Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 | /* * PPC Huge TLB Page Support for Kernel. * * Copyright (C) 2003 David Gibson, IBM Corporation. * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor * * Based on the IA-32 version: * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> */ #include <linux/mm.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/hugetlb.h> #include <linux/export.h> #include <linux/of_fdt.h> #include <linux/memblock.h> #include <linux/bootmem.h> #include <linux/moduleparam.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/tlb.h> #include <asm/setup.h> #include <asm/hugetlb.h> #ifdef CONFIG_HUGETLB_PAGE #define PAGE_SHIFT_64K 16 #define PAGE_SHIFT_16M 24 #define PAGE_SHIFT_16G 34 unsigned int HPAGE_SHIFT; /* * Tracks gpages after the device tree is scanned and before the * huge_boot_pages list is ready. On non-Freescale implementations, this is * just used to track 16G pages and so is a single array. FSL-based * implementations may have more than one gpage size, so we need multiple * arrays */ #ifdef CONFIG_PPC_FSL_BOOK3E #define MAX_NUMBER_GPAGES 128 struct psize_gpages { u64 gpage_list[MAX_NUMBER_GPAGES]; unsigned int nr_gpages; }; static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; #else #define MAX_NUMBER_GPAGES 1024 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; static unsigned nr_gpages; #endif #define hugepd_none(hpd) ((hpd).pd == 0) #ifdef CONFIG_PPC_BOOK3S_64 /* * At this point we do the placement change only for BOOK3S 64. This would * possibly work on other subarchs. */ /* * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; */ int pmd_huge(pmd_t pmd) { /* * leaf pte for huge page, bottom two bits != 00 */ return ((pmd_val(pmd) & 0x3) != 0x0); } int pud_huge(pud_t pud) { /* * leaf pte for huge page, bottom two bits != 00 */ return ((pud_val(pud) & 0x3) != 0x0); } int pgd_huge(pgd_t pgd) { /* * leaf pte for huge page, bottom two bits != 00 */ return ((pgd_val(pgd) & 0x3) != 0x0); } #else int pmd_huge(pmd_t pmd) { return 0; } int pud_huge(pud_t pud) { return 0; } int pgd_huge(pgd_t pgd) { return 0; } #endif pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { /* Only called for hugetlbfs pages, hence can ignore THP */ return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); } static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, unsigned long address, unsigned pdshift, unsigned pshift) { struct kmem_cache *cachep; pte_t *new; #ifdef CONFIG_PPC_FSL_BOOK3E int i; int num_hugepd = 1 << (pshift - pdshift); cachep = hugepte_cache; #else cachep = PGT_CACHE(pdshift - pshift); #endif new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); BUG_ON(pshift > HUGEPD_SHIFT_MASK); BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); if (! new) return -ENOMEM; spin_lock(&mm->page_table_lock); #ifdef CONFIG_PPC_FSL_BOOK3E /* * We have multiple higher-level entries that point to the same * actual pte location. Fill in each as we go and backtrack on error. * We need all of these so the DTLB pgtable walk code can find the * right higher-level entry without knowing if it's a hugepage or not. */ for (i = 0; i < num_hugepd; i++, hpdp++) { if (unlikely(!hugepd_none(*hpdp))) break; else /* We use the old format for PPC_FSL_BOOK3E */ hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; } /* If we bailed from the for loop early, an error occurred, clean up */ if (i < num_hugepd) { for (i = i - 1 ; i >= 0; i--, hpdp--) hpdp->pd = 0; kmem_cache_free(cachep, new); } #else if (!hugepd_none(*hpdp)) kmem_cache_free(cachep, new); else { #ifdef CONFIG_PPC_BOOK3S_64 hpdp->pd = (unsigned long)new | (shift_to_mmu_psize(pshift) << 2); #else hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; #endif } #endif spin_unlock(&mm->page_table_lock); return 0; } /* * These macros define how to determine which level of the page table holds * the hpdp. */ #ifdef CONFIG_PPC_FSL_BOOK3E #define HUGEPD_PGD_SHIFT PGDIR_SHIFT #define HUGEPD_PUD_SHIFT PUD_SHIFT #else #define HUGEPD_PGD_SHIFT PUD_SHIFT #define HUGEPD_PUD_SHIFT PMD_SHIFT #endif #ifdef CONFIG_PPC_BOOK3S_64 /* * At this point we do the placement change only for BOOK3S 64. This would * possibly work on other subarchs. */ pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pg; pud_t *pu; pmd_t *pm; hugepd_t *hpdp = NULL; unsigned pshift = __ffs(sz); unsigned pdshift = PGDIR_SHIFT; addr &= ~(sz-1); pg = pgd_offset(mm, addr); if (pshift == PGDIR_SHIFT) /* 16GB huge page */ return (pte_t *) pg; else if (pshift > PUD_SHIFT) /* * We need to use hugepd table */ hpdp = (hugepd_t *)pg; else { pdshift = PUD_SHIFT; pu = pud_alloc(mm, pg, addr); if (pshift == PUD_SHIFT) return (pte_t *)pu; else if (pshift > PMD_SHIFT) hpdp = (hugepd_t *)pu; else { pdshift = PMD_SHIFT; pm = pmd_alloc(mm, pu, addr); if (pshift == PMD_SHIFT) /* 16MB hugepage */ return (pte_t *)pm; else hpdp = (hugepd_t *)pm; } } if (!hpdp) return NULL; BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) return NULL; return hugepte_offset(hpdp, addr, pdshift); } #else pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pg; pud_t *pu; pmd_t *pm; hugepd_t *hpdp = NULL; unsigned pshift = __ffs(sz); unsigned pdshift = PGDIR_SHIFT; addr &= ~(sz-1); pg = pgd_offset(mm, addr); if (pshift >= HUGEPD_PGD_SHIFT) { hpdp = (hugepd_t *)pg; } else { pdshift = PUD_SHIFT; pu = pud_alloc(mm, pg, addr); if (pshift >= HUGEPD_PUD_SHIFT) { hpdp = (hugepd_t *)pu; } else { pdshift = PMD_SHIFT; pm = pmd_alloc(mm, pu, addr); hpdp = (hugepd_t *)pm; } } if (!hpdp) return NULL; BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) return NULL; return hugepte_offset(hpdp, addr, pdshift); } #endif #ifdef CONFIG_PPC_FSL_BOOK3E /* Build list of addresses of gigantic pages. This function is used in early * boot before the buddy or bootmem allocator is setup. */ void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) { unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); int i; if (addr == 0) return; gpage_freearray[idx].nr_gpages = number_of_pages; for (i = 0; i < number_of_pages; i++) { gpage_freearray[idx].gpage_list[i] = addr; addr += page_size; } } /* * Moves the gigantic page addresses from the temporary list to the * huge_boot_pages list. */ int alloc_bootmem_huge_page(struct hstate *hstate) { struct huge_bootmem_page *m; int idx = shift_to_mmu_psize(huge_page_shift(hstate)); int nr_gpages = gpage_freearray[idx].nr_gpages; if (nr_gpages == 0) return 0; #ifdef CONFIG_HIGHMEM /* * If gpages can be in highmem we can't use the trick of storing the * data structure in the page; allocate space for this */ m = alloc_bootmem(sizeof(struct huge_bootmem_page)); m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; #else m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); #endif list_add(&m->list, &huge_boot_pages); gpage_freearray[idx].nr_gpages = nr_gpages; gpage_freearray[idx].gpage_list[nr_gpages] = 0; m->hstate = hstate; return 1; } /* * Scan the command line hugepagesz= options for gigantic pages; store those in * a list that we use to allocate the memory once all options are parsed. */ unsigned long gpage_npages[MMU_PAGE_COUNT]; static int __init do_gpage_early_setup(char *param, char *val, const char *unused) { static phys_addr_t size; unsigned long npages; /* * The hugepagesz and hugepages cmdline options are interleaved. We * use the size variable to keep track of whether or not this was done * properly and skip over instances where it is incorrect. Other * command-line parsing code will issue warnings, so we don't need to. * */ if ((strcmp(param, "default_hugepagesz") == 0) || (strcmp(param, "hugepagesz") == 0)) { size = memparse(val, NULL); } else if (strcmp(param, "hugepages") == 0) { if (size != 0) { if (sscanf(val, "%lu", &npages) <= 