Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
#ifndef _LINUX_MM_H
#define _LINUX_MM_H

#include <linux/errno.h>

#ifdef __KERNEL__

#include <linux/mmdebug.h>
#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/range.h>
#include <linux/pfn.h>
#include <linux/bit_spinlock.h>
#include <linux/shrinker.h>

struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
struct file_ra_state;
struct user_struct;
struct writeback_control;

#ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;

static inline void set_max_mapnr(unsigned long limit)
{
	max_mapnr = limit;
}
#else
static inline void set_max_mapnr(unsigned long limit) { }
#endif

extern unsigned long totalram_pages;
extern void * high_memory;
extern int page_cluster;

#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif

#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>

#ifndef __pa_symbol
#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif

extern unsigned long sysctl_user_reserve_kbytes;
extern unsigned long sysctl_admin_reserve_kbytes;

extern int sysctl_overcommit_memory;
extern int sysctl_overcommit_ratio;
extern unsigned long sysctl_overcommit_kbytes;

extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
				    size_t *, loff_t *);
extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
				    size_t *, loff_t *);

#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))

/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)

/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
#define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)

/*
 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).
 */

extern struct kmem_cache *vm_area_cachep;

#ifndef CONFIG_MMU
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;

extern unsigned int kobjsize(const void *objp);
#endif

/*
 * vm_flags in vm_area_struct, see mm_types.h.
 */
#define VM_NONE		0x00000000

#define VM_READ		0x00000001	/* currently active flags */
#define VM_WRITE	0x00000002
#define VM_EXEC		0x00000004
#define VM_SHARED	0x00000008

/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
#define VM_MAYWRITE	0x00000020
#define VM_MAYEXEC	0x00000040
#define VM_MAYSHARE	0x00000080

#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */

#define VM_LOCKED	0x00002000
#define VM_IO           0x00004000	/* Memory mapped I/O or similar */

					/* Used by sys_madvise() */
#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */

#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
#define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
#define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
#define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */

#ifdef CONFIG_MEM_SOFT_DIRTY
# define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
#else
# define VM_SOFTDIRTY	0
#endif

#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
#define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */

#if defined(CONFIG_X86)
# define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
#elif defined(CONFIG_PPC)
# define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP	VM_ARCH_1
#elif defined(CONFIG_METAG)
# define VM_GROWSUP	VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP	VM_ARCH_1
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
#endif

#ifndef VM_GROWSUP
# define VM_GROWSUP	VM_NONE
#endif

/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)

#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif

#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#else
#define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#endif

/*
 * Special vmas that are non-mergable, non-mlock()able.
 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 */
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)

/*
 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
 */
extern pgprot_t protection_map[16];

#define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
#define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
#define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
#define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
#define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
#define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
#define FAULT_FLAG_TRIED	0x40	/* second try */
#define FAULT_FLAG_USER		0x80	/* The fault originated in userspace */

/*
 * vm_fault is filled by the the pagefault handler and passed to the vma's
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 *
 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 */
struct vm_fault {
	unsigned int flags;		/* FAULT_FLAG_xxx flags */
	pgoff_t pgoff;			/* Logical page offset based on vma */
	void __user *virtual_address;	/* Faulting virtual address */

	struct page *page;		/* ->fault handlers should return a
					 * page here, unless VM_FAULT_NOPAGE
					 * is set (which is also implied by
					 * VM_FAULT_ERROR).
					 */
};

/*
 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 * to the functions called when a no-page or a wp-page exception occurs. 
 */
struct vm_operations_struct {
	void (*open)(struct vm_area_struct * area);
	void (*close)(struct vm_area_struct * area);
	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

	/* notification that a previously read-only page is about to become
	 * writable, if an error is returned it will cause a SIGBUS */
	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);

	/* called by access_process_vm when get_user_pages() fails, typically
	 * for use by special VMAs that can switch between memory and hardware
	 */
	int (*access)(struct vm_area_struct *vma, unsigned long addr,
		      void *buf, int len, int write);
#ifdef CONFIG_NUMA
	/*
	 * set_policy() op must add a reference to any non-NULL @new mempolicy
	 * to hold the policy upon return.  Caller should pass NULL @new to
	 * remove a policy and fall back to surrounding context--i.e. do not
	 * install a MPOL_DEFAULT policy, nor the task or system default
	 * mempolicy.
	 */
	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);

	/*
	 * get_policy() op must add reference [mpol_get()] to any policy at
	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
	 * in mm/mempolicy.c will do this automatically.
	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
	 * must return NULL--i.e., do not "fallback" to task or system default
	 * policy.
	 */
	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
					unsigned long addr);
	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
		const nodemask_t *to, unsigned long flags);
#endif
	/* called by sys_remap_file_pages() to populate non-linear mapping */
	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
			   unsigned long size, pgoff_t pgoff);
};

struct mmu_gather;
struct inode;

#define page_private(page)		((page)->private)
#define set_page_private(page, v)	((page)->private = (v))

/* It's valid only if the page is free path or free_list */
static inline void set_freepage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

/* It's valid only if the page is free path or free_list */
static inline int get_freepage_migratetype(struct page *page)
{
	return page->index;
}

/*
 * FIXME: take this include out, include page-flags.h in
 * files which need it (119 of them)
 */
#include <linux/page-flags.h>
#include <linux/huge_mm.h>

