/*
* C-Media CMI8788 driver - main driver module
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/mpu401.h>
#include <sound/pcm.h>
#include "oxygen.h"
#include "cm9780.h"
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("C-Media CMI8788 helper library");
MODULE_LICENSE("GPL v2");
#define DRIVER "oxygen"
static inline int oxygen_uart_input_ready(struct oxygen *chip)
{
return !(oxygen_read8(chip, OXYGEN_MPU401 + 1) & MPU401_RX_EMPTY);
}
static void oxygen_read_uart(struct oxygen *chip)
{
if (unlikely(!oxygen_uart_input_ready(chip))) {
/* no data, but read it anyway to clear the interrupt */
oxygen_read8(chip, OXYGEN_MPU401);
return;
}
do {
u8 data = oxygen_read8(chip, OXYGEN_MPU401);
if (data == MPU401_ACK)
continue;
if (chip->uart_input_count >= ARRAY_SIZE(chip->uart_input))
chip->uart_input_count = 0;
chip->uart_input[chip->uart_input_count++] = data;
} while (oxygen_uart_input_ready(chip));
if (chip->model.uart_input)
chip->model.uart_input(chip);
}
static irqreturn_t oxygen_interrupt(int dummy, void *dev_id)
{
struct oxygen *chip = dev_id;
unsigned int status, clear, elapsed_streams, i;
status = oxygen_read16(chip, OXYGEN_INTERRUPT_STATUS);
if (!status)
return IRQ_NONE;
spin_lock(&chip->reg_lock);
clear = status & (OXYGEN_CHANNEL_A |
OXYGEN_CHANNEL_B |
OXYGEN_CHANNEL_C |
OXYGEN_CHANNEL_SPDIF |
OXYGEN_CHANNEL_MULTICH |
OXYGEN_CHANNEL_AC97 |
OXYGEN_INT_SPDIF_IN_DETECT |
OXYGEN_INT_GPIO |
OXYGEN_INT_AC97);
if (clear) {
if (clear & OXYGEN_INT_SPDIF_IN_DETECT)
chip->interrupt_mask &= ~OXYGEN_INT_SPDIF_IN_DETECT;
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
chip->interrupt_mask & ~clear);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
chip->interrupt_mask);
}
elapsed_streams = status & chip->pcm_running;
spin_unlock(&chip->reg_lock);
for (i = 0; i < PCM_COUNT; ++i)
if ((elapsed_streams & (1 << i)) && chip->streams[i])
snd_pcm_period_elapsed(chip->streams[i]);
if (status & OXYGEN_INT_SPDIF_IN_DETECT) {
spin_lock(&chip->reg_lock);
i = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
if (i & (OXYGEN_SPDIF_SENSE_INT | OXYGEN_SPDIF_LOCK_INT |
OXYGEN_SPDIF_RATE_INT)) {
/* write the interrupt bit(s) to clear */
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, i);
schedule_work(&chip->spdif_input_bits_work);
}
spin_unlock(&chip->reg_lock);
}
if (status & OXYGEN_INT_GPIO)
schedule_work(&chip->gpio_work);
if (status & OXYGEN_INT_MIDI) {
if (chip->midi)
snd_mpu401_uart_interrupt(0, chip->midi->private_data);
else
oxygen_read_uart(chip);
}
if (status & OXYGEN_INT_AC97)
wake_up(&chip->ac97_waitqueue);
return IRQ_HANDLED;
}
static void oxygen_spdif_input_bits_changed(struct work_struct *work)
{
struct oxygen *chip = container_of(work, struct oxygen,
spdif_input_bits_work);
u32 reg;
/*
* This function gets called when there is new activity on the SPDIF
* input, or when we lose lock on the input signal, or when the rate
* changes.