0) npages = 0; gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; size = 0; } } return 0; } /* * This function allocates physical space for pages that are larger than the * buddy allocator can handle. We want to allocate these in highmem because * the amount of lowmem is limited. This means that this function MUST be * called before lowmem_end_addr is set up in MMU_init() in order for the lmb * allocate to grab highmem. */ void __init reserve_hugetlb_gpages(void) { static __initdata char cmdline[COMMAND_LINE_SIZE]; phys_addr_t size, base; int i; strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, &do_gpage_early_setup); /* * Walk gpage list in reverse, allocating larger page sizes first. * Skip over unsupported sizes, or sizes that have 0 gpages allocated. * When we reach the point in the list where pages are no longer * considered gpages, we're done. */ for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) continue; else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) break; size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); base = memblock_alloc_base(size * gpage_npages[i], size, MEMBLOCK_ALLOC_ANYWHERE); add_gpage(base, size, gpage_npages[i]); } } #else /* !PPC_FSL_BOOK3E */ /* Build list of addresses of gigantic pages. This function is used in early * boot before the buddy or bootmem allocator is setup. */ void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) { if (!addr) return; while (number_of_pages > 0) { gpage_freearray[nr_gpages] = addr; nr_gpages++; number_of_pages--; addr += page_size; } } /* Moves the gigantic page addresses from the temporary list to the * huge_boot_pages list. */ int alloc_bootmem_huge_page(struct hstate *hstate) { struct huge_bootmem_page *m; if (nr_gpages == 0) return 0; m = phys_to_virt(gpage_freearray[--nr_gpages]); gpage_freearray[nr_gpages] = 0; list_add(&m->list, &huge_boot_pages); m->hstate = hstate; return 1; } #endif int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) { return 0; } #ifdef CONFIG_PPC_FSL_BOOK3E #define HUGEPD_FREELIST_SIZE \ ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) struct hugepd_freelist { struct rcu_head rcu; unsigned int index; void *ptes[0]; }; static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); static void hugepd_free_rcu_callback(struct rcu_head *head) { struct hugepd_freelist *batch = container_of(head, struct hugepd_freelist, rcu); unsigned int i; for (i = 0; i < batch->index; i++) kmem_cache_free(hugepte_cache, batch->ptes[i]); free_page((unsigned long)batch); } static void hugepd_free(struct mmu_gather *tlb, void *hugepte) { struct hugepd_freelist **batchp; batchp = &get_cpu_var(hugepd_freelist_cur); if (atomic_read(&tlb->mm->mm_users) < 2 || cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))) { kmem_cache_free(hugepte_cache, hugepte); put_cpu_var(hugepd_freelist_cur); return; } if (*batchp == NULL) { *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); (*batchp)->index = 0; } (*batchp)->ptes[(*batchp)->index++] = hugepte; if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); *batchp = NULL; } put_cpu_var(hugepd_freelist_cur); } #endif static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, unsigned long start, unsigned long end, unsigned long floor, unsigned long ceiling) { pte_t *hugepte = hugepd_page(*hpdp); int i; unsigned long pdmask = ~((1UL << pdshift) - 1); unsigned int num_hugepd = 1; #ifdef CONFIG_PPC_FSL_BOOK3E /* Note: On fsl the hpdp may be the first of several */ num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); #else unsigned int shift = hugepd_shift(*hpdp); #endif start &= pdmask; if (start < floor) return; if (ceiling) { ceiling &= pdmask; if (! ceiling) return; } if (end - 1 > ceiling - 1) return; for (i = 0; i < num_hugepd; i++, hpdp++) hpdp->pd = 0; tlb->need_flush = 1; #ifdef CONFIG_PPC_FSL_BOOK3E