/*
 * Methods to modify the page usage count.
 *
 * What counts for a page usage:
 * - cache mapping   (page->mapping)
 * - private data    (page->private)
 * - page mapped in a task's page tables, each mapping
 *   is counted separately
 *
 * Also, many kernel routines increase the page count before a critical
 * routine so they can be sure the page doesn't go away from under them.
 */

/*
 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 */
static inline int put_page_testzero(struct page *page)
{
	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
	return atomic_dec_and_test(&page->_count);
}

/*
 * Try to grab a ref unless the page has a refcount of zero, return false if
 * that is the case.
 * This can be called when MMU is off so it must not access
 * any of the virtual mappings.
 */
static inline int get_page_unless_zero(struct page *page)
{
	return atomic_inc_not_zero(&page->_count);
}

/*
 * Try to drop a ref unless the page has a refcount of one, return false if
 * that is the case.
 * This is to make sure that the refcount won't become zero after this drop.
 * This can be called when MMU is off so it must not access
 * any of the virtual mappings.
 */
static inline int put_page_unless_one(struct page *page)
{
	return atomic_add_unless(&page->_count, -1, 1);
}

extern int page_is_ram(unsigned long pfn);

/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);

/*
 * Determine if an address is within the vmalloc range
 *
 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 * is no special casing required.
 */
static inline int is_vmalloc_addr(const void *x)
{
#ifdef CONFIG_MMU
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
#else
	return 0;
#endif
}
#ifdef CONFIG_MMU
extern int is_vmalloc_or_module_addr(const void *x);
#else
static inline int is_vmalloc_or_module_addr(const void *x)
{
	return 0;
}
#endif

static inline void compound_lock(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	VM_BUG_ON_PAGE(PageSlab(page), page);
	bit_spin_lock(PG_compound_lock, &page->flags);
#endif
}

static inline void compound_unlock(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	VM_BUG_ON_PAGE(PageSlab(page), page);
	bit_spin_unlock(PG_compound_lock, &page->flags);
#endif
}

static inline unsigned long compound_lock_irqsave(struct page *page)
{
	unsigned long uninitialized_var(flags);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	local_irq_save(flags);
	compound_lock(page);
#endif
	return flags;
}

static inline void compound_unlock_irqrestore(struct page *page,
					      unsigned long flags)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	compound_unlock(page);
	local_irq_restore(flags);
#endif
}

static inline struct page *compound_head(struct page *page)
{
	if (unlikely(PageTail(page))) {
		struct page *head = page->first_page;

		/*
		 * page->first_page may be a dangling pointer to an old
		 * compound page, so recheck that it is still a tail
		 * page before returning.
		 */
		smp_rmb();
		if (likely(PageTail(page)))
			return head;
	}
	return page;
}

/*
 * The atomic page->_mapcount, starts from -1: so that transitions
 * both from it and to it can be tracked, using atomic_inc_and_test
 * and atomic_add_negative(-1).
 */
static inline void page_mapcount_reset(struct page *page)
{
	atomic_set(&(page)->_mapcount, -1);
}

static inline int page_mapcount(struct page *page)
{
	return atomic_read(&(page)->_mapcount) + 1;
}

static inline int page_count(struct page *page)
{
	return atomic_read(&compound_head(page)->_count);
}

#ifdef CONFIG_HUGETLB_PAGE
extern int PageHeadHuge(struct page *page_head);
#else /* CONFIG_HUGETLB_PAGE */
static inline int PageHeadHuge(struct page *page_head)
{
	return 0;
}
#endif /* CONFIG_HUGETLB_PAGE */

static inline bool __compound_tail_refcounted(struct page *page)
{
	return !PageSlab(page) && !PageHeadHuge(page);
}

/*
 * This takes a head page as parameter and tells if the
 * tail page reference counting can be skipped.
 *
 * For this to be safe, PageSlab and PageHeadHuge must remain true on
 * any given page where they return true here, until all tail pins
 * have been released.
 */
static inline bool compound_tail_refcounted(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHead(page), page);
	return __compound_tail_refcounted(page);
}

static inline void get_huge_page_tail(struct page *page)
{
	/*
	 * __split_huge_page_refcount() cannot run from under us.
	 */
	VM_BUG_ON_PAGE(!PageTail(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
	if (compound_tail_refcounted(page->first_page))
		atomic_inc(&page->_mapcount);
}

extern bool __get_page_tail(struct page *page);

static inline void get_page(struct page *page)
{
	if (unlikely(PageTail(page)))
		if (likely(__get_page_tail(page)))
			return;
	/*
	 * Getting a normal page or the head of a compound page
	 * requires to already have an elevated page->_count.
	 */
	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
	atomic_inc(&page->_count);
}

static inline struct page *virt_to_head_page(const void *x)
{
	struct page *page = virt_to_page(x);
	return compound_head(page);
}

/*
 * Setup the page count before being freed into the page allocator for
 * the first time (boot or memory hotplug)
 */
static inline void init_page_count(struct page *page)
{
	atomic_set(&page->_count, 1);
}