*/
msleep(1);
spin_lock_irq(&chip->reg_lock);
reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
if ((reg & (OXYGEN_SPDIF_SENSE_STATUS |
OXYGEN_SPDIF_LOCK_STATUS))
== OXYGEN_SPDIF_SENSE_STATUS) {
/*
* If we detect activity on the SPDIF input but cannot lock to
* a signal, the clock bit is likely to be wrong.
*/
reg ^= OXYGEN_SPDIF_IN_CLOCK_MASK;
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg);
spin_unlock_irq(&chip->reg_lock);
msleep(1);
spin_lock_irq(&chip->reg_lock);
reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
if ((reg & (OXYGEN_SPDIF_SENSE_STATUS |
OXYGEN_SPDIF_LOCK_STATUS))
== OXYGEN_SPDIF_SENSE_STATUS) {
/* nothing detected with either clock; give up */
if ((reg & OXYGEN_SPDIF_IN_CLOCK_MASK)
== OXYGEN_SPDIF_IN_CLOCK_192) {
/*
* Reset clock to <= 96 kHz because this is
* more likely to be received next time.
*/
reg &= ~OXYGEN_SPDIF_IN_CLOCK_MASK;
reg |= OXYGEN_SPDIF_IN_CLOCK_96;
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg);
}
}
}
spin_unlock_irq(&chip->reg_lock);
if (chip->controls[CONTROL_SPDIF_INPUT_BITS]) {
spin_lock_irq(&chip->reg_lock);
chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT;
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
chip->interrupt_mask);
spin_unlock_irq(&chip->reg_lock);
/*
* We don't actually know that any channel status bits have
* changed, but let's send a notification just to be sure.
*/
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->controls[CONTROL_SPDIF_INPUT_BITS]->id);
}
}
static void oxygen_gpio_changed(struct work_struct *work)
{
struct oxygen *chip = container_of(work, struct oxygen, gpio_work);
if (chip->model.gpio_changed)
chip->model.gpio_changed(chip);
}
#ifdef CONFIG_PROC_FS
static void oxygen_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct oxygen *chip = entry->private_data;
int i, j;
switch (oxygen_read8(chip, OXYGEN_REVISION) & OXYGEN_PACKAGE_ID_MASK) {
case OXYGEN_PACKAGE_ID_8786: i = '6'; break;
case OXYGEN_PACKAGE_ID_8787: i = '7'; break;
case OXYGEN_PACKAGE_ID_8788: i = '8'; break;
default: i = '?'; break;
}
snd_iprintf(buffer, "CMI878%c:\n", i);
for (i = 0; i < OXYGEN_IO_SIZE; i += 0x10) {
snd_iprintf(buffer, "%02x:", i);
for (j = 0; j < 0x10; ++j)
snd_iprintf(buffer, " %02x", oxygen_read8(chip, i + j));
snd_iprintf(buffer, "\n");
}
if (mutex_lock_interruptible(&chip->mutex) < 0)
return;
if (chip->has_ac97_0) {
snd_iprintf(buffer, "\nAC97:\n");
for (i = 0; i < 0x80; i += 0x10) {
snd_iprintf(buffer, "%02x:", i);
for (j = 0; j < 0x10; j += 2)
snd_iprintf(buffer, " %04x",
oxygen_read_ac97(chip, 0, i + j));
snd_iprintf(buffer, "\n");
}
}
if (chip->has_ac97_1) {
snd_iprintf(buffer, "\nAC97 2:\n");
for (i = 0; i < 0x80; i += 0x10) {
snd_iprintf(buffer, "%02x:", i);
for (j = 0; j < 0x10; j += 2)
snd_iprintf(buffer, " %04x",
oxygen_read_ac97(chip, 1, i + j));
snd_iprintf(buffer, "\n");
}
}
mutex_unlock(&chip->mutex);
if (chip->model.dump_registers)
chip->model.dump_registers(chip, buffer);
}
static void oxygen_proc_init(struct oxygen *chip)
{
struct snd_info_entry *entry;
if (!snd_card_proc_new(chip->card, "oxygen", &entry))
snd_info_set_text_ops(entry, chip, oxygen_proc_read);
}
#else
#define oxygen_proc_init(chip)
#endif
static const struct pci_device_id *
oxygen_search_pci_id(struct oxygen *chip, const struct pci_device_id ids[])
{
u16 subdevice;
/*
* Make sure the EEPROM pins are available, i.e., not used for SPI.
