,(p7) st2 [dst1]=val1[1],2) (p8) adds len1=-4,len1 ;; EX(.failure_out, (p8) st4 [dst1]=val2[0],4) (p9) adds len1=-8,len1;; shr.u cnt=len1,4 // number of 128-bit (2x64bit) words ;; EX(.failure_out, (p9) st8 [dst1]=val2[1],8) tbit.nz p6,p0=len1,3 cmp.eq p7,p0=r0,cnt adds tmp=-1,cnt // br.ctop is repeat/until (p7) br.cond.dpnt .dotail // we have less than 16 bytes left ;; adds src2=8,src1 adds dst2=8,dst1 mov ar.lc=tmp ;; // // 16bytes/iteration // 2: EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) (p16) ld8 val2[0]=[src2],16 EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16) (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 br.ctop.dptk 2b ;; // RAW on src1 when fall through from loop // // Tail correction based on len only // // No matter where we come from (loop or test) the src1 pointer // is 16 byte aligned AND we have less than 16 bytes to copy. // .dotail: EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes tbit.nz p7,p0=len1,2 ;; EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes tbit.nz p8,p0=len1,1 ;; EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes tbit.nz p9,p0=len1,0 ;; EX(.failure_out, (p6) st8 [dst1]=val1[0],8) ;; EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left mov ar.lc=saved_lc ;; EX(.failure_out,(p7) st4 [dst1]=val1[1],4) mov pr=saved_pr,0xffffffffffff0000 ;; EX(.failure_out, (p8) st2 [dst1]=val2[0],2) mov ar.pfs=saved_pfs ;; EX(.failure_out, (p9) st1 [dst1]=val2[1]) br.ret.sptk.many rp // // Here we handle the case where the byte by byte copy fails // on the load. // Several factors make the zeroing of the rest of the buffer kind of // tricky: // - the pipeline: loads/stores are not in sync (pipeline) // // In the same loop iteration, the dst1 pointer does not directly // reflect where the faulty load was. // // - pipeline effect // When you get a fault on load, you may have valid data from // previous loads not yet store in transit. Such data must be // store normally before moving onto zeroing the rest. // // - single/multi dispersal independence. // // solution: // - we don't disrupt the pipeline, i.e. data in transit in // the software pipeline will be eventually move to memory. // We simply replace the load with a simple mov and keep the // pipeline going. We can't really do this inline because // p16 is always reset to 1 when lc > 0. // .failure_in_pipe1: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 1: (p16) mov val1[0]=r0 (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 br.ctop.dptk 1b ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // This is the case where the byte by byte copy fails on the load // when we copy the head. We need to finish the pipeline and copy // zeros for the rest of the destination. Since this happens // at the top we still need to fill the body and tail. .failure_in_pipe2: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 2: (p16) mov val1[0]=r0 (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 br.ctop.dptk 2b ;; sub len=enddst,dst1,1 // precompute len br.cond.dptk.many .failure_in1bis ;; // // Here we handle the head & tail part when we check for alignment. // The following code handles only the load failures. The // main diffculty comes from the fact that loads/stores are // scheduled. So when you fail on a load, the stores corresponding // to previous successful loads must be executed. // // However some simplifications are possible given the way // things work. // // 1) HEAD // Theory of operation: // // Page A | Page B // ---------|----- // 1|8 x // 1 2|8 x // 4|8 x // 1 4|8 x // 2 4|8 x // 1 2 4|8 x // |1 // |2 x // |4 x // // page_size >= 4k (2^12). (x means 4, 2, 1) // Here we suppose Page A exists and Page B does not. // // As we move towards eight byte alignment we may encounter faults. // The numbers on each page show the size of the load (current alignment). // // Key point: // - if you fail on 1, 2, 4 then you have never executed any smaller // size loads, e.g. failing ld4 means no ld1 nor ld2 executed // before. // // This allows us to simplify the cleanup code, because basically you // only have to worry about "pending" stores in the case of a failing // ld8(). Given the way the code is written today, this means only // worry about st2, st4. There we can use the information encapsulated // into the predicates. // // Other key point: // - if you fail on the ld8 in the head, it means you went straight // to it, i.e. 8byte alignment within an unexisting page. // Again this comes from the fact that if you crossed just for the ld8 then // you are 8byte aligned but also 16byte align, therefore you would // either go for the 16byte copy loop OR the ld8 in the tail part. // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible // because it would mean you had 15bytes to copy in which case you // would have defaulted to the byte by byte copy. // // // 2) TAIL // Here we now we have less than 16 bytes AND we are either 8 or 16 byte // aligned. // // Key point: // This means that we either: // - are right on a page boundary // OR // - are at more than 16 bytes from a page boundary with // at most 15 bytes to copy: no chance of crossing. // // This allows us to assume that if we fail on a load we haven't possibly // executed any of the previous (tail) ones, so we don't need to do // any stores. For instance, if we fail on ld2, this means we had // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. // // This means that we are in a situation similar the a fault in the // head part. That's nice! // .failure_in1: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied sub len=endsrc,src1,1 // // we know that ret0 can never be zero at this point // because we failed why trying to do a load, i.e. there is still // some work to do. // The failure_in1bis and length problem is taken care of at the // calling side. // ;; .failure_in1bis: // from (.failure_in3) mov ar.lc=len // Continue with a stupid byte store. ;; 5: st1 [dst1]=r0,1 br.cloop.dptk 5b ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // Here we simply restart the loop but instead // of doing loads we fill the pipeline with zeroes // We can't simply store r0 because we may have valid // data in transit in the pipeline. // ar.lc and ar.ec are setup correctly at this point // // we MUST use src1/endsrc here and not dst1/enddst because // of the pipeline effect. // .failure_in3: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied ;; 2: (p16) mov val1[0]=r0 (p16) mov val2[0]=r0 (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16 (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 br.ctop.dptk 2b ;; cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? sub len=enddst,dst1,1 // precompute len (p6) br.cond.dptk .failure_in1bis ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp .failure_in2: sub ret0=endsrc,src1 cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? sub len=enddst,dst1,1 // precompute len (p6) br.cond.dptk .failure_in1bis ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // handling of failures on stores: that's the easy part // .failure_out: sub ret0=enddst,dst1 mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp END(__copy_user) |