/*
 * PageBuddy() indicate that the page is free and in the buddy system
 * (see mm/page_alloc.c).
 *
 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 * -2 so that an underflow of the page_mapcount() won't be mistaken
 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 * efficiently by most CPU architectures.
 */
#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)

static inline int PageBuddy(struct page *page)
{
	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
}

static inline void __SetPageBuddy(struct page *page)
{
	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
}

static inline void __ClearPageBuddy(struct page *page)
{
	VM_BUG_ON_PAGE(!PageBuddy(page), page);
	atomic_set(&page->_mapcount, -1);
}

void put_page(struct page *page);
void put_pages_list(struct list_head *pages);

void split_page(struct page *page, unsigned int order);
int split_free_page(struct page *page);

/*
 * Compound pages have a destructor function.  Provide a
 * prototype for that function and accessor functions.
 * These are _only_ valid on the head of a PG_compound page.
 */
typedef void compound_page_dtor(struct page *);

static inline void set_compound_page_dtor(struct page *page,
						compound_page_dtor *dtor)
{
	page[1].lru.next = (void *)dtor;
}

static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
	return (compound_page_dtor *)page[1].lru.next;
}

static inline int compound_order(struct page *page)
{
	if (!PageHead(page))
		return 0;
	return (unsigned long)page[1].lru.prev;
}

static inline void set_compound_order(struct page *page, unsigned long order)
{
	page[1].lru.prev = (void *)order;
}

#ifdef CONFIG_MMU
/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pte = pte_mkwrite(pte);
	return pte;
}
#endif

/*
 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 *
 * For the non-reserved pages, page_count(page) denotes a reference count.
 *   page_count() == 0 means the page is free. page->lru is then used for
 *   freelist management in the buddy allocator.
 *   page_count() > 0  means the page has been allocated.
 *
 * Pages are allocated by the slab allocator in order to provide memory
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 * unless a particular usage is carefully commented. (the responsibility of
 * freeing the kmalloc memory is the caller's, of course).
 *
 * A page may be used by anyone else who does a __get_free_page().
 * In this case, page_count still tracks the references, and should only
 * be used through the normal accessor functions. The top bits of page->flags
 * and page->virtual store page management information, but all other fields
 * are unused and could be used privately, carefully. The management of this
 * page is the responsibility of the one who allocated it, and those who have
 * subsequently been given references to it.
 *
 * The other pages (we may call them "pagecache pages") are completely
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 *
 * A pagecache page contains an opaque `private' member, which belongs to the
 * page's address_space. Usually, this is the address of a circular list of
 * the page's disk buffers. PG_private must be set to tell the VM to call
 * into the filesystem to release these pages.
 *
 * A page may belong to an inode's memory mapping. In this case, page->mapping
 * is the pointer to the inode, and page->index is the file offset of the page,
 * in units of PAGE_CACHE_SIZE.
 *
 * If pagecache pages are not associated with an inode, they are said to be
 * anonymous pages. These may become associated with the swapcache, and in that
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 *
 * In either case (swapcache or inode backed), the pagecache itself holds one
 * reference to the page. Setting PG_private should also increment the
 * refcount. The each user mapping also has a reference to the page.
 *
 * The pagecache pages are stored in a per-mapping radix tree, which is
 * rooted at mapping->page_tree, and indexed by offset.
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 *
 * All pagecache pages may be subject to I/O:
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
 *   to be written back to the inode on disk,
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 *   modified may need to be swapped out to swap space and (later) to be read
 *   back into memory.
 */

/*
 * The zone field is never updated after free_area_init_core()
 * sets it, so none of the operations on it need to be atomic.
 */

/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
#define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)

/*
 * Define the bit shifts to access each section.  For non-existent
 * sections we define the shift as 0; that plus a 0 mask ensures
 * the compiler will optimise away reference to them.
 */
#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
#define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))

/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
						SECTIONS_PGOFF : ZONES_PGOFF)
#else
#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
						NODES_PGOFF : ZONES_PGOFF)
#endif

#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))

#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#endif

#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
#define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_WIDTH) - 1)
#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)

static inline enum zone_type page_zonenum(const struct page *page)
{
	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}

#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif

/*
 * The identification function is mainly used by the buddy allocator for
 * determining if two pages could be buddies. We are not really identifying
 * the zone since we could be using the section number id if we do not have
 * node id available in page flags.
 * We only guarantee that it will return the same value for two combinable
 * pages in a zone.
 */
static inline int page_zone_id(struct page *page)
{
	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}

static inline int zone_to_nid(struct zone *zone)
{
#ifdef CONFIG_NUMA
	return zone->node;
#else
	return 0;
#endif
}

#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif

#ifdef CONFIG_NUMA_BALANCING
static inline int cpu_pid_to_cpupid(int cpu, int pid)
{
	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
}

static inline int cpupid_to_pid(int cpupid)
{
	return cpupid & LAST__PID_MASK;
}

static inline int cpupid_to_cpu(int cpupid)
{
	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
}

static inline int cpupid_to_nid(int cpupid)
{
	return cpu_to_node(cpupid_to_cpu(cpupid));
}

static inline bool cpupid_pid_unset(int cpupid)
{
	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
}

static inline bool cpupid_cpu_unset(int cpupid)
{
	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
}

static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
{
	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
}

#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}

static inline int page_cpupid_last(struct page *page)
{
	return page->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
static inline int page_cpupid_last(struct page *page)
{
	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}

extern int page_cpupid_xchg_last(struct page *page, int cpupid);

static inline void page_cpupid_reset_last(struct page *page)
{
	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;

