Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | #include <linux/kernel.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/hugetlb.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/rmap.h> #include <linux/swap.h> #include <linux/swapops.h> #include "internal.h" static struct page *no_page_table(struct vm_area_struct *vma, unsigned int flags) { /* * When core dumping an enormous anonymous area that nobody * has touched so far, we don't want to allocate unnecessary pages or * page tables. Return error instead of NULL to skip handle_mm_fault, * then get_dump_page() will return NULL to leave a hole in the dump. * But we can only make this optimization where a hole would surely * be zero-filled if handle_mm_fault() actually did handle it. */ if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) return ERR_PTR(-EFAULT); return NULL; } static struct page *follow_page_pte(struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags) { struct mm_struct *mm = vma->vm_mm; struct page *page; spinlock_t *ptl; pte_t *ptep, pte; retry: if (unlikely(pmd_bad(*pmd))) return no_page_table(vma, flags); ptep = pte_offset_map_lock(mm, pmd, address, &ptl); pte = *ptep; if (!pte_present(pte)) { swp_entry_t entry; /* * KSM's break_ksm() relies upon recognizing a ksm page * even while it is being migrated, so for that case we * need migration_entry_wait(). */ if (likely(!(flags & FOLL_MIGRATION))) goto no_page; if (pte_none(pte) || pte_file(pte)) goto no_page; entry = pte_to_swp_entry(pte); if (!is_migration_entry(entry)) goto no_page; pte_unmap_unlock(ptep, ptl); migration_entry_wait(mm, pmd, address); goto retry; } if ((flags & FOLL_NUMA) && pte_numa(pte)) goto no_page; if ((flags & FOLL_WRITE) && !pte_write(pte)) { pte_unmap_unlock(ptep, ptl); return NULL; } page = vm_normal_page(vma, address, pte); if (unlikely(!page)) { if ((flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(pte))) goto bad_page; page = pte_page(pte); } if (flags & FOLL_GET) get_page_foll(page); if (flags & FOLL_TOUCH) { if ((flags & FOLL_WRITE) && !pte_dirty(pte) && !PageDirty(page)) set_page_dirty(page); /* * pte_mkyoung() would be more correct here, but atomic care * is needed to avoid losing the dirty bit: it is easier to use * mark_page_accessed(). */ mark_page_accessed(page); } if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { /* * The preliminary mapping check is mainly to avoid the * pointless overhead of lock_page on the ZERO_PAGE * which might bounce very badly if there is contention. * * If the page is already locked, we don't need to * handle it now - vmscan will handle it later if and * when it attempts to reclaim the page. */ if (page->mapping && trylock_page(page)) { lru_add_drain(); /* push cached pages to LRU */ /* * Because we lock page here, and migration is * blocked by the pte's page reference, and we * know the page is still mapped, we don't even * need to check for file-cache page truncation. */ mlock_vma_page(page); unlock_page(page); } } pte_unmap_unlock(ptep, ptl); return page; bad_page: pte_unmap_unlock(ptep, ptl); return ERR_PTR(-EFAULT); no_page: pte_unmap_unlock(ptep, ptl); if (!pte_none(pte)) return NULL; return no_page_table(vma, flags); } /** * follow_page_mask - look up a page descriptor from a user-virtual address * @vma: vm_area_struct mapping @address * @address: virtual address to look up * @flags: flags modifying lookup behaviour * @page_mask: on output, *page_mask is set according to the size of the page * * @flags can have FOLL_ flags set, defined in <linux/mm.h> * * Returns the mapped (struct page *), %NULL if no mapping exists, or * an error pointer if there is a mapping to something not represented * by a page descriptor (see also vm_normal_page()). */ struct page *follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned int *page_mask) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; spinlock_t *ptl; struct page *page; struct mm_struct *mm = vma->vm_mm; *page_mask = 0; page = follow_huge_addr(mm, address, flags & FOLL_WRITE); if (!IS_ERR(page)) { BUG_ON(flags & FOLL_GET); return page; } pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) return no_page_table(vma, flags); pud = pud_offset(pgd, address); if (pud_none(*pud)) return no_page_table(vma, flags); if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { page = follow_huge_pud(mm, address, pud, flags); if (page) return page; return no_page_table(vma, flags); } if (unlikely(pud_bad(*pud))) return no_page_table(vma, flags); pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return