* (This function is called before we initialize or use SPI.)
*/
oxygen_clear_bits8(chip, OXYGEN_FUNCTION,
OXYGEN_FUNCTION_ENABLE_SPI_4_5);
/*
* Read the subsystem device ID directly from the EEPROM, because the
* chip didn't if the first EEPROM word was overwritten.
*/
subdevice = oxygen_read_eeprom(chip, 2);
/* use default ID if EEPROM is missing */
if (subdevice == 0xffff && oxygen_read_eeprom(chip, 1) == 0xffff)
subdevice = 0x8788;
/*
* We use only the subsystem device ID for searching because it is
* unique even without the subsystem vendor ID, which may have been
* overwritten in the EEPROM.
*/
for (; ids->vendor; ++ids)
if (ids->subdevice == subdevice &&
ids->driver_data != BROKEN_EEPROM_DRIVER_DATA)
return ids;
return NULL;
}
static void oxygen_restore_eeprom(struct oxygen *chip,
const struct pci_device_id *id)
{
u16 eeprom_id;
eeprom_id = oxygen_read_eeprom(chip, 0);
if (eeprom_id != OXYGEN_EEPROM_ID &&
(eeprom_id != 0xffff || id->subdevice != 0x8788)) {
/*
* This function gets called only when a known card model has
* been detected, i.e., we know there is a valid subsystem
* product ID at index 2 in the EEPROM. Therefore, we have
* been able to deduce the correct subsystem vendor ID, and
* this is enough information to restore the original EEPROM
* contents.
*/
oxygen_write_eeprom(chip, 1, id->subvendor);
oxygen_write_eeprom(chip, 0, OXYGEN_EEPROM_ID);
oxygen_set_bits8(chip, OXYGEN_MISC,
OXYGEN_MISC_WRITE_PCI_SUBID);
pci_write_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID,
id->subvendor);
pci_write_config_word(chip->pci, PCI_SUBSYSTEM_ID,
id->subdevice);
oxygen_clear_bits8(chip, OXYGEN_MISC,
OXYGEN_MISC_WRITE_PCI_SUBID);
snd_printk(KERN_INFO "EEPROM ID restored\n");
}
}
static void configure_pcie_bridge(struct pci_dev *pci)
{
enum { PEX811X, PI7C9X110 };
static const struct pci_device_id bridge_ids[] = {
{ PCI_VDEVICE(PLX, 0x8111), .driver_data = PEX811X },
{ PCI_VDEVICE(PLX, 0x8112), .driver_data = PEX811X },
{ PCI_DEVICE(0x12d8, 0xe110), .driver_data = PI7C9X110 },
{ }
};
struct pci_dev *bridge;
const struct pci_device_id *id;
u32 tmp;
if (!pci->bus || !pci->bus->self)
return;
bridge = pci->bus->self;
id = pci_match_id(bridge_ids, bridge);
if (!id)
return;
switch (id->driver_data) {
case PEX811X: /* PLX PEX8111/PEX8112 PCIe/PCI bridge */
pci_read_config_dword(bridge, 0x48, &tmp);
tmp |= 1; /* enable blind prefetching */
tmp |= 1 << 11; /* enable beacon generation */
pci_write_config_dword(bridge, 0x48, tmp);
pci_write_config_dword(bridge, 0x84, 0x0c);
pci_read_config_dword(bridge, 0x88, &tmp);
tmp &= ~(7 << 27);
tmp |= 2 << 27; /* set prefetch size to 128 bytes */
pci_write_config_dword(bridge, 0x88, tmp);