	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
#else /* !CONFIG_NUMA_BALANCING */
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
	return page_to_nid(page); /* XXX */
}

static inline int page_cpupid_last(struct page *page)
{
	return page_to_nid(page); /* XXX */
}

static inline int cpupid_to_nid(int cpupid)
{
	return -1;
}

static inline int cpupid_to_pid(int cpupid)
{
	return -1;
}

static inline int cpupid_to_cpu(int cpupid)
{
	return -1;
}

static inline int cpu_pid_to_cpupid(int nid, int pid)
{
	return -1;
}

static inline bool cpupid_pid_unset(int cpupid)
{
	return 1;
}

static inline void page_cpupid_reset_last(struct page *page)
{
}

static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
	return false;
}
#endif /* CONFIG_NUMA_BALANCING */

static inline struct zone *page_zone(const struct page *page)
{
	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}

#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}

static inline unsigned long page_to_section(const struct page *page)
{
	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif

static inline void set_page_zone(struct page *page, enum zone_type zone)
{
	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}

static inline void set_page_node(struct page *page, unsigned long node)
{
	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}

static inline void set_page_links(struct page *page, enum zone_type zone,
	unsigned long node, unsigned long pfn)
{
	set_page_zone(page, zone);
	set_page_node(page, node);
#ifdef SECTION_IN_PAGE_FLAGS
	set_page_section(page, pfn_to_section_nr(pfn));
#endif
}

/*
 * Some inline functions in vmstat.h depend on page_zone()
 */
#include <linux/vmstat.h>

static __always_inline void *lowmem_page_address(const struct page *page)
{
	return __va(PFN_PHYS(page_to_pfn(page)));
}

#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif

#if defined(WANT_PAGE_VIRTUAL)
static inline void *page_address(const struct page *page)
{
	return page->virtual;
}
static inline void set_page_address(struct page *page, void *address)
{
	page->virtual = address;
}
#define page_address_init()  do { } while(0)
#endif

#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(const struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif

#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address)  do { } while(0)
#define page_address_init()  do { } while(0)
#endif

/*
 * On an anonymous page mapped into a user virtual memory area,
 * page->mapping points to its anon_vma, not to a struct address_space;
 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 *
 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 * and then page->mapping points, not to an anon_vma, but to a private
 * structure which KSM associates with that merged page.  See ksm.h.
 *
 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 *
 * Please note that, confusingly, "page_mapping" refers to the inode
 * address_space which maps the page from disk; whereas "page_mapped"
 * refers to user virtual address space into which the page is mapped.
 */
#define PAGE_MAPPING_ANON	1
#define PAGE_MAPPING_KSM	2
#define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)

extern struct address_space *page_mapping(struct page *page);

/* Neutral page->mapping pointer to address_space or anon_vma or other */
static inline void *page_rmapping(struct page *page)
{
	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
}

extern struct address_space *__page_file_mapping(struct page *);

static inline
struct address_space *page_file_mapping(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return __page_file_mapping(page);

	return page->mapping;
}

static inline int PageAnon(struct page *page)
{
	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}

/*
 * Return the pagecache index of the passed page.  Regular pagecache pages
 * use ->index whereas swapcache pages use ->private
 */
static inline pgoff_t page_index(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return page_private(page);
	return page->index;
}

extern pgoff_t __page_file_index(struct page *page);

/*
 * Return the file index of the page. Regular pagecache pages use ->index
 * whereas swapcache pages use swp_offset(->private)
 */
static inline pgoff_t page_file_index(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return __page_file_index(page);

	return page->index;
}

/*
 * Return true if this page is mapped into pagetables.
 */
static inline int page_mapped(struct page *page)
{
	return atomic_read(&(page)->_mapcount) >= 0;
}

/*
 * Different kinds of faults, as returned by handle_mm_fault().
 * Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.
 */

#define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */

#define VM_FAULT_OOM	0x0001
#define VM_FAULT_SIGBUS	0x0002
#define VM_FAULT_MAJOR	0x0004
#define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
#define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */

#define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
#define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
#define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
#define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */

#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */

#define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
			 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)

/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)

/*
 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 */
extern void pagefault_out_of_memory(void);

#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)

/*
 * Flags passed to show_mem() and show_free_areas() to suppress output in
 * various contexts.
 */
#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */

extern void show_free_areas(unsigned int flags);
extern bool skip_free_areas_node(unsigned int flags, int nid);

int shmem_zero_setup(struct vm_area_struct *);

extern int can_do_mlock(void);
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);

/*
 * Parameter block passed down to zap_pte_range in exceptional cases.
 */
struct zap_details {
	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
	struct address_space *check_mapping;	/* Check page->mapping if set */
	pgoff_t	first_index;			/* Lowest page->index to unmap */
	pgoff_t last_index;			/* Highest page->index to unmap */
};

struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
		pte_t pte);

int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size);
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
		unsigned long size, struct zap_details *);
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
		unsigned long start, unsigned long end);

