Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | | | ssin.sa 3.3 7/29/91 | | The entry point sSIN computes the sine of an input argument | sCOS computes the cosine, and sSINCOS computes both. The | corresponding entry points with a "d" computes the same | corresponding function values for denormalized inputs. | | Input: Double-extended number X in location pointed to | by address register a0. | | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or | COS is requested. Otherwise, for SINCOS, sin(X) is returned | in Fp0, and cos(X) is returned in Fp1. | | Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS. | | Accuracy and Monotonicity: The returned result is within 1 ulp in | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | result is subsequently rounded to double precision. The | result is provably monotonic in double precision. | | Speed: The programs sSIN and sCOS take approximately 150 cycles for | input argument X such that |X| < 15Pi, which is the usual | situation. The speed for sSINCOS is approximately 190 cycles. | | Algorithm: | | SIN and COS: | 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. | | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. | | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let | k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite | k by k := k + AdjN. | | 4. If k is even, go to 6. | | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r) | where cos(r) is approximated by an even polynomial in r, | 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r. | Exit. | | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) | where sin(r) is approximated by an odd polynomial in r | r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. | Exit. | | 7. If |X| > 1, go to 9. | | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1. | | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3. | | SINCOS: | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. | | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let | k = N mod 4, so in particular, k = 0,1,2,or 3. | | 3. If k is even, go to 5. | | 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e. | j1 exclusive or with the l.s.b. of k. | sgn1 := (-1)**j1, sgn2 := (-1)**j2. | SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where | sin(r) and cos(r) are computed as odd and even polynomials | in r, respectively. Exit | | 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. | SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where | sin(r) and cos(r) are computed as odd and even polynomials | in r, respectively. Exit | | 6. If |X| > 1, go to 8. | | 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. | | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. | | Copyright (C) Motorola, Inc. 1990 | All Rights Reserved | | For details on the license for this file, please see the | file, README, in this same directory. |SSIN idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 #include "fpsp.h" BOUNDS1: .long 0x3FD78000,0x4004BC7E TWOBYPI: .long 0x3FE45F30,0x6DC9C883 SINA7: .long 0xBD6AAA77,0xCCC994F5 SINA6: .long 0x3DE61209,0x7AAE8DA1 SINA5: .long 0xBE5AE645,0x2A118AE4 SINA4: .long 0x3EC71DE3,0xA5341531 SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000 SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 COSB8: .long 0x3D2AC4D0,0xD6011EE3 COSB7: .long 0xBDA9396F,0x9F45AC19 COSB6: .long 0x3E21EED9,0x0612C972 COSB5: .long 0xBE927E4F,0xB79D9FCF COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E COSB1: .long 0xBF000000 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |xref PITBL .set INARG,FP_SCR4 .set X,FP_SCR5 .set XDCARE,X+2 .set XFRAC,X+4 .set RPRIME,FP_SCR1 .set SPRIME,FP_SCR2 .set POSNEG1,L_SCR1 .set TWOTO63,L_SCR1 .set ENDFLAG,L_SCR2 .set N,L_SCR2 .set ADJN,L_SCR3 | xref t_frcinx |xref t_extdnrm |xref sto_cos .global ssind ssind: |--SIN(X) = X FOR DENORMALIZED X bra t_extdnrm .global scosd scosd: |--COS(X) = 1 FOR DENORMALIZED X fmoves #0x3F800000,%fp0 | | 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits | fmovel #0,%fpsr | bra t_frcinx .global ssin ssin: |--SET ADJN TO 0 movel #0,ADJN(%a6) bras SINBGN .global scos scos: |--SET ADJN TO 1 movel #1,ADJN(%a6) SINBGN: |--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE fmovex (%a0),%fp0 | ...LOAD INPUT movel (%a0),%d0 movew 4(%a0),%d0 fmovex %fp0,X(%a6) andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? bges SOK1 bra SINSM SOK1: cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? blts SINMAIN bra REDUCEX SINMAIN: |--THIS IS THE USUAL CASE, |X| <= 15 PI. |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. fmovex %fp0,%fp1 fmuld TWOBYPI,%fp1 | ...X*2/PI |--HIDE THE NEXT THREE INSTRUCTIONS lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 |--FP1 IS NOW READY fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER movel N(%a6),%d0 asll #4,%d0 addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2 | ...WHICH IS IN TWO PIECES Y1 & Y2 fsubx (%a1)+,%fp0 | ...X-Y1 |--HIDE THE NEXT ONE fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 SINCONT: |--continuation from REDUCEX |--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED movel N(%a6),%d0 addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE cmpil #0,%d0 blt COSPOLY SINPOLY: |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY |--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE |--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS |--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) |--WHERE T=S*S. |--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION |--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. fmovex %fp0,X(%a6) | ...X IS R fmulx %fp0,%fp0 | ...FP0 IS S |---HIDE THE NEXT TWO WHILE WAITING FOR FP0 fmoved SINA7,%fp3 fmoved SINA6,%fp2 |--FP0 IS NOW READY fmovex %fp0,%fp1 fmulx %fp1,%fp1 | ...FP1 IS T |--HIDE THE NEXT TWO WHILE WAITING FOR FP1 rorl #1,%d0 andil #0x80000000,%d0 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R fmulx %fp1,%fp3 | ...TA7 fmulx %fp1,%fp2 | ...TA6 faddd SINA5,%fp3 | ...A5+TA7 faddd SINA4,%fp2 | ...A4+TA6 fmulx %fp1,%fp3 | ...T(A5+TA7) fmulx %fp1,%fp2 | ...T(A4+TA6) faddd SINA3,%fp3 | ...A3+T(A5+TA7) faddx SINA2,%fp2 | ...A2+T(A4+TA6) fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7)) fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6)) faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7)) fmulx X(%a6),%fp0 | ...R'*S faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING |--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING fmulx %fp1,%fp0 | ...SIN(R')-R' |--FP1 RELEASED. fmovel %d1,%FPCR |restore users exceptions faddx X(%a6),%fp0 |last inst - possible exception set bra t_frcinx COSPOLY: |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY |--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE |--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS |--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) |--WHERE T=S*S. |--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION |--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 |--AND IS THEREFORE STORED AS SINGLE PRECISION. fmulx %fp0,%fp0 | ...FP0 IS S |---HIDE THE NEXT TWO WHILE WAITING FOR FP0 fmoved COSB8,%fp2 fmoved COSB7,%fp3 |--FP0 IS NOW READY fmovex %fp0,%fp1 fmulx %fp1,%fp1 | ...FP1 IS T |--HIDE THE NEXT TWO WHILE WAITING FOR FP1 fmovex %fp0,X(%a6) | ...X IS S rorl #1,%d0 andil #0x80000000,%d0 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION fmulx %fp1,%fp2 | ...TB8 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S andil #0x80000000,%d0 fmulx %fp1,%fp3 | ...TB7 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE movel %d0,POSNEG1(%a6) faddd COSB6,%fp2 | ...B6+TB8 faddd COSB5,%fp3 | ...B5+TB7 fmulx %fp1,%fp2 | ...T(B6+TB8) fmulx %fp1,%fp3 | ...T(B5+TB7) faddd COSB4,%fp2 | ...B4+T(B6+TB8) faddx COSB3,%fp3 | ...B3+T(B5+TB7) fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8)) fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7)) faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8)) fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7)) fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8))) |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING |--FP2 RELEASED. faddx %fp1,%fp0 |--FP1 RELEASED fmulx X(%a6),%fp0 fmovel %d1,%FPCR |restore users exceptions fadds POSNEG1(%a6),%fp0 |last inst - possible exception set bra t_frcinx SINBORS: |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |--IF |X| < 2**(-40), RETURN X OR 1. cmpil #0x3FFF8000,%d0 bgts REDUCEX SINSM: movel ADJN(%a6),%d0 cmpil #0,%d0 bgts COSTINY SINTINY: movew #0x0000,XDCARE(%a6) | ...JUST IN CASE fmovel %d1,%FPCR |restore users exceptions