no_page_table(vma, flags); if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { page = follow_huge_pmd(mm, address, pmd, flags); if (page) return page; return no_page_table(vma, flags); } if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) return no_page_table(vma, flags); if (pmd_trans_huge(*pmd)) { if (flags & FOLL_SPLIT) { split_huge_page_pmd(vma, address, pmd); return follow_page_pte(vma, address, pmd, flags); } ptl = pmd_lock(mm, pmd); if (likely(pmd_trans_huge(*pmd))) { if (unlikely(pmd_trans_splitting(*pmd))) { spin_unlock(ptl); wait_split_huge_page(vma->anon_vma, pmd); } else { page = follow_trans_huge_pmd(vma, address, pmd, flags); spin_unlock(ptl); *page_mask = HPAGE_PMD_NR - 1; return page; } } else spin_unlock(ptl); } return follow_page_pte(vma, address, pmd, flags); } static int get_gate_page(struct mm_struct *mm, unsigned long address, unsigned int gup_flags, struct vm_area_struct **vma, struct page **page) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret = -EFAULT; /* user gate pages are read-only */ if (gup_flags & FOLL_WRITE) return -EFAULT; if (address > TASK_SIZE) pgd = pgd_offset_k(address); else pgd = pgd_offset_gate(mm, address); BUG_ON(pgd_none(*pgd)); pud = pud_offset(pgd, address); BUG_ON(pud_none(*pud)); pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return -EFAULT; VM_BUG_ON(pmd_trans_huge(*pmd)); pte = pte_offset_map(pmd, address); if (pte_none(*pte)) goto unmap; *vma = get_gate_vma(mm); if (!page) goto out; *page = vm_normal_page(*vma, address, *pte); if (!*page) { if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) goto unmap; *page = pte_page(*pte); } get_page(*page); out: ret = 0; unmap: pte_unmap(pte); return ret; } static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, unsigned long address, unsigned int *flags, int *nonblocking) { struct mm_struct *mm = vma->vm_mm; unsigned int fault_flags = 0; int ret; /* For mlock, just skip the stack guard page. */ if ((*flags & FOLL_MLOCK) && (stack_guard_page_start(vma, address) || stack_guard_page_end(vma, address + PAGE_SIZE))) return -ENOENT; if (*flags & FOLL_WRITE) fault_flags |= FAULT_FLAG_WRITE; if (nonblocking) fault_flags |= FAULT_FLAG_ALLOW_RETRY; if (*flags & FOLL_NOWAIT) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; ret = handle_mm_fault(mm, vma, address, fault_flags); if (ret & VM_FAULT_ERROR) { if (ret & VM_FAULT_OOM) return -ENOMEM; if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; BUG(); } if (tsk) { if (ret & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; } if (ret & VM_FAULT_RETRY) { if (nonblocking) *nonblocking = 0; return -EBUSY; } /* * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when * necessary, even if maybe_mkwrite decided not to set pte_write. We * can thus safely do subsequent page lookups as if they were reads. * But only do so when looping for pte_write is futile: in some cases * userspace may also be wanting to write to the gotten user page, * which a read fault here might prevent (a readonly page might get * reCOWed by userspace write). */ if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) *flags &= ~FOLL_WRITE; return 0; } static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) { vm_flags_t vm_flags = vma->vm_flags; if (vm_flags & (VM_IO | VM_PFNMAP)) return -EFAULT; if (gup_flags & FOLL_WRITE) { if (!(vm_flags & VM_WRITE)) { if (!(gup_flags & FOLL_FORCE)) return -EFAULT; /* * We used to let the write,force case do COW in a * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could * set a breakpoint in a read-only mapping of an * executable, without corrupting the file (yet only * when that file had been opened for writing!). * Anon pages in shared mappings are surprising: now * just reject it. */ if (!is_cow_mapping(vm_flags)) { WARN_ON_ONCE(vm_flags & VM_MAYWRITE); return -EFAULT; } } } else if (!(vm_flags & VM_READ)) { if (!(gup_flags & FOLL_FORCE)) return -EFAULT; /* * Is there actually any vma we can reach here which does not * have VM_MAYREAD set? */ if (!(vm_flags & VM_MAYREAD)) return -EFAULT; } return 0; } /** * __get_user_pages() - pin user pages in memory * @tsk: task_struct of target task * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. Or NULL, if caller * only intends to ensure the pages are faulted in. * @vmas: array of pointers to vmas corresponding to each page. * Or NULL if the caller does not require them. * @nonblocking: whether waiting for disk IO or mmap_sem contention * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. Each page returned must be released * with a put_page() call when it is finished with. vmas will only * remain valid while mmap_sem is held. * * Must be called with mmap_sem held for read or write. * * __get_user_pages walks a process's page tables and takes a reference to * each struct page that each user address corresponds to at a given * instant. That is, it takes the page that would be accessed if a user * thread accesses the given user virtual address at that instant. * * This does not guarantee that the page exists in the user mappings when * __get_user_pages returns, and there may even be a completely different * page there in some cases (eg. if mmapped pagecache has been invalidated * and subsequently re faulted). However it does guarantee that the page * won't be freed completely. And mostly callers simply care that the page * contains data that was valid *at some point in time*. Typically, an IO * or similar operation cannot guarantee anything stronger anyway because * locks can't be held over the syscall boundary. * * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If * the page is written to, set_page_dirty (or set_page_dirty_lock, as * appropriate) must be called after the page is finished with, and * before put_page is called. * * If @nonblocking != NULL, __get_user_pages will not wait for disk IO * or mmap_sem contention, and if waiting is needed to pin all pages, * *@nonblocking will be set to 0. * * In most cases, get_user_pages or get_user_pages_fast should be used * instead of __get_user_pages. __get_user_pages should be used only if * you need some special @gup_flags. */ long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *nonblocking) { long i = 0; unsigned int page_mask; struct vm_area_struct *vma = NULL; if (!nr_pages) return 0; VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); /* * If FOLL_FORCE is set then do not force a full fault as the hinting * fault information is unrelated to the reference behaviour of a task * using the address space */ if (!(gup_flags & FOLL_FORCE)) gup_flags |= FOLL_NUMA; do { struct page *page; unsigned int foll_flags = gup_flags; unsigned int page_increm; /* first iteration or cross vma bound */ if (!vma || start >= vma->vm_end) { vma = find_extend_vma(mm, start); if (!vma && in_gate_area(mm, start)) { int ret; ret = get_gate_page(mm, start & PAGE_MASK, gup_flags, &vma, pages ? &pages[i] : NULL); if (ret) return i ? : ret; page_mask = 0; goto next_page; } if (!vma || check_vma_flags(vma, gup_flags)) return i ? : -EFAULT; if (is_vm_hugetlb_page(vma)) { i = follow_hugetlb_page(mm, vma, pages, vmas, &start, &nr_pages, i, gup_flags); continue; } } retry: /* * If we have a pending SIGKILL, don't keep faulting pages and * potentially allocating memory. */ if (unlikely(fatal_signal_pending(current))) return i ? i : -ERESTARTSYS; cond_resched(); page = follow_page_mask(vma, start, foll_flags, &page_mask); if (!page) { int ret; ret = faultin_page(tsk, vma, start, &foll_flags, nonblocking); switch (ret) { case 0: goto retry; case -EFAULT: case -ENOMEM: case -EHWPOISON: return i ? i : ret; case -EBUSY: return i; case -ENOENT: goto next_page; } BUG(); } if (IS_ERR(page)) return i ? i : PTR_ERR(page); if (pages) { pages[i] = page; flush_anon_page(vma, page, start); flush_dcache_page(page); page_mask = 0; } next_page: if (vmas) { vmas[i] = vma; page_mask = 0; } page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); if (page_increm > nr_pages) page_increm = nr_pages; i += page_increm; start += page_increm * PAGE_SIZE; nr_pages -= page_increm; } while (nr_pages); return i; } EXPORT_SYMBOL(__get_user_pages); /* * fixup_user_fault() - manually resolve a user page fault * @tsk: the task_struct to use for page fault accounting, or * NULL if faults are not to be recorded. * @mm: mm_struct of target mm * @address: user address * @fault_flags:flags to pass down to handle_mm_fault() * * This is meant to be called in the specific scenario where for locking reasons * we try to access user memory in atomic context (within a pagefault_disable() * section), this returns -EFAULT, and we want to resolve the user fault before * trying again. * * Typically this is meant to be used by the futex code. * * The main difference with get_user_pages() is that this function will * unconditionally call handle_mm_fault() which will in turn perform all the * necessary SW fixup of the dirty and young bits in the PTE, while * handle_mm_fault() only guarantees to update these in the struct page. * * This is important for some architectures where those bits also gate the * access permission to the page because they are maintained in software. On * such architectures, gup() will not be enough to make a subsequent access * succeed. * * This should be called with the mm_sem held for read. */ int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, unsigned long address, unsigned int fault_flags) { struct vm_area_struct *vma; vm_flags_t vm_flags; int ret; vma = find_extend_vma(mm, address); if (!vma || address < vma->vm_start) return -EFAULT; vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; if (!(vm_flags & vma->vm_flags)) return -EFAULT; ret = handle_mm_fault(mm, vma, address, fault_flags); if (ret & VM_FAULT_ERROR) { if (ret & VM_FAULT_OOM) return -ENOMEM; if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return -EHWPOISON; if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; BUG(); } if (tsk) { if (ret & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; } return 0; } /* * get_user_pages() - pin user pages in memory * @tsk: the task_struct to use for page fault accounting, or * NULL if faults are not to be recorded. * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @write: whether pages will be written to by the caller * @force: whether to force access even when user mapping is currently * protected (but never forces write access to shared mapping). * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. Or NULL, if caller * only intends to ensure the pages are faulted in. * @vmas: array of pointers to vmas corresponding to each page. * Or NULL if the caller does not require them. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. Each page returned must be released * with a put_page() call when it is finished with. vmas will only * remain valid while mmap_sem is held. * * Must be called with mmap_sem held for read or write. * * get_user_pages walks a process's page tables and takes a reference to * each struct page that each user address corresponds to at a given * instant. That is, it takes the page that would be accessed if a user * thread accesses the given user virtual address at that instant. * * This does not guarantee that the page exists in the user mappings when * get_user_pages returns, and there may even be a completely different * page there in some cases (eg. if mmapped pagecache has been invalidated * and subsequently re faulted). However it does guarantee that the page * won't be freed completely. And mostly callers simply care that the page * contains data that was valid *at some point in time*. Typically, an IO * or similar operation cannot guarantee anything stronger anyway because * locks can't be held over the syscall boundary. * * If write=0, the page must not be written to. If the page is written to, * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called * after the page is finished with, and before put_page is called. * * get_user_pages is typically used for fewer-copy IO operations, to get a * handle on the memory by some means other than accesses via the user virtual * addresses. The pages may be submitted for DMA to devices or accessed via * their kernel linear mapping (via the kmap APIs). Care should be taken to * use the correct cache flushing APIs. * * See also get_user_pages_fast, for performance critical applications. */ long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, int write, int force, struct page **pages, struct vm_area_struct **vmas) { int flags = FOLL_TOUCH; if (pages) flags |= FOLL_GET; if (write) flags |= FOLL_WRITE; if (force) flags |= FOLL_FORCE; return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, NULL); } EXPORT_SYMBOL(get_user_pages); /** * get_dump_page() - pin user page in memory while writing it to core dump * @addr: user address * * Returns struct page pointer of user page pinned for dump, * to be freed afterwards by page_cache_release() or put_page(). * * Returns NULL on any kind of failure - a hole must then be inserted into * the corefile, to preserve alignment with its headers; and also returns * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - * allowing a hole to be left in the corefile to save diskspace. * * Called without mmap_sem, but after all other threads have been killed. */ #ifdef CONFIG_ELF_CORE struct page *get_dump_page(unsigned long addr) { struct vm_area_struct *vma; struct page *page; if (__get_user_pages(current, current->mm, addr, 1, FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, NULL) < 1) return NULL; flush_cache_page(vma, addr, page_to_pfn(page)); return page; } #endif /* CONFIG_ELF_CORE */ |