/**
 * mm_walk - callbacks for walk_page_range
 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 *	       this handler is required to be able to handle
 *	       pmd_trans_huge() pmds.  They may simply choose to
 *	       split_huge_page() instead of handling it explicitly.
 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 * @pte_hole: if set, called for each hole at all levels
 * @hugetlb_entry: if set, called for each hugetlb entry
 *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 * 			      is used.
 *
 * (see walk_page_range for more details)
 */
struct mm_walk {
	int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
			 unsigned long next, struct mm_walk *walk);
	int (*pud_entry)(pud_t *pud, unsigned long addr,
	                 unsigned long next, struct mm_walk *walk);
	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
			 unsigned long next, struct mm_walk *walk);
	int (*pte_entry)(pte_t *pte, unsigned long addr,
			 unsigned long next, struct mm_walk *walk);
	int (*pte_hole)(unsigned long addr, unsigned long next,
			struct mm_walk *walk);
	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
			     unsigned long addr, unsigned long next,
			     struct mm_walk *walk);
	struct mm_struct *mm;
	void *private;
};

int walk_page_range(unsigned long addr, unsigned long end,
		struct mm_walk *walk);
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
		unsigned long end, unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma);
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows);
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn);
int follow_phys(struct vm_area_struct *vma, unsigned long address,
		unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write);

static inline void unmap_shared_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen)
{
	unmap_mapping_range(mapping, holebegin, holelen, 0);
}

extern void truncate_pagecache(struct inode *inode, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int truncate_inode_page(struct address_space *mapping, struct page *page);
int generic_error_remove_page(struct address_space *mapping, struct page *page);
int invalidate_inode_page(struct page *page);

#ifdef CONFIG_MMU
extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, unsigned int flags);
extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
			    unsigned long address, unsigned int fault_flags);
#else
static inline int handle_mm_fault(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			unsigned int flags)
{
	/* should never happen if there's no MMU */
	BUG();
	return VM_FAULT_SIGBUS;
}
static inline int fixup_user_fault(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long address,
		unsigned int fault_flags)
{
	/* should never happen if there's no MMU */
	BUG();
	return -EFAULT;
}
#endif

extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write);

long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		      unsigned long start, unsigned long nr_pages,
		      unsigned int foll_flags, struct page **pages,
		      struct vm_area_struct **vmas, int *nonblocking);
long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		    unsigned long start, unsigned long nr_pages,
		    int write, int force, struct page **pages,
		    struct vm_area_struct **vmas);
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages);
struct kvec;
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
			struct page **pages);
int get_kernel_page(unsigned long start, int write, struct page **pages);
struct page *get_dump_page(unsigned long addr);

extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned int offset,
			      unsigned int length);

int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
				struct page *page);
void account_page_dirtied(struct page *page, struct address_space *mapping);
void account_page_writeback(struct page *page);
int set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);

/* Is the vma a continuation of the stack vma above it? */
static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
{
	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
}

static inline int stack_guard_page_start(struct vm_area_struct *vma,
					     unsigned long addr)
{
	return (vma->vm_flags & VM_GROWSDOWN) &&
		(vma->vm_start == addr) &&
		!vma_growsdown(vma->vm_prev, addr);
}

/* Is the vma a continuation of the stack vma below it? */
static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
{
	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
}

static inline int stack_guard_page_end(struct vm_area_struct *vma,
					   unsigned long addr)
{
	return (vma->vm_flags & VM_GROWSUP) &&
		(vma->vm_end == addr) &&
		!vma_growsup(vma->vm_next, addr);
}

extern pid_t
vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);

extern unsigned long move_page_tables(struct vm_area_struct *vma,
		unsigned long old_addr, struct vm_area_struct *new_vma,
		unsigned long new_addr, unsigned long len,
		bool need_rmap_locks);
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
			      unsigned long end, pgprot_t newprot,
			      int dirty_accountable, int prot_numa);
extern int mprotect_fixup(struct vm_area_struct *vma,
			  struct vm_area_struct **pprev, unsigned long start,
			  unsigned long end, unsigned long newflags);

/*
 * doesn't attempt to fault and will return short.
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages);
/*
 * per-process(per-mm_struct) statistics.
 */
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
	long val = atomic_long_read(&mm->rss_stat.count[member]);

#ifdef SPLIT_RSS_COUNTING
	/*
	 * counter is updated in asynchronous manner and may go to minus.
	 * But it's never be expected number for users.
	 */
	if (val < 0)
		val = 0;
#endif
	return (unsigned long)val;
}

static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
	atomic_long_add(value, &mm->rss_stat.count[member]);
}

static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
	atomic_long_inc(&mm->rss_stat.count[member]);
}

static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
	atomic_long_dec(&mm->rss_stat.count[member]);
}

static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
	return get_mm_counter(mm, MM_FILEPAGES) +
		get_mm_counter(mm, MM_ANONPAGES);
}

static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
	return max(mm->hiwater_rss, get_mm_rss(mm));
}

static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
	return max(mm->hiwater_vm, mm->total_vm);
}

static inline void update_hiwater_rss(struct mm_struct *mm)
{
	unsigned long _rss = get_mm_rss(mm);

	if ((mm)->hiwater_rss < _rss)
		(mm)->hiwater_rss = _rss;
}

static inline void update_hiwater_vm(struct mm_struct *mm)
{
	if (mm->hiwater_vm < mm->total_vm)
		mm->hiwater_vm = mm->total_vm;
}

static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
					 struct mm_struct *mm)
{
	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);

	if (*maxrss < hiwater_rss)
		*maxrss = hiwater_rss;
}

#if defined(SPLIT_RSS_COUNTING)
void sync_mm_rss(struct mm_struct *mm);
#else
static inline void sync_mm_rss(struct mm_struct *mm)
{
}
#endif

int vma_wants_writenotify(struct vm_area_struct *vma);

extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
			       spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
				    spinlock_t **ptl)
{
	pte_t *ptep;
	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
	return ptep;
}