fmovex X(%a6),%fp0 |last inst - possible exception set bra t_frcinx COSTINY: fmoves #0x3F800000,%fp0 fmovel %d1,%FPCR |restore users exceptions fsubs #0x00800000,%fp0 |last inst - possible exception set bra t_frcinx REDUCEX: |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5 movel %d2,-(%a7) fmoves #0x00000000,%fp1 |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |--there is a danger of unwanted overflow in first LOOP iteration. In this |--case, reduce argument by one remainder step to make subsequent reduction |--safe. cmpil #0x7ffeffff,%d0 |is argument dangerously large? bnes LOOP movel #0x7ffe0000,FP_SCR2(%a6) |yes | ;create 2**16383*PI/2 movel #0xc90fdaa2,FP_SCR2+4(%a6) clrl FP_SCR2+8(%a6) ftstx %fp0 |test sign of argument movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383* | ;PI/2 at FP_SCR3 movel #0x85a308d3,FP_SCR3+4(%a6) clrl FP_SCR3+8(%a6) fblt red_neg orw #0x8000,FP_SCR2(%a6) |positive arg orw #0x8000,FP_SCR3(%a6) red_neg: faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact fmovex %fp0,%fp1 |save high result in fp1 faddx FP_SCR3(%a6),%fp0 |low part of reduction fsubx %fp0,%fp1 |determine low component of result faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument. |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |--integer quotient will be stored in N |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) LOOP: fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2 movew INARG(%a6),%d0 movel %d0,%a1 | ...save a copy of D0 andil #0x00007FFF,%d0 subil #0x00003FFF,%d0 | ...D0 IS K cmpil #28,%d0 bles LASTLOOP CONTLOOP: subil #27,%d0 | ...D0 IS L := K-27 movel #0,ENDFLAG(%a6) bras WORK LASTLOOP: clrl %d0 | ...D0 IS L := 0 movel #1,ENDFLAG(%a6) WORK: |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |--2**L * (PIby2_1), 2**L * (PIby2_2) movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI) movel #0xA2F9836E,FP_SCR1+4(%a6) movel #0x4E44152A,FP_SCR1+8(%a6) movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI) fmovex %fp0,%fp2 fmulx FP_SCR1(%a6),%fp2 |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |--US THE DESIRED VALUE IN FLOATING POINT. |--HIDE SIX CYCLES OF INSTRUCTION movel %a1,%d2 swap %d2 andil #0x80000000,%d2 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL movel %d2,TWOTO63(%a6) movel %d0,%d2 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2) |--FP2 IS READY fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 movew %d2,FP_SCR2(%a6) clrw FP_SCR2+2(%a6) movel #0xC90FDAA2,FP_SCR2+4(%a6) clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1 |--FP2 IS READY fsubs TWOTO63(%a6),%fp2 | ...FP2 is N addil #0x00003FDD,%d0 movew %d0,FP_SCR3(%a6) clrw FP_SCR3+2(%a6) movel #0x85A308D3,FP_SCR3+4(%a6) clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2 movel ENDFLAG(%a6),%d0 |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |--P2 = 2**(L) * Piby2_2 fmovex %fp2,%fp4 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1 fmovex %fp2,%fp5 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2 fmovex %fp4,%fp3 |--we want P+p = W+w but |p| <= half ulp of P |--Then, we need to compute A := R-P and a := r-p faddx %fp5,%fp3 | ...FP3 is P fsubx %fp3,%fp4 | ...W-P fsubx %fp3,%fp0 | ...FP0 is A := R - P faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w fmovex %fp0,%fp3 | ...FP3 A fsubx %fp4,%fp1 | ...FP1 is a := r - p |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |--|r| <= half ulp of R. faddx %fp1,%fp0 | ...FP0 is R := A+a |--No need to calculate r if this is the last loop cmpil #0,%d0 bgt RESTORE |--Need to calculate r fsubx %fp0,%fp3 | ...A-R faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a bra LOOP RESTORE: fmovel %fp2,N(%a6) movel (%a7)+,%d2 fmovemx (%a7)+,%fp2-%fp5 movel ADJN(%a6),%d0 cmpil #4,%d0 blt SINCONT bras SCCONT .global ssincosd ssincosd: |--SIN AND COS OF X FOR DENORMALIZED X fmoves #0x3F800000,%fp1 bsr sto_cos |store cosine result bra t_extdnrm .global ssincos ssincos: |--SET ADJN TO 4 movel #4,ADJN(%a6) fmovex (%a0),%fp0 | ...LOAD INPUT movel (%a0),%d0 movew 4(%a0),%d0 fmovex %fp0,X(%a6) andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? bges SCOK1 bra SCSM SCOK1: cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? blts SCMAIN bra REDUCEX SCMAIN: |--THIS IS THE USUAL CASE, |X| <= 15 PI. |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. fmovex %fp0,%fp1 fmuld TWOBYPI,%fp1 | ...X*2/PI |--HIDE THE NEXT THREE INSTRUCTIONS lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 |--FP1 IS NOW READY fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER movel N(%a6),%d0 asll #4,%d0 addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2 fsubx (%a1)+,%fp0 | ...X-Y1 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 SCCONT: |--continuation point from REDUCEX |--HIDE THE NEXT TWO movel N(%a6),%d0 rorl #1,%d0 cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD bge NEVEN NODD: |--REGISTERS SAVED SO FAR: D0, A0, FP2. fmovex %fp0,RPRIME(%a6) fmulx %fp0,%fp0 | ...FP0 IS S = R*R fmoved SINA7,%fp1 | ...A7 fmoved COSB8,%fp2 | ...B8 fmulx %fp0,%fp1 | ...SA7 movel %d2,-(%a7) movel %d0,%d2 fmulx %fp0,%fp2 | ...SB8 rorl #1,%d2 andil #0x80000000,%d2 faddd SINA6,%fp1 | ...A6+SA7 eorl %d0,%d2 andil #0x80000000,%d2 faddd COSB7,%fp2 | ...B7+SB8 fmulx %fp0,%fp1 | ...S(A6+SA7) eorl %d2,RPRIME(%a6) movel (%a7)+,%d2 fmulx %fp0,%fp2 | ...S(B7+SB8) rorl #1,%d0 andil #0x80000000,%d0 faddd SINA5,%fp1 | ...A5+S(A6+SA7) movel #0x3F800000,POSNEG1(%a6) eorl %d0,POSNEG1(%a6) faddd COSB6,%fp2 | ...B6+S(B7+SB8) fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7)) fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8)) fmovex %fp0,SPRIME(%a6) faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7)) eorl %d0,SPRIME(%a6) faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8)) fmulx %fp0,%fp1 | ...S(A4+...) fmulx %fp0,%fp2 | ...S(B5+...) faddd SINA3,%fp1 | ...A3+S(A4+...) faddd COSB4,%fp2 | ...B4+S(B5+...) fmulx %fp0,%fp1 | ...S(A3+...) fmulx %fp0,%fp2 | ...S(B4+...) faddx SINA2,%fp1 | ...A2+S(A3+...) faddx COSB3,%fp2 | ...B3+S(B4+...) fmulx %fp0,%fp1 | ...S(A2+...) fmulx %fp0,%fp2 | ...S(B3+...) faddx SINA1,%fp1 | ...A1+S(A2+...) faddx COSB2,%fp2 | ...B2+S(B3+...) fmulx %fp0,%fp1 | ...S(A1+...) fmulx %fp2,%fp0 | ...S(B2+...) fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...) fadds COSB1,%fp0 | ...B1+S(B2...) fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...)) movel %d1,-(%sp) |restore users mode & precision andil #0xff,%d1 |mask off all exceptions fmovel %d1,%FPCR faddx RPRIME(%a6),%fp1 | ...COS(X) bsr sto_cos |store cosine result fmovel (%sp)+,%FPCR |restore users exceptions fadds POSNEG1(%a6),%fp0 | ...SIN(X) bra t_frcinx NEVEN: |--REGISTERS SAVED SO FAR: FP2. fmovex %fp0,RPRIME(%a6) fmulx %fp0,%fp0 | ...FP0 IS S = R*R fmoved COSB8,%fp1 | ...B8 fmoved SINA7,%fp2 | ...A7 fmulx %fp0,%fp1 | ...SB8 fmovex %fp0,SPRIME(%a6) fmulx %fp0,%fp2 | ...SA7 rorl #1,%d0 andil #0x80000000,%d0 faddd COSB7,%fp1 | ...B7+SB8 faddd SINA6,%fp2 | ...A6+SA7 eorl %d0,RPRIME(%a6) eorl %d0,SPRIME(%a6) fmulx %fp0,%fp1 | ...S(B7+SB8) oril #0x3F800000,%d0 movel %d0,POSNEG1(%a6) fmulx %fp0,%fp2 | ...S(A6+SA7) faddd COSB6,%fp1 | ...B6+S(B7+SB8) faddd SINA5,%fp2 | ...A5+S(A6+SA7) fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8)) fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7)) faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8)) faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7)) fmulx %fp0,%fp1 | ...S(B5+...) fmulx %fp0,%fp2 | ...S(A4+...) faddd COSB4,%fp1 | ...B4+S(B5+...) faddd SINA3,%fp2 | ...A3+S(A4+...) fmulx %fp0,%fp1 | ...S(B4+...) fmulx %fp0,%fp2 | ...S(A3+...) faddx COSB3,%fp1 | ...B3+S(B4+...) faddx SINA2,%fp2 | ...A2+S(A3+...) fmulx %fp0,%fp1 | ...S(B3+...) fmulx %fp0,%fp2 | ...S(A2+...) faddx COSB2,%fp1 | ...B2+S(B3+...) faddx SINA1,%fp2 | ...A1+S(A2+...) fmulx %fp0,%fp1 | ...S(B2+...) fmulx %fp2,%fp0 | ...s(a1+...) fadds COSB1,%fp1 | ...B1+S(B2...) fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...) fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...)) movel %d1,-(%sp) |save users mode & precision andil #0xff,%d1 |mask off all exceptions fmovel %d1,%FPCR fadds POSNEG1(%a6),%fp1 | ...COS(X) bsr sto_cos |store cosine result fmovel (%sp)+,%FPCR |restore users exceptions faddx RPRIME(%a6),%fp0 | ...SIN(X) bra t_frcinx SCBORS: cmpil #0x3FFF8000,%d0 bgt REDUCEX SCSM: movew #0x0000,XDCARE(%a6) fmoves #0x3F800000,%fp1 movel %d1,-(%sp) |save users mode & precision andil #0xff,%d1 |mask off all exceptions fmovel %d1,%FPCR fsubs #0x00800000,%fp1 bsr sto_cos |store cosine result fmovel (%sp)+,%FPCR |restore users exceptions fmovex X(%a6),%fp0 bra t_frcinx |end |