break;
case PI7C9X110: /* Pericom PI7C9X110 PCIe/PCI bridge */
pci_read_config_dword(bridge, 0x40, &tmp);
tmp |= 1; /* park the PCI arbiter to the sound chip */
pci_write_config_dword(bridge, 0x40, tmp);
break;
}
}
static void oxygen_init(struct oxygen *chip)
{
unsigned int i;
chip->dac_routing = 1;
for (i = 0; i < 8; ++i)
chip->dac_volume[i] = chip->model.dac_volume_min;
chip->dac_mute = 1;
chip->spdif_playback_enable = 1;
chip->spdif_bits = OXYGEN_SPDIF_C | OXYGEN_SPDIF_ORIGINAL |
(IEC958_AES1_CON_PCM_CODER << OXYGEN_SPDIF_CATEGORY_SHIFT);
chip->spdif_pcm_bits = chip->spdif_bits;
if (!(oxygen_read8(chip, OXYGEN_REVISION) & OXYGEN_REVISION_2))
oxygen_set_bits8(chip, OXYGEN_MISC,
OXYGEN_MISC_PCI_MEM_W_1_CLOCK);
i = oxygen_read16(chip, OXYGEN_AC97_CONTROL);
chip->has_ac97_0 = (i & OXYGEN_AC97_CODEC_0) != 0;
chip->has_ac97_1 = (i & OXYGEN_AC97_CODEC_1) != 0;
oxygen_write8_masked(chip, OXYGEN_FUNCTION,
OXYGEN_FUNCTION_RESET_CODEC |
chip->model.function_flags,
OXYGEN_FUNCTION_RESET_CODEC |
OXYGEN_FUNCTION_2WIRE_SPI_MASK |
OXYGEN_FUNCTION_ENABLE_SPI_4_5);
oxygen_write8(chip, OXYGEN_DMA_STATUS, 0);
oxygen_write8(chip, OXYGEN_DMA_PAUSE, 0);
oxygen_write8(chip, OXYGEN_PLAY_CHANNELS,
OXYGEN_PLAY_CHANNELS_2 |
OXYGEN_DMA_A_BURST_8 |
OXYGEN_DMA_MULTICH_BURST_8);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
oxygen_write8_masked(chip, OXYGEN_MISC,
chip->model.misc_flags,
OXYGEN_MISC_WRITE_PCI_SUBID |
OXYGEN_MISC_REC_C_FROM_SPDIF |
OXYGEN_MISC_REC_B_FROM_AC97 |
OXYGEN_MISC_REC_A_FROM_MULTICH |
OXYGEN_MISC_MIDI);
oxygen_write8(chip, OXYGEN_REC_FORMAT,
(OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_A_SHIFT) |
(OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_B_SHIFT) |
(OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_C_SHIFT));
oxygen_write8(chip, OXYGEN_PLAY_FORMAT,
(OXYGEN_FORMAT_16 << OXYGEN_SPDIF_FORMAT_SHIFT) |
(OXYGEN_FORMAT_16 << OXYGEN_MULTICH_FORMAT_SHIFT));
oxygen_write8(chip, OXYGEN_REC_CHANNELS, OXYGEN_REC_CHANNELS_2_2_2);
oxygen_write16(chip, OXYGEN_I2S_MULTICH_FORMAT,
OXYGEN_RATE_48000 |
chip->model.dac_i2s_format |
OXYGEN_I2S_MCLK(chip->model.dac_mclks) |
OXYGEN_I2S_BITS_16 |
OXYGEN_I2S_MASTER |
OXYGEN_I2S_BCLK_64);
if (chip->model.device_config & CAPTURE_0_FROM_I2S_1)
oxygen_write16(chip, OXYGEN_I2S_A_FORMAT,
OXYGEN_RATE_48000 |
chip->model.adc_i2s_format |
OXYGEN_I2S_MCLK(chip->model.adc_mclks) |
OXYGEN_I2S_BITS_16 |
OXYGEN_I2S_MASTER |
OXYGEN_I2S_BCLK_64);
else
oxygen_write16(chip, OXYGEN_I2S_A_FORMAT,
OXYGEN_I2S_MASTER |
OXYGEN_I2S_MUTE_MCLK);
if (chip->model.device_config & (CAPTURE_0_FROM_I2S_2 |
CAPTURE_2_FROM_I2S_2))
oxygen_write16(chip, OXYGEN_I2S_B_FORMAT,
OXYGEN_RATE_48000 |