#ifdef __PAGETABLE_PUD_FOLDED
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
						unsigned long address)
{
	return 0;
}
#else
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif

#ifdef __PAGETABLE_PMD_FOLDED
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
						unsigned long address)
{
	return 0;
}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
#endif

int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);

/*
 * The following ifdef needed to get the 4level-fixup.h header to work.
 * Remove it when 4level-fixup.h has been removed.
 */
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
		NULL: pud_offset(pgd, address);
}

static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
		NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */

#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
void __init ptlock_cache_init(void);
extern bool ptlock_alloc(struct page *page);
extern void ptlock_free(struct page *page);

static inline spinlock_t *ptlock_ptr(struct page *page)
{
	return page->ptl;
}
#else /* ALLOC_SPLIT_PTLOCKS */
static inline void ptlock_cache_init(void)
{
}

static inline bool ptlock_alloc(struct page *page)
{
	return true;
}

static inline void ptlock_free(struct page *page)
{
}

static inline spinlock_t *ptlock_ptr(struct page *page)
{
	return &page->ptl;
}
#endif /* ALLOC_SPLIT_PTLOCKS */

static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return ptlock_ptr(pmd_page(*pmd));
}

static inline bool ptlock_init(struct page *page)
{
	/*
	 * prep_new_page() initialize page->private (and therefore page->ptl)
	 * with 0. Make sure nobody took it in use in between.
	 *
	 * It can happen if arch try to use slab for page table allocation:
	 * slab code uses page->slab_cache and page->first_page (for tail
	 * pages), which share storage with page->ptl.
	 */
	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
	if (!ptlock_alloc(page))
		return false;
	spin_lock_init(ptlock_ptr(page));
	return true;
}

/* Reset page->mapping so free_pages_check won't complain. */
static inline void pte_lock_deinit(struct page *page)
{
	page->mapping = NULL;
	ptlock_free(page);
}

#else	/* !USE_SPLIT_PTE_PTLOCKS */
/*
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
 */
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return &mm->page_table_lock;
}
static inline void ptlock_cache_init(void) {}
static inline bool ptlock_init(struct page *page) { return true; }
static inline void pte_lock_deinit(struct page *page) {}
#endif /* USE_SPLIT_PTE_PTLOCKS */

static inline void pgtable_init(void)
{
	ptlock_cache_init();
	pgtable_cache_init();
}

static inline bool pgtable_page_ctor(struct page *page)
{
	inc_zone_page_state(page, NR_PAGETABLE);
	return ptlock_init(page);
}

static inline void pgtable_page_dtor(struct page *page)
{
	pte_lock_deinit(page);
	dec_zone_page_state(page, NR_PAGETABLE);
}

#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
({							\
	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
	pte_t *__pte = pte_offset_map(pmd, address);	\
	*(ptlp) = __ptl;				\
	spin_lock(__ptl);				\
	__pte;						\
})

#define pte_unmap_unlock(pte, ptl)	do {		\
	spin_unlock(ptl);				\
	pte_unmap(pte);					\
} while (0)

#define pte_alloc_map(mm, vma, pmd, address)				\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
							pmd, address))?	\
	 NULL: pte_offset_map(pmd, address))

#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
							pmd, address))?	\
		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))

#define pte_alloc_kernel(pmd, address)			\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
		NULL: pte_offset_kernel(pmd, address))

#if USE_SPLIT_PMD_PTLOCKS

static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return ptlock_ptr(virt_to_page(pmd));
}

static inline bool pgtable_pmd_page_ctor(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page->pmd_huge_pte = NULL;
#endif
	return ptlock_init(page);
}

static inline void pgtable_pmd_page_dtor(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
#endif
	ptlock_free(page);
}

#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)

#else

static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
	return &mm->page_table_lock;
}

static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
static inline void pgtable_pmd_page_dtor(struct page *page) {}

#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)

#endif

static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	return ptl;
}

extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, unsigned long * zones_size,
		unsigned long zone_start_pfn, unsigned long *zholes_size);
extern void free_initmem(void);

/*
 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
 * into the buddy system. The freed pages will be poisoned with pattern
 * "poison" if it's within range [0, UCHAR_MAX].
 * Return pages freed into the buddy system.
 */
extern unsigned long free_reserved_area(void *start, void *end,
					int poison, char *s);

#ifdef	CONFIG_HIGHMEM
/*
 * Free a highmem page into the buddy system, adjusting totalhigh_pages
 * and totalram_pages.
 */
extern void free_highmem_page(struct page *page);
#endif

extern void adjust_managed_page_count(struct page *page, long count);
extern void mem_init_print_info(const char *str);

