Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | DMA Engine API Guide ==================== Vinod Koul <vinod dot koul at intel.com> NOTE: For DMA Engine usage in async_tx please see: Documentation/crypto/async-tx-api.txt Below is a guide to device driver writers on how to use the Slave-DMA API of the DMA Engine. This is applicable only for slave DMA usage only. The slave DMA usage consists of following steps: 1. Allocate a DMA slave channel 2. Set slave and controller specific parameters 3. Get a descriptor for transaction 4. Submit the transaction 5. Issue pending requests and wait for callback notification 1. Allocate a DMA slave channel Channel allocation is slightly different in the slave DMA context, client drivers typically need a channel from a particular DMA controller only and even in some cases a specific channel is desired. To request a channel dma_request_channel() API is used. Interface: struct dma_chan *dma_request_channel(dma_cap_mask_t mask, dma_filter_fn filter_fn, void *filter_param); where dma_filter_fn is defined as: typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); The 'filter_fn' parameter is optional, but highly recommended for slave and cyclic channels as they typically need to obtain a specific DMA channel. When the optional 'filter_fn' parameter is NULL, dma_request_channel() simply returns the first channel that satisfies the capability mask. Otherwise, the 'filter_fn' routine will be called once for each free channel which has a capability in 'mask'. 'filter_fn' is expected to return 'true' when the desired DMA channel is found. A channel allocated via this interface is exclusive to the caller, until dma_release_channel() is called. 2. Set slave and controller specific parameters Next step is always to pass some specific information to the DMA driver. Most of the generic information which a slave DMA can use is in struct dma_slave_config. This allows the clients to specify DMA direction, DMA addresses, bus widths, DMA burst lengths etc for the peripheral. If some DMA controllers have more parameters to be sent then they should try to embed struct dma_slave_config in their controller specific structure. That gives flexibility to client to pass more parameters, if required. Interface: int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config) Please see the dma_slave_config structure definition in dmaengine.h for a detailed explanation of the struct members. Please note that the 'direction' member will be going away as it duplicates the direction given in the prepare call. 3. Get a descriptor for transaction For slave usage the various modes of slave transfers supported by the DMA-engine are: slave_sg - DMA a list of scatter gather buffers from/to a peripheral dma_cyclic - Perform a cyclic DMA operation from/to a peripheral till the operation is explicitly stopped. interleaved_dma - This is common to Slave as well as M2M clients. For slave address of devices' fifo could be already known to the driver. Various types of operations could be expressed by setting appropriate values to the 'dma_interleaved_template' members. A non-NULL return of this transfer API represents a "descriptor" for the given transaction. Interface: struct dma_async_tx_descriptor *(*chan->device->device_prep_slave_sg)( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_data_direction direction, unsigned long flags); struct dma_async_tx_descriptor *(*chan->device->device_prep_dma_cyclic)( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_data_direction direction); struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags); The peripheral driver is expected to have mapped the scatterlist for the DMA operation prior to calling device_prep_slave_sg, and must keep the scatterlist mapped until the DMA operation has completed. The scatterlist must be mapped using the DMA struct device. So, normal setup should look like this: nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len); if (nr_sg == 0) /* error */ desc = chan->device->device_prep_slave_sg(chan, sgl, nr_sg, direction, flags); Once a descriptor has been obtained, the callback information can be added and the descriptor must then be submitted. Some DMA engine drivers may hold a spinlock between a successful preparation and submission so it is important that these two operations are closely paired. Note: Although the async_tx API specifies that completion callback routines cannot submit any new operations, this is not the case for slave/cyclic DMA. For slave DMA, the subsequent transaction may not be available for submission prior to callback function being invoked, so slave DMA callbacks are permitted to prepare and submit a new transaction. For cyclic DMA, a callback function may wish to terminate the DMA via dmaengine_terminate_all(). Therefore, it is important that DMA engine drivers drop any locks before calling the callback function which may cause a deadlock. Note that callbacks will always be invoked from the DMA engines tasklet, never from interrupt context. 4. Submit the transaction Once the descriptor has been prepared and the callback information added, it must be placed on the DMA engine drivers pending queue. Interface: dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) This returns a cookie can be used to check the progress of DMA engine activity via other DMA engine calls not covered in this document. dmaengine_submit() will not start the DMA operation, it merely adds it to the pending queue. For this, see step 5, dma_async_issue_pending. 5. Issue pending DMA requests and wait for callback notification The transactions in the pending queue can be activated by calling the issue_pending API. If channel is idle then the first transaction in queue is started and subsequent ones queued up. On completion of each DMA operation, the next in queue is started and a tasklet triggered. The tasklet will then call the client driver completion callback routine for notification, if set. Interface: void dma_async_issue_pending(struct dma_chan *chan); Further APIs: 1. int dmaengine_terminate_all(struct dma_chan *chan) This causes all activity for the DMA channel to be stopped, and may discard data in the DMA FIFO which hasn't been fully transferred. No callback functions will be called for any incomplete transfers. 2. int dmaengine_pause(struct dma_chan *chan) This pauses activity on the DMA channel without data loss. 3. int dmaengine_resume(struct dma_chan *chan) Resume a previously paused DMA channel. It is invalid to resume a channel which is not currently paused. 4. enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) This can be used to check the status of the channel. Please see the documentation in include/linux/dmaengine.h for a more complete description of this API. This can be used in conjunction with dma_async_is_complete() and the cookie returned from 'descriptor->submit()' to check for completion of a specific DMA transaction. Note: Not all DMA engine drivers can return reliable information for a running DMA channel. It is recommended that DMA engine users pause or stop (via dmaengine_terminate_all) the channel before using this API. |