chip->model.adc_i2s_format |
OXYGEN_I2S_MCLK(chip->model.adc_mclks) |
OXYGEN_I2S_BITS_16 |
OXYGEN_I2S_MASTER |
OXYGEN_I2S_BCLK_64);
else
oxygen_write16(chip, OXYGEN_I2S_B_FORMAT,
OXYGEN_I2S_MASTER |
OXYGEN_I2S_MUTE_MCLK);
oxygen_write16(chip, OXYGEN_I2S_C_FORMAT,
OXYGEN_I2S_MASTER |
OXYGEN_I2S_MUTE_MCLK);
oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL,
OXYGEN_SPDIF_OUT_ENABLE |
OXYGEN_SPDIF_LOOPBACK);
if (chip->model.device_config & CAPTURE_1_FROM_SPDIF)
oxygen_write32_masked(chip, OXYGEN_SPDIF_CONTROL,
OXYGEN_SPDIF_SENSE_MASK |
OXYGEN_SPDIF_LOCK_MASK |
OXYGEN_SPDIF_RATE_MASK |
OXYGEN_SPDIF_LOCK_PAR |
OXYGEN_SPDIF_IN_CLOCK_96,
OXYGEN_SPDIF_SENSE_MASK |
OXYGEN_SPDIF_LOCK_MASK |
OXYGEN_SPDIF_RATE_MASK |
OXYGEN_SPDIF_SENSE_PAR |
OXYGEN_SPDIF_LOCK_PAR |
OXYGEN_SPDIF_IN_CLOCK_MASK);
else
oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL,
OXYGEN_SPDIF_SENSE_MASK |
OXYGEN_SPDIF_LOCK_MASK |
OXYGEN_SPDIF_RATE_MASK);
oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS, chip->spdif_bits);
oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS,
OXYGEN_2WIRE_LENGTH_8 |
OXYGEN_2WIRE_INTERRUPT_MASK |
OXYGEN_2WIRE_SPEED_STANDARD);
oxygen_clear_bits8(chip, OXYGEN_MPU401_CONTROL, OXYGEN_MPU401_LOOPBACK);
oxygen_write8(chip, OXYGEN_GPI_INTERRUPT_MASK, 0);
oxygen_write16(chip, OXYGEN_GPIO_INTERRUPT_MASK, 0);
oxygen_write16(chip, OXYGEN_PLAY_ROUTING,
OXYGEN_PLAY_MULTICH_I2S_DAC |
OXYGEN_PLAY_SPDIF_SPDIF |
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT));
oxygen_write8(chip, OXYGEN_REC_ROUTING,
OXYGEN_REC_A_ROUTE_I2S_ADC_1 |
OXYGEN_REC_B_ROUTE_I2S_ADC_2 |
OXYGEN_REC_C_ROUTE_SPDIF);
oxygen_write8(chip, OXYGEN_ADC_MONITOR, 0);
oxygen_write8(chip, OXYGEN_A_MONITOR_ROUTING,
(0 << OXYGEN_A_MONITOR_ROUTE_0_SHIFT) |
(1 << OXYGEN_A_MONITOR_ROUTE_1_SHIFT) |
(2 << OXYGEN_A_MONITOR_ROUTE_2_SHIFT) |
(3 << OXYGEN_A_MONITOR_ROUTE_3_SHIFT));
if (chip->has_ac97_0 | chip->has_ac97_1)
oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK,
OXYGEN_AC97_INT_READ_DONE |
OXYGEN_AC97_INT_WRITE_DONE);
else
oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK, 0);
oxygen_write32(chip, OXYGEN_AC97_OUT_CONFIG, 0);
oxygen_write32(chip, OXYGEN_AC97_IN_CONFIG, 0);
if (!(chip->has_ac97_0 | chip->has_ac97_1))
oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL,
OXYGEN_AC97_CLOCK_DISABLE);
if (!chip->has_ac97_0) {
oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL,
OXYGEN_AC97_NO_CODEC_0);
} else {
oxygen_write_ac97(chip, 0, AC97_RESET, 0);
msleep(1);
oxygen_ac97_set_bits(chip, 0, CM9780_GPIO_SETUP,
CM9780_GPIO0IO | CM9780_GPIO1IO);
oxygen_ac97_set_bits(chip, 0, CM9780_MIXER,
CM9780_BSTSEL | CM9780_STRO_MIC |
CM9780_MIX2FR | CM9780_PCBSW);
oxygen_ac97_set_bits(chip, 0, CM9780_JACK,
CM9780_RSOE | CM9780_CBOE |
CM9780_SSOE | CM9780_FROE |
CM9780_MIC2MIC | CM9780_LI2LI);
oxygen_write_ac97(chip, 0, AC97_MASTER, 0x0000);
oxygen_write_ac97(chip, 0, AC97_PC_BEEP, 0x8000);
oxygen_write_ac97(chip, 0, AC97_MIC, 0x8808);
oxygen_write_ac97(chip, 0, AC97_LINE, 0x0808);
oxygen_write_ac97(chip, 0, AC97_CD, 0x8808);
oxygen_write_ac97(chip, 0, AC97_VIDEO, 0x8808);
oxygen_write_ac97(chip, 0, AC97_AUX, 0x8808);
oxygen_write_ac97(chip, 0, AC97_REC_GAIN, 0x8000);
oxygen_write_ac97(chip, 0, AC97_CENTER_LFE_MASTER, 0x8080);
oxygen_write_ac97(chip, 0, AC97_SURROUND_MASTER, 0x8080);
oxygen_ac97_clear_bits(chip, 0, CM9780_GPIO_STATUS,
CM9780_GPO0);
/* power down unused ADCs and DACs */
oxygen_ac97_set_bits(chip, 0, AC97_POWERDOWN,
AC97_PD_PR0 | AC97_PD_PR1);
oxygen_ac97_set_bits(chip, 0, AC97_EXTENDED_STATUS,
AC97_EA_PRI | AC97_EA_PRJ | AC97_EA_PRK);
}
if (chip->has_ac97_1) {
oxygen_set_bits32(chip, OXYGEN_AC97_OUT_CONFIG,
OXYGEN_AC97_CODEC1_SLOT3 |
OXYGEN_AC97_CODEC1_SLOT4);
oxygen_write_ac97(chip, 1, AC97_RESET, 0);
msleep(1);
oxygen_write_ac97(chip, 1, AC97_MASTER, 0x0000);
oxygen_write_ac97(chip, 1, AC97_HEADPHONE, 0x8000);
oxygen_write_ac97(chip, 1, AC97_PC_BEEP, 0x8000);
oxygen_write_ac97(chip, 1, AC97_MIC, 0x8808);
oxygen_write_ac97(chip, 1, AC97_LINE, 0x8808);
oxygen_write_ac97(chip, 1, AC97_CD, 0x8808);
oxygen_write_ac97(chip, 1, AC97_VIDEO, 0x8808);
oxygen_write_ac97(chip, 1, AC97_AUX, 0x8808);
oxygen_write_ac97(chip, 1, AC97_PCM, 0x0808);
oxygen_write_ac97(chip, 1, AC97_REC_SEL, 0x0000);
oxygen_write_ac97(chip, 1, AC97_REC_GAIN, 0x0000);
oxygen_ac97_set_bits(chip, 1, 0x6a, 0x0040);
}
}
static void oxygen_shutdown(struct oxygen *chip)
{
spin_lock_irq(&chip->reg_lock);
chip->interrupt_mask = 0;
chip->pcm_running = 0;
oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
spin_unlock_irq(&chip->reg_lock);
}
static void oxygen_card_free(struct snd_card *card)
{
struct oxygen *chip = card->private_data;
oxygen_shutdown(chip);
if (chip->irq >= 0)
free_irq(chip->irq, chip);
flush_work(&chip->spdif_input_bits_work);
flush_work(&chip->gpio_work);
chip->model.cleanup(chip);
kfree(chip->model_data);
mutex_destroy(&chip->mutex);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
}
int oxygen_pci_probe(struct pci_dev *pci, int index, char *id,
struct module *owner,
const struct pci_device_id *ids,
int (*get_model)(struct oxygen *chip,
const struct pci_device_id *id
)
)
{
struct snd_card *card;
struct oxygen *chip;
const struct pci_device_id *pci_id;
int err;
err = snd_card_create(index, id, owner, sizeof(*chip), &card);
if (err < 0)
return err;
chip = card->private_data;
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->reg_lock);
mutex_init(&chip->mutex);
INIT_WORK(&chip->spdif_input_bits_work,
oxygen_spdif_input_bits_changed);
INIT_WORK(&chip->gpio_work, oxygen_gpio_changed);
init_waitqueue_head(&chip->ac97_waitqueue);
err = pci_enable_device(pci);
if (err < 0)
goto err_card;
err = pci_request_regions(pci, DRIVER);
if (err < 0) {
snd_printk(KERN_ERR "cannot reserve PCI resources\n");
goto err_pci_enable;
}
if (!(pci_resource_flags(pci, 0) & IORESOURCE_IO) ||
pci_resource_len(pci, 0) < OXYGEN_IO_SIZE) {
snd_printk(KERN_ERR "invalid PCI I/O range\n");
err = -ENXIO;
goto err_pci_regions;
}
chip->addr = pci_resource_start(pci, 0);
pci_id = oxygen_search_pci_id(chip, ids);
if (!pci_id) {
err = -ENODEV;
goto err_pci_regions;
}
oxygen_restore_eeprom(chip, pci_id);
err = get_model(chip, pci_id);
if (err < 0)
goto err_pci_regions;
if (chip->model.model_data_size) {
chip->model_data = kzalloc(chip->model.model_data_size,
GFP_KERNEL);
if (!chip->model_data) {
err = -ENOMEM;
goto err_pci_regions;
}
}
pci_set_master(pci);
snd_card_set_dev(card, &pci->dev);
card->private_free = oxygen_card_free;
configure_pcie_bridge(pci);
oxygen_init(chip);
chip->model.init(chip);
err = request_irq(pci->irq, oxygen_interrupt, IRQF_SHARED,
KBUILD_MODNAME, chip);
if (err < 0) {
snd_printk(KERN_ERR "cannot grab interrupt %d\n", pci->irq);
goto err_card;
}
chip->irq = pci->irq;
strcpy(card->driver, chip->model.chip);
strcpy(card->shortname, chip->model.shortname);
sprintf(card->longname, "%s at %#lx, irq %i",
chip->model.longname, chip->addr, chip->irq);
strcpy(card->mixername, chip->model.chip);
snd_component_add(card, chip->model.chip);
err = oxygen_pcm_init(chip);
if (err < 0)
goto err_card;
err = oxygen_mixer_init(chip);
if (err < 0)
goto err_card;
if (chip->model.device_config & (MIDI_OUTPUT | MIDI_INPUT)) {
unsigned int info_flags =
MPU401_INFO_INTEGRATED | MPU401_INFO_IRQ_HOOK;
if (chip->model.device_config & MIDI_OUTPUT)
info_flags |= MPU401_INFO_OUTPUT;
if (chip->model.device_config & MIDI_INPUT)
info_flags |= MPU401_INFO_INPUT;
err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
chip->addr + OXYGEN_MPU401,
info_flags, -1, &chip->midi);
if (err < 0)
goto err_card;
}
oxygen_proc_init(chip);
spin_lock_irq(&chip->reg_lock);
if (chip->model.device_config & CAPTURE_1_FROM_SPDIF)
chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT;
if (chip->has_ac97_0 | chip->has_ac97_1)
chip->interrupt_mask |= OXYGEN_INT_AC97;
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask);
spin_unlock_irq(&chip->reg_lock);
err = snd_card_register(card);
if (err < 0)
goto err_card;
pci_set_drvdata(pci, card);
return 0;
err_pci_regions:
pci_release_regions(pci);