hugepd_free(tlb, hugepte); #else pgtable_free_tlb(tlb, hugepte, pdshift - shift); #endif } static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; do { pmd = pmd_offset(pud, addr); next = pmd_addr_end(addr, end); if (!is_hugepd(pmd)) { /* * if it is not hugepd pointer, we should already find * it cleared. */ WARN_ON(!pmd_none_or_clear_bad(pmd)); continue; } #ifdef CONFIG_PPC_FSL_BOOK3E /* * Increment next by the size of the huge mapping since * there may be more than one entry at this level for a * single hugepage, but all of them point to * the same kmem cache that holds the hugepte. */ next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); #endif free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, addr, next, floor, ceiling); } while (addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); } static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; do { pud = pud_offset(pgd, addr); next = pud_addr_end(addr, end); if (!is_hugepd(pud)) { if (pud_none_or_clear_bad(pud)) continue; hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling); } else { #ifdef CONFIG_PPC_FSL_BOOK3E /* * Increment next by the size of the huge mapping since * there may be more than one entry at this level for a * single hugepage, but all of them point to * the same kmem cache that holds the hugepte. */ next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); #endif free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, addr, next, floor, ceiling); } } while (addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(pgd, start); pgd_clear(pgd); pud_free_tlb(tlb, pud, start); } /* * This function frees user-level page tables of a process. */ void hugetlb_free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * Because there are a number of different possible pagetable * layouts for hugepage ranges, we limit knowledge of how * things should be laid out to the allocation path * (huge_pte_alloc(), above). Everything else works out the * structure as it goes from information in the hugepd * pointers. That means that we can't here use the * optimization used in the normal page free_pgd_range(), of * checking whether we're actually covering a large enough * range to have to do anything at the top level of the walk * instead of at the bottom. * * To make sense of this, you should probably go read the big * block comment at the top of the normal free_pgd_range(), * too. */ do { next = pgd_addr_end(addr, end); pgd = pgd_offset(tlb->mm, addr); if (!is_hugepd(pgd)) { if (pgd_none_or_clear_bad(pgd)) continue; hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); } else { #ifdef CONFIG_PPC_FSL_BOOK3E /* * Increment next by the size of the huge mapping since * there may be more than one entry at the pgd level * for a single hugepage, but all of them point to the * same kmem cache that holds the hugepte. */ next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); #endif free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, addr, next, floor, ceiling); } } while (addr = next, addr != end); } struct page * follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { pte_t *ptep; struct page *page; unsigned shift; unsigned long mask; /* * Transparent hugepages are handled by generic code. We can skip them * here. */ ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); /* Verify it is a huge page else bail. */ if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep)) return ERR_PTR(-EINVAL); mask = (1UL << shift) - 1; page = pte_page(*ptep); if (page) page += (address & mask) / PAGE_SIZE; return page; } struct page * follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) { BUG(); return NULL; } static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, unsigned long sz) { unsigned long __boundary = (addr + sz) & ~(sz-1); return (__boundary - 1 < end - 1) ? __boundary : end; } int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { pte_t *ptep; unsigned long sz = 1UL << hugepd_shift(*hugepd); unsigned long next; ptep = hugepte_offset(hugepd, addr, pdshift); do { next = hugepte_addr_end(addr, end, sz); if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) return 0; } while (ptep++, addr = next, addr != end); return 1; } #ifdef CONFIG_PPC_MM_SLICES unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *hstate = hstate_file(file); int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); } #endif unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { #ifdef CONFIG_PPC_MM_SLICES unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); return 1UL << mmu_psize_to_shift(psize); #else if (!is_vm_hugetlb_page(vma)) return PAGE_SIZE; return huge_page_size(hstate_vma(vma)); #endif } static inline bool is_power_of_4(unsigned long x) { if (is_power_of_2(x)) return (__ilog2(x) % 2) ? false : true; return false; } static int __init add_huge_page_size(unsigned long long size) { int shift = __ffs(size); int mmu_psize; /* Check that it is a page size supported by the hardware and * that it fits within pagetable and slice limits. */ #ifdef CONFIG_PPC_FSL_BOOK3E if ((size < PAGE_SIZE) || !is_power_of_4(size)) return -EINVAL; #else if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) return -EINVAL; #endif if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) return -EINVAL; #ifdef CONFIG_SPU_FS_64K_LS /* Disable support for 64K huge pages when 64K SPU local store * support is enabled as the current implementation conflicts. */ if (shift == PAGE_SHIFT_64K) return -EINVAL; #endif /* CONFIG_SPU_FS_64K_LS */ BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); /* Return if huge page size has already been setup */ if (size_to_hstate(size)) return 0; hugetlb_add_hstate(shift - PAGE_SHIFT); return 0; } static int __init hugepage_setup_sz(char *str) { unsigned long long size; size = memparse(str, &str); if (add_huge_page_size(size) != 0) printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); return 1; } __setup("hugepagesz=", hugepage_setup_sz); #ifdef CONFIG_PPC_FSL_BOOK3E struct kmem_cache *hugepte_cache; static int __init hugetlbpage_init(void) { int psize; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { unsigned shift; if (!mmu_psize_defs[psize].shift) continue; shift = mmu_psize_to_shift(psize); /* Don't treat normal page sizes as huge... */ if (shift != PAGE_SHIFT) if (add_huge_page_size(1ULL << shift) < 0) continue; } /* * Create a kmem cache for hugeptes. The bottom bits in the pte have * size information encoded in them, so align them to allow this */ hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), HUGEPD_SHIFT_MASK + 1, 0, NULL); if (hugepte_cache == NULL) panic("%s: Unable to create kmem cache for hugeptes\n", __func__); /* Default hpage size = 4M */ if (mmu_psize_defs[MMU_PAGE_4M].shift) HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; else panic("%s: Unable to set default huge page size\n", __func__); return 0; } #else static int __init hugetlbpage_init(void) { int psize; if (!mmu_has_feature(MMU_FTR_16M_PAGE)) return -ENODEV; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { unsigned shift; unsigned pdshift; if (!mmu_psize_defs[psize].shift) continue; shift = mmu_psize_to_shift(psize); if (add_huge_page_size(1ULL << shift) < 0) continue; if (shift < PMD_SHIFT) pdshift = PMD_SHIFT; else if (shift < PUD_SHIFT) pdshift = PUD_SHIFT; else pdshift = PGDIR_SHIFT; /* * if we have pdshift and shift value same, we don't * use pgt cache for hugepd. */ if (pdshift != shift) { pgtable_cache_add(pdshift - shift, NULL); if (!PGT_CACHE(pdshift - shift)) panic("hugetlbpage_init(): could not create " "pgtable cache for %d bit pagesize\n", shift); } } /* Set default large page size. Currently, we pick 16M or 1M * depending on what is available */ if (mmu_psize_defs[MMU_PAGE_16M].shift) HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; else if (mmu_psize_defs[MMU_PAGE_1M].shift) HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; return 0; } #endif module_init(hugetlbpage_init); void flush_dcache_icache_hugepage(struct page *page) { int i; void *start; BUG_ON(!PageCompound(page)); for (i = 0; i < (1UL << compound_order(page)); i++) { if (!PageHighMem(page)) { __flush_dcache_icache(page_address(page+i)); } else { start = kmap_atomic(page+i); __flush_dcache_icache(start); kunmap_atomic(start); } } } #endif /* CONFIG_HUGETLB_PAGE */ /* * We have 4 cases for pgds and pmds: * (1) invalid (all zeroes) * (2) pointer to next table, as normal; bottom 6 bits == 0 * (3) leaf pte for huge page, bottom two bits != 00 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table * * So long as we atomically load page table pointers we are safe against teardown, * we can follow the address down to the the page and take a ref on it. */ pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) { pgd_t pgd, *pgdp; pud_t pud, *pudp; pmd_t pmd, *pmdp; pte_t *ret_pte; hugepd_t *hpdp = NULL; unsigned pdshift = PGDIR_SHIFT; if (shift) *shift = 0; pgdp = pgdir + pgd_index(ea); pgd = ACCESS_ONCE(*pgdp); /* * Always operate on the local stack value. This make sure the * value don't get updated by a parallel THP split/collapse, * page fault or a page unmap. The return pte_t * is still not * stable. So should be checked there for above conditions. */ if (pgd_none(pgd)) return NULL; else if (pgd_huge(pgd)) { ret_pte = (pte_t *) pgdp; goto out; } else if (is_hugepd(&pgd)) hpdp = (hugepd_t *)&pgd; else { /* * Even if we end up with an unmap, the pgtable will not * be freed, because we do an rcu free and here we are * irq disabled */ pdshift = PUD_SHIFT; pudp = pud_offset(&pgd, ea); pud = ACCESS_ONCE(*pudp); if (pud_none(pud)) return NULL; else if (pud_huge(pud)) { ret_pte = (pte_t *) pudp; goto out; } else if (is_hugepd(&pud)) hpdp = (hugepd_t *)&pud; else { pdshift = PMD_SHIFT; pmdp = pmd_offset(&pud, ea); pmd = ACCESS_ONCE(*pmdp); /* * A hugepage collapse is captured by pmd_none, because * it mark the pmd none and do a hpte invalidate. * * A hugepage split is captured by pmd_trans_splitting * because we mark the pmd trans splitting and do a * hpte invalidate * */ if (pmd_none(pmd) || pmd_trans_splitting(pmd)) return NULL; if (pmd_huge(pmd) || pmd_large(pmd)) { ret_pte = (pte_t *) pmdp; goto out; } else if (is_hugepd(&pmd)) hpdp = (hugepd_t *)&pmd; else return pte_offset_kernel(&pmd, ea); } } if (!hpdp) return NULL; ret_pte = hugepte_offset(hpdp, ea, pdshift); pdshift = hugepd_shift(*hpdp); out: if (shift) *shift = pdshift; return ret_pte; } EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long mask; unsigned long pte_end; struct page *head, *page, *tail; pte_t pte; int refs; pte_end = (addr + sz) & ~(sz-1); if (pte_end < end) end = pte_end; pte = ACCESS_ONCE(*ptep); mask = _PAGE_PRESENT | _PAGE_USER; if (write) mask |= _PAGE_RW; if ((pte_val(pte) & mask) != mask) return 0; #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * check for splitting here */ if (pmd_trans_splitting(pte_pmd(pte))) return 0; #endif /* hugepages are never "special" */ VM_BUG_ON(!pfn_valid(pte_pfn(pte))); refs = 0; head = pte_page(pte); page = head + ((addr & (sz-1)) >> PAGE_SHIFT); tail = page; do { VM_BUG_ON(compound_head(page) != head); pages[*nr] = page; (*nr)++; page++; refs++; } while (addr += PAGE_SIZE, addr != end); if (!page_cache_add_speculative(head, refs)) { *nr -= refs; return 0; } if (unlikely(pte_val(pte) != pte_val(*ptep))) { /* Could be optimized better */ *nr -= refs; while (refs--) put_page(head); return 0; } /* * Any tail page need their mapcount reference taken before we * return. */ while (refs--) { if (PageTail(tail)) get_huge_page_tail(tail); tail++; } return 1; } |