/* Free the reserved page into the buddy system, so it gets managed. */
static inline void __free_reserved_page(struct page *page)
{
	ClearPageReserved(page);
	init_page_count(page);
	__free_page(page);
}

static inline void free_reserved_page(struct page *page)
{
	__free_reserved_page(page);
	adjust_managed_page_count(page, 1);
}

static inline void mark_page_reserved(struct page *page)
{
	SetPageReserved(page);
	adjust_managed_page_count(page, -1);
}

/*
 * Default method to free all the __init memory into the buddy system.
 * The freed pages will be poisoned with pattern "poison" if it's within
 * range [0, UCHAR_MAX].
 * Return pages freed into the buddy system.
 */
static inline unsigned long free_initmem_default(int poison)
{
	extern char __init_begin[], __init_end[];

	return free_reserved_area(&__init_begin, &__init_end,
				  poison, "unused kernel");
}

static inline unsigned long get_num_physpages(void)
{
	int nid;
	unsigned long phys_pages = 0;

	for_each_online_node(nid)
		phys_pages += node_present_pages(nid);

	return phys_pages;
}

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
 * zones, allocate the backing mem_map and account for memory holes in a more
 * architecture independent manner. This is a substitute for creating the
 * zone_sizes[] and zholes_size[] arrays and passing them to
 * free_area_init_node()
 *
 * An architecture is expected to register range of page frames backed by
 * physical memory with memblock_add[_node]() before calling
 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
 * usage, an architecture is expected to do something like
 *
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 * 							 max_highmem_pfn};
 * for_each_valid_physical_page_range()
 * 	memblock_add_node(base, size, nid)
 * free_area_init_nodes(max_zone_pfns);
 *
 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
 * registered physical page range.  Similarly
 * sparse_memory_present_with_active_regions() calls memory_present() for
 * each range when SPARSEMEM is enabled.
 *
 * See mm/page_alloc.c for more information on each function exposed by
 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
 */
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
						unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
						unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
			unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
						unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);

#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
static inline int __early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/* there is a per-arch backend function. */
extern int __meminit __early_pfn_to_nid(unsigned long pfn);
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
#endif

extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
				unsigned long, enum memmap_context);
extern void setup_per_zone_wmarks(void);
extern int __meminit init_per_zone_wmark_min(void);
extern void mem_init(void);
extern void __init mmap_init(void);
extern void show_mem(unsigned int flags);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);

extern __printf(3, 4)
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);

extern void setup_per_cpu_pageset(void);

extern void zone_pcp_update(struct zone *zone);
extern void zone_pcp_reset(struct zone *zone);

/* page_alloc.c */
extern int min_free_kbytes;

/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);

/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
			      struct rb_root *root);
void vma_interval_tree_insert_after(struct vm_area_struct *node,
				    struct vm_area_struct *prev,
				    struct rb_root *root);
void vma_interval_tree_remove(struct vm_area_struct *node,
			      struct rb_root *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
				unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
				unsigned long start, unsigned long last);

#define vma_interval_tree_foreach(vma, root, start, last)		\
	for (vma = vma_interval_tree_iter_first(root, start, last);	\
	     vma; vma = vma_interval_tree_iter_next(vma, start, last))

static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
					struct list_head *list)
{
	list_add_tail(&vma->shared.nonlinear, list);
}

void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
				   struct rb_root *root);
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
				   struct rb_root *root);
struct anon_vma_chain *anon_vma_interval_tree_iter_first(
	struct rb_root *root, unsigned long start, unsigned long last);
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
	struct anon_vma_chain *node, unsigned long start, unsigned long last);
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif

#define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))

/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
	struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
	struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
	struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
	unsigned long addr, unsigned long len, pgoff_t pgoff,
	bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);

extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);

extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);

extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern int install_special_mapping(struct mm_struct *mm,
				   unsigned long addr, unsigned long len,
				   unsigned long flags, struct page **pages);

extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);

extern unsigned long mmap_region(struct file *file, unsigned long addr,
	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot, unsigned long flags,
	unsigned long pgoff, unsigned long *populate);
extern int do_munmap(struct mm_struct *, unsigned long, size_t);

#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
			 int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
	/* Ignore errors */
	(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif

/* These take the mm semaphore themselves */
extern unsigned long vm_brk(unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long vm_mmap(struct file *, unsigned long,
        unsigned long, unsigned long,
        unsigned long, unsigned long);

struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
	unsigned long flags;
	unsigned long length;
	unsigned long low_limit;
	unsigned long high_limit;
	unsigned long align_mask;
	unsigned long align_offset;
};

extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);

/*
 * Search for an unmapped address range.
 *
 * We are looking for a range that:
 * - does not intersect with any VMA;
 * - is contained within the [low_limit, high_limit) interval;
 * - is at least the desired size.
 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 */
static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info *info)
{
	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
		return unmapped_area(info);
	else
		return unmapped_area_topdown(info);
}

/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
				       loff_t lstart, loff_t lend);

/* generic vm_area_ops exported for stackable file systems */
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);

/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);
void task_dirty_inc(struct task_struct *tsk);

/* readahead.c */
#define VM_MAX_READAHEAD	128	/* kbytes */
#define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */

int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
			pgoff_t offset, unsigned long nr_to_read);

void page_cache_sync_readahead(struct address_space *mapping,
			       struct file_ra_state *ra,
			       struct file *filp,
			       pgoff_t offset,
			       unsigned long size);

void page_cache_async_readahead(struct address_space *mapping,
				struct file_ra_state *ra,
				struct file *filp,
				struct page *pg,
				pgoff_t offset,
				unsigned long size);

unsigned long max_sane_readahead(unsigned long nr);
unsigned long ra_submit(struct file_ra_state *ra,
			struct address_space *mapping,
			struct file *filp);

/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);

/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
extern int expand_downwards(struct vm_area_struct *vma,
		unsigned long address);
#if VM_GROWSUP
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#else
  #define expand_upwards(vma, address) do { } while (0)
#endif

/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
					     struct vm_area_struct **pprev);

/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
   NULL if none.  Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
	struct vm_area_struct * vma = find_vma(mm,start_addr);

	if (vma && end_addr <= vma->vm_start)
		vma = NULL;
	return vma;
}

static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}

/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
				unsigned long vm_start, unsigned long vm_end)
{
	struct vm_area_struct *vma = find_vma(mm, vm_start);

	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
		vma = NULL;

	return vma;
}

#ifdef CONFIG_MMU
pgprot_t vm_get_page_prot(unsigned long vm_flags);
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
	return __pgprot(0);
}
#endif

#ifdef CONFIG_NUMA_BALANCING
unsigned long change_prot_numa(struct vm_area_struct *vma,
			unsigned long start, unsigned long end);
#endif

struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
			unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn);
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);


struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int foll_flags,
			      unsigned int *page_mask);

static inline struct page *follow_page(struct vm_area_struct *vma,
		unsigned long address, unsigned int foll_flags)
{
	unsigned int unused_page_mask;
	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
}

#define FOLL_WRITE	0x01	/* check pte is writable */
#define FOLL_TOUCH	0x02	/* mark page accessed */
#define FOLL_GET	0x04	/* do get_page on page */
#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
#define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
				 * and return without waiting upon it */
#define FOLL_MLOCK	0x40	/* mark page as mlocked */
#define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
#define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
#define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
#define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */

typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
			void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
			       unsigned long size, pte_fn_t fn, void *data);

#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
#else
static inline void vm_stat_account(struct mm_struct *mm,
			unsigned long flags, struct file *file, long pages)
{
	mm->total_vm += pages;
}
#endif /* CONFIG_PROC_FS */

#ifdef CONFIG_DEBUG_PAGEALLOC
extern void kernel_map_pages(struct page *page, int numpages, int enable);
#ifdef CONFIG_HIBERNATION
extern bool kernel_page_present(struct page *page);
#endif /* CONFIG_HIBERNATION */
#else
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
#ifdef CONFIG_HIBERNATION
static inline bool kernel_page_present(struct page *page) { return true; }
#endif /* CONFIG_HIBERNATION */
#endif

extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
#ifdef	__HAVE_ARCH_GATE_AREA
int in_gate_area_no_mm(unsigned long addr);
int in_gate_area(struct mm_struct *mm, unsigned long addr);
#else
int in_gate_area_no_mm(unsigned long addr);
#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
#endif	/* __HAVE_ARCH_GATE_AREA */

#ifdef CONFIG_SYSCTL
extern int sysctl_drop_caches;
int drop_caches_sysctl_handler(struct ctl_table *, int,
					void __user *, size_t *, loff_t *);
#endif

unsigned long shrink_slab(struct shrink_control *shrink,
			  unsigned long nr_pages_scanned,
			  unsigned long lru_pages);

#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif

const char * arch_vma_name(struct vm_area_struct *vma);
void print_vma_addr(char *prefix, unsigned long rip);

void sparse_mem_maps_populate_node(struct page **map_map,
				   unsigned long pnum_begin,
				   unsigned long pnum_end,
				   unsigned long map_count,
				   int nodeid);

struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
void *vmemmap_alloc_block_buf(unsigned long size, int node);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
			       int node);
int vmemmap_populate(unsigned long start, unsigned long end, int node);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(unsigned long start, unsigned long end);
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
				  unsigned long size);

enum mf_flags {
	MF_COUNT_INCREASED = 1 << 0,
	MF_ACTION_REQUIRED = 1 << 1,
	MF_MUST_KILL = 1 << 2,
	MF_SOFT_OFFLINE = 1 << 3,
};
extern int memory_failure(unsigned long pfn, int trapno, int flags);
extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
extern int unpoison_memory(unsigned long pfn);
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
extern void shake_page(struct page *p, int access);
extern atomic_long_t num_poisoned_pages;
extern int soft_offline_page(struct page *page, int flags);

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
			    unsigned long addr,
			    unsigned int pages_per_huge_page);
extern void copy_user_huge_page(struct page *dst, struct page *src,
				unsigned long addr, struct vm_area_struct *vma,
				unsigned int pages_per_huge_page);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */

#ifdef CONFIG_DEBUG_PAGEALLOC
extern unsigned int _debug_guardpage_minorder;

static inline unsigned int debug_guardpage_minorder(void)
{
	return _debug_guardpage_minorder;
}

static inline bool page_is_guard(struct page *page)
{
	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
#else
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
static inline bool page_is_guard(struct page *page) { return false; }
#endif /* CONFIG_DEBUG_PAGEALLOC */

#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
static inline void setup_nr_node_ids(void) {}
#endif

#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */