Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | /* * Dynamic DMA mapping support. * * This implementation is a fallback for platforms that do not support * I/O TLBs (aka DMA address translation hardware). * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> * Copyright (C) 2000, 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid * unnecessary i-cache flushing. * 04/07/.. ak Better overflow handling. Assorted fixes. * 05/09/10 linville Add support for syncing ranges, support syncing for * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. * 08/12/11 beckyb Add highmem support */ #include <linux/cache.h> #include <linux/dma-mapping.h> #include <linux/mm.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/swiotlb.h> #include <linux/pfn.h> #include <linux/types.h> #include <linux/ctype.h> #include <linux/highmem.h> #include <linux/gfp.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/scatterlist.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/iommu-helper.h> #define OFFSET(val,align) ((unsigned long) \ ( (val) & ( (align) - 1))) #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) /* * Minimum IO TLB size to bother booting with. Systems with mainly * 64bit capable cards will only lightly use the swiotlb. If we can't * allocate a contiguous 1MB, we're probably in trouble anyway. */ #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) int swiotlb_force; /* * Used to do a quick range check in swiotlb_tbl_unmap_single and * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this * API. */ static phys_addr_t io_tlb_start, io_tlb_end; /* * The number of IO TLB blocks (in groups of 64) between io_tlb_start and * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. */ static unsigned long io_tlb_nslabs; /* * When the IOMMU overflows we return a fallback buffer. This sets the size. */ static unsigned long io_tlb_overflow = 32*1024; static phys_addr_t io_tlb_overflow_buffer; /* * This is a free list describing the number of free entries available from * each index */ static unsigned int *io_tlb_list; static unsigned int io_tlb_index; /* * We need to save away the original address corresponding to a mapped entry * for the sync operations. */ static phys_addr_t *io_tlb_orig_addr; /* * Protect the above data structures in the map and unmap calls */ static DEFINE_SPINLOCK(io_tlb_lock); static int late_alloc; static int __init setup_io_tlb_npages(char *str) { if (isdigit(*str)) { io_tlb_nslabs = simple_strtoul(str, &str, 0); /* avoid tail segment of size < IO_TLB_SEGSIZE */ io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } if (*str == ',') ++str; if (!strcmp(str, "force")) swiotlb_force = 1; return 0; } early_param("swiotlb", setup_io_tlb_npages); /* make io_tlb_overflow tunable too? */ unsigned long swiotlb_nr_tbl(void) { return io_tlb_nslabs; } EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); /* default to 64MB */ #define IO_TLB_DEFAULT_SIZE (64UL<<20) unsigned long swiotlb_size_or_default(void) { unsigned long size; size = io_tlb_nslabs << IO_TLB_SHIFT; return size ? size : (IO_TLB_DEFAULT_SIZE); } /* Note that this doesn't work with highmem page */ static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, volatile void *address) { return phys_to_dma(hwdev, virt_to_phys(address)); } static bool no_iotlb_memory; void swiotlb_print_info(void) { unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; unsigned char *vstart, *vend; if (no_iotlb_memory) { pr_warn("software IO TLB: No low mem\n"); return; } vstart = phys_to_virt(io_tlb_start); vend = phys_to_virt(io_tlb_end); printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", (unsigned long long)io_tlb_start, (unsigned long long)io_tlb_end, bytes >> 20, vstart, vend - 1); } int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) { void *v_overflow_buffer; unsigned long i, bytes; bytes = nslabs << IO_TLB_SHIFT; io_tlb_nslabs = nslabs; io_tlb_start = __pa(tlb); io_tlb_end = io_tlb_start + bytes; /* * Get the overflow emergency buffer */ v_overflow_buffer = alloc_bootmem_low_pages_nopanic( PAGE_ALIGN(io_tlb_overflow)); if (!v_overflow_buffer) return -ENOMEM; io_tlb_overflow_buffer = __pa(v_overflow_buffer); /* * Allocate and initialize the free list array. This array is used * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE * between io_tlb_start and io_tlb_end. */ io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); for (i = 0; i < io_tlb_nslabs; i++) io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_index = 0; io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); if (verbose) swiotlb_print_info(); return 0; } /* * Statically reserve bounce buffer space and initialize bounce buffer data * structures for the software IO TLB used to implement the DMA API. */ void __init swiotlb_init(int verbose) { size_t default_size = IO_TLB_DEFAULT_SIZE; unsigned char *vstart; unsigned long bytes; if (!io_tlb_nslabs) { io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } bytes = io_tlb_nslabs << IO_TLB_SHIFT; /* Get IO TLB memory from the low pages */ vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes)); if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) return; if (io_tlb_start) free_bootmem(io_tlb_start, PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); pr_warn("Cannot allocate SWIOTLB buffer"); no_iotlb_memory = true; } /* * Systems with larger DMA zones (those that don't support ISA) can * initialize the swiotlb later using the slab allocator if needed. * This should be just like above, but with some error catching. */ int swiotlb_late_init_with_default_size(size_t default_size) { unsigned long bytes, req_nslabs = io_tlb_nslabs; unsigned char *vstart = NULL; unsigned int order; int rc = 0; if (!io_tlb_nslabs) { io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } /* * Get IO TLB memory from the low pages */ order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); io_tlb_nslabs = SLABS_PER_PAGE << order; bytes = io_tlb_nslabs << IO_TLB_SHIFT; while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); if (vstart) break; order--; } if (!vstart) { io_tlb_nslabs = req_nslabs; return -ENOMEM; } if (order != get_order(bytes)) { printk(KERN_WARNING "Warning: only able to allocate %ld MB " "for software IO TLB\n", (PAGE_SIZE << order) >> 20); io_tlb_nslabs = SLABS_PER_PAGE << order; } rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); if (rc) free_pages((unsigned long)vstart, order); return rc; } int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) { unsigned long i, bytes; unsigned char *v_overflow_buffer; bytes = nslabs << IO_TLB_SHIFT; io_tlb_nslabs = nslabs; io_tlb_start = virt_to_phys(tlb); io_tlb_end = io_tlb_start + bytes; memset(tlb, 0, bytes); /* * Get the overflow emergency buffer */ v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, get_order(io_tlb_overflow)); if (!v_overflow_buffer) goto cleanup2; io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); /* * Allocate and initialize the free list array. This array is used * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE * between io_tlb_start and io_tlb_end. */ io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, get_order(io_tlb_nslabs * sizeof(int))); if (!io_tlb_list) goto cleanup3; for (i = 0; i < io_tlb_nslabs; i++) io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_index = 0; io_tlb_orig_addr = (phys_addr_t *) __get_free_pages(GFP_KERNEL, get_order(io_tlb_nslabs * sizeof(phys_addr_t))); if (!io_tlb_orig_addr) goto cleanup4; memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t)); swiotlb_print_info(); late_alloc = 1; return 0; cleanup4: free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * sizeof(int))); io_tlb_list = NULL; cleanup3: free_pages((unsigned long)v_overflow_buffer, get_order(io_tlb_overflow)); io_tlb_overflow_buffer = 0; cleanup2: io_tlb_end = 0; io_tlb_start = 0; io_tlb_nslabs = 0; return -ENOMEM; } void __init swiotlb_free(void) { if (!io_tlb_orig_addr) return; if (late_alloc) { free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), get_order(io_tlb_overflow)); free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * sizeof(phys_addr_t))); free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * sizeof(int))); free_pages((unsigned long)phys_to_virt(io_tlb_start), get_order(io_tlb_nslabs << IO_TLB_SHIFT)); } else { free_bootmem_late(io_tlb_overflow_buffer, PAGE_ALIGN(io_tlb_overflow)); free_bootmem_late(__pa(io_tlb_orig_addr), PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); free_bootmem_late(__pa(io_tlb_list), PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); free_bootmem_late(io_tlb_start, PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); } io_tlb_nslabs = 0; } static int is_swiotlb_buffer(phys_addr_t paddr) { return paddr >= io_tlb_start && paddr < io_tlb_end; } /* * Bounce: copy the swiotlb buffer back to the original dma location */ static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { unsigned long pfn = PFN_DOWN(orig_addr); unsigned char *vaddr = phys_to_virt(tlb_addr); if (PageHighMem(pfn_to_page(pfn))) { /* The buffer does not have a mapping. Map it in and copy */ unsigned int offset = orig_addr & ~PAGE_MASK; char *buffer; unsigned int sz = 0; unsigned long flags; while (size) { sz = min_t(size_t, PAGE_SIZE - offset, size); local_irq_save(flags); buffer = kmap_atomic(pfn_to_page(pfn)); if (dir == DMA_TO_DEVICE) memcpy(vaddr, buffer + offset, sz); else memcpy(buffer + offset, vaddr, sz); kunmap_atomic(buffer); local_irq_restore(flags); size -= sz; pfn++; vaddr += sz; offset = 0; } } else if (dir == DMA_TO_DEVICE) { memcpy(vaddr, phys_to_virt(orig_addr), size); } else { memcpy(phys_to_virt(orig_addr), vaddr, size); } } phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr, phys_addr_t orig_addr, size_t size, enum dma_data_direction dir) { unsigned long flags; phys_addr_t tlb_addr; unsigned int nslots, stride, index, wrap; int i; unsigned long mask; unsigned long offset_slots; unsigned long max_slots; if (no_iotlb_memory) panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); mask = dma_get_seg_boundary(hwdev); tbl_dma_addr &= mask; offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; /* * Carefully handle integer overflow which can occur when mask == ~0UL. */ max_slots = mask + 1 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); /* * For mappings greater than a page, we limit the stride (and * hence alignment) to a page size. */ nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; if (size > PAGE_SIZE) stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); else stride = 1; BUG_ON(!nslots); /* * Find suitable number of IO TLB entries size that will fit this * request and allocate a buffer from that IO TLB pool. */ spin_lock_irqsave(&io_tlb_lock, flags); index = ALIGN(io_tlb_index, stride); if (index >= io_tlb_nslabs) index = 0; wrap = index; do { while (iommu_is_span_boundary(index, nslots, offset_slots, max_slots)) { index += stride; if (index >= io_tlb_nslabs) index = 0; if (index == wrap) goto not_found; } /* * If we find a slot that indicates we have 'nslots' number of * contiguous buffers, we allocate the buffers from that slot * and mark the entries as '0' indicating unavailable. */ if (io_tlb_list[index] >= nslots) { int count = 0; for (i = index; i < (int) (index + nslots); i++) io_tlb_list[i] = 0; for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); /* * Update the indices to avoid searching in the next * round. */ io_tlb_index = ((index + nslots) < io_tlb_nslabs ? (index + nslots) : 0); goto found; } index += stride; if (index >= io_tlb_nslabs) index = 0; } while (index != wrap); not_found: spin_unlock_irqrestore(&io_tlb_lock, flags); return SWIOTLB_MAP_ERROR; found: spin_unlock_irqrestore(&io_tlb_lock, flags); /* * Save away the mapping from the original address to the DMA address. * This is needed when we sync the memory. Then we sync the buffer if * needed. */ for (i = 0; i < nslots; i++) io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); return tlb_addr; } EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single); /* * Allocates bounce buffer and returns its kernel virtual address. */ phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size, enum dma_data_direction dir) { dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start); return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir); } /* * dma_addr is the kernel virtual address of the bounce buffer to unmap. */ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { unsigned long flags; int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; phys_addr_t orig_addr = io_tlb_orig_addr[index]; /* * First, sync the memory before unmapping the entry */ if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); /* * Return the buffer to the free list by setting the corresponding * entries to indicate the number of contiguous entries available. * While returning the entries to the free list, we merge the entries * with slots below and above the pool being returned. */ spin_lock_irqsave(&io_tlb_lock, flags); { count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? io_tlb_list[index + nslots] : 0); /* * Step 1: return the slots to the free list, merging the * slots with superceeding slots */ for (i = index + nslots - 1; i >= index; i--) io_tlb_list[i] = ++count; /* * Step 2: merge the returned slots with the preceding slots, * if available (non zero) */ for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; } spin_unlock_irqrestore(&io_tlb_lock, flags); } EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single); void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir, enum dma_sync_target target) { int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; phys_addr_t orig_addr = io_tlb_orig_addr[index]; orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); switch (target) { case SYNC_FOR_CPU: if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); else BUG_ON(dir != DMA_TO_DEVICE); break; case SYNC_FOR_DEVICE: if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); else BUG_ON(dir != DMA_FROM_DEVICE); break; default: BUG(); } } EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single); void * swiotlb_alloc_coherent(struct device *hwdev, size_t size, dma_addr_t *dma_handle, gfp_t flags) { dma_addr_t dev_addr; void *ret; int order = get_order(size); u64 dma_mask = DMA_BIT_MASK(32); if (hwdev && hwdev->coherent_dma_mask) dma_mask = hwdev->coherent_dma_mask; ret = (void *)__get_free_pages(flags, order); if (ret) { dev_addr = swiotlb_virt_to_bus(hwdev, ret); if (dev_addr + size - 1 > dma_mask) { /* * The allocated memory isn't reachable by the device. */ free_pages((unsigned long) ret, order); ret = NULL; } } if (!ret) { /* * We are either out of memory or the device can't DMA to * GFP_DMA memory; fall back on map_single(), which * will grab memory from the lowest available address range. */ phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE); if (paddr == SWIOTLB_MAP_ERROR) return NULL; ret = phys_to_virt(paddr); dev_addr = phys_to_dma(hwdev, paddr); /* Confirm address can be DMA'd by device */ if (dev_addr + size - 1 > dma_mask) { printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", (unsigned long long)dma_mask, (unsigned long long)dev_addr); /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE); return NULL; } } *dma_handle = dev_addr; memset(ret, 0, size); return ret; } EXPORT_SYMBOL(swiotlb_alloc_coherent); void swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_t dev_addr) { phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); WARN_ON(irqs_disabled()); if (!is_swiotlb_buffer(paddr)) free_pages((unsigned long)vaddr, get_order(size)); else /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */ swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE); } EXPORT_SYMBOL(swiotlb_free_coherent); static void swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, int do_panic) { /* * Ran out of IOMMU space for this operation. This is very bad. * Unