Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | /* * Coherency fabric (Aurora) support for Armada 370 and XP platforms. * * Copyright (C) 2012 Marvell * * Yehuda Yitschak <yehuday@marvell.com> * Gregory Clement <gregory.clement@free-electrons.com> * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. * * The Armada 370 and Armada XP SOCs have a coherency fabric which is * responsible for ensuring hardware coherency between all CPUs and between * CPUs and I/O masters. This file initializes the coherency fabric and * supplies basic routines for configuring and controlling hardware coherency */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/of_address.h> #include <linux/io.h> #include <linux/smp.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <asm/smp_plat.h> #include <asm/cacheflush.h> #include "armada-370-xp.h" #include "coherency.h" unsigned long coherency_phys_base; static void __iomem *coherency_base; static void __iomem *coherency_cpu_base; /* Coherency fabric registers */ #define COHERENCY_FABRIC_CFG_OFFSET 0x4 #define IO_SYNC_BARRIER_CTL_OFFSET 0x0 static struct of_device_id of_coherency_table[] = { {.compatible = "marvell,coherency-fabric"}, { /* end of list */ }, }; /* Function defined in coherency_ll.S */ int ll_set_cpu_coherent(void __iomem *base_addr, unsigned int hw_cpu_id); int set_cpu_coherent(unsigned int hw_cpu_id, int smp_group_id) { if (!coherency_base) { pr_warn("Can't make CPU %d cache coherent.\n", hw_cpu_id); pr_warn("Coherency fabric is not initialized\n"); return 1; } return ll_set_cpu_coherent(coherency_base, hw_cpu_id); } static inline void mvebu_hwcc_sync_io_barrier(void) { writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET); while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1); } static dma_addr_t mvebu_hwcc_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { if (dir != DMA_TO_DEVICE) mvebu_hwcc_sync_io_barrier(); return pfn_to_dma(dev, page_to_pfn(page)) + offset; } static void mvebu_hwcc_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { if (dir != DMA_TO_DEVICE) mvebu_hwcc_sync_io_barrier(); } static void mvebu_hwcc_dma_sync(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { if (dir != DMA_TO_DEVICE) mvebu_hwcc_sync_io_barrier(); } static struct dma_map_ops mvebu_hwcc_dma_ops = { .alloc = arm_dma_alloc, .free = arm_dma_free, .mmap = arm_dma_mmap, .map_page = mvebu_hwcc_dma_map_page, .unmap_page = mvebu_hwcc_dma_unmap_page, .get_sgtable = arm_dma_get_sgtable, .map_sg = arm_dma_map_sg, .unmap_sg = arm_dma_unmap_sg, .sync_single_for_cpu = mvebu_hwcc_dma_sync, .sync_single_for_device = mvebu_hwcc_dma_sync, .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, .sync_sg_for_device = arm_dma_sync_sg_for_device, .set_dma_mask = arm_dma_set_mask, }; static int mvebu_hwcc_platform_notifier(struct notifier_block *nb, unsigned long event, void *__dev) { struct device *dev = __dev; if (event != BUS_NOTIFY_ADD_DEVICE) return NOTIFY_DONE; set_dma_ops(dev, &mvebu_hwcc_dma_ops); return NOTIFY_OK; } static struct notifier_block mvebu_hwcc_platform_nb = { .notifier_call = mvebu_hwcc_platform_notifier, }; /* * Keep track of whether we have IO hardware coherency enabled or not. * On Armada 370's we will not be using it for example. We need to make * that available [through coherency_available()] so the mbus controller * doesn't enable the IO coherency bit in the attribute bits of the * chip selects. */ static int coherency_enabled; int coherency_available(void) { return coherency_enabled; } int __init coherency_init(void) { struct device_node *np; /* * The coherency fabric is needed: * - For coherency between processors on Armada XP, so only * when SMP is enabled. * - For coherency between the processor and I/O devices, but * this coherency requires many pre-requisites (write * allocate cache policy, shareable pages, SMP bit set) that * are only meant in SMP situations. * * Note that this means that on Armada 370, there is currently * no way to use hardware I/O coherency, because even when * CONFIG_SMP is enabled, is_smp() returns false due to the * Armada 370 being a single-core processor. To lift this * limitation, we would have to find a way to make the cache * policy set to write-allocate (on all Armada SoCs), and to * set the shareable attribute in page tables (on all Armada * SoCs except the Armada 370). Unfortunately, such decisions * are taken very early in the kernel boot process, at a point * where we don't know yet on which SoC we are running. */ if (!is_smp()) return 0; np = of_find_matching_node(NULL, of_coherency_table); if (np) { struct resource res; pr_info("Initializing Coherency fabric\n"); of_address_to_resource(np, 0, &res); coherency_phys_base = res.start; /* * Ensure secondary CPUs will see the updated value, * which they read before they join the coherency * fabric, and therefore before they are coherent with * the boot CPU cache. */ sync_cache_w(&coherency_phys_base); coherency_base = of_iomap(np, 0); coherency_cpu_base = of_iomap(np, 1); set_cpu_coherent(cpu_logical_map(smp_processor_id()), 0); coherency_enabled = 1; of_node_put(np); } return 0; } static int __init coherency_late_init(void) { struct device_node *np; if (!is_smp()) return 0; np = of_find_matching_node(NULL, of_coherency_table); if (np) { bus_register_notifier(&platform_bus_type, &mvebu_hwcc_platform_nb); of_node_put(np); } return 0; } postcore_initcall(coherency_late_init); |