err_pci_enable:
pci_disable_device(pci);
err_card:
snd_card_free(card);
return err;
}
EXPORT_SYMBOL(oxygen_pci_probe);
void oxygen_pci_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
EXPORT_SYMBOL(oxygen_pci_remove);
#ifdef CONFIG_PM_SLEEP
static int oxygen_pci_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct oxygen *chip = card->private_data;
unsigned int i, saved_interrupt_mask;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
for (i = 0; i < PCM_COUNT; ++i)
if (chip->streams[i])
snd_pcm_suspend(chip->streams[i]);
if (chip->model.suspend)
chip->model.suspend(chip);
spin_lock_irq(&chip->reg_lock);
saved_interrupt_mask = chip->interrupt_mask;
chip->interrupt_mask = 0;
oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
spin_unlock_irq(&chip->reg_lock);
synchronize_irq(chip->irq);
flush_work(&chip->spdif_input_bits_work);
flush_work(&chip->gpio_work);
chip->interrupt_mask = saved_interrupt_mask;
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, PCI_D3hot);
return 0;
}
static const u32 registers_to_restore[OXYGEN_IO_SIZE / 32] = {
0xffffffff, 0x00ff077f, 0x00011d08, 0x007f00ff,
0x00300000, 0x00000fe4, 0x0ff7001f, 0x00000000
};
static const u32 ac97_registers_to_restore[2][0x40 / 32] = {
{ 0x18284fa2, 0x03060000 },
{ 0x00007fa6, 0x00200000 }
};
static inline int is_bit_set(const u32 *bitmap, unsigned int bit)
{
return bitmap[bit / 32] & (1 << (bit & 31));
}
static void oxygen_restore_ac97(struct oxygen *chip, unsigned int codec)
{
unsigned int i;
oxygen_write_ac97(chip, codec, AC97_RESET, 0);
msleep(1);
for (i = 1; i < 0x40; ++i)
if (is_bit_set(ac97_registers_to_restore[codec], i))
oxygen_write_ac97(chip, codec, i * 2,
chip->saved_ac97_registers[codec][i]);
}
static int oxygen_pci_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct oxygen *chip = card->private_data;
unsigned int i;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
snd_printk(KERN_ERR "cannot reenable device");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
for (i = 0; i < OXYGEN_IO_SIZE; ++i)
if (is_bit_set(registers_to_restore, i))
oxygen_write8(chip, i, chip->saved_registers._8[i]);
if (chip->has_ac97_0)
oxygen_restore_ac97(chip, 0);
if (chip->has_ac97_1)
oxygen_restore_ac97(chip, 1);
if (chip->model.resume)
chip->model.resume(chip);
oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
SIMPLE_DEV_PM_OPS(oxygen_pci_pm, oxygen_pci_suspend, oxygen_pci_resume);
EXPORT_SYMBOL(oxygen_pci_pm);
#endif /* CONFIG_PM_SLEEP */
void oxygen_pci_shutdown(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct oxygen *chip = card->private_data;
oxygen_shutdown(chip);
chip->model.cleanup(chip);
}
EXPORT_SYMBOL(oxygen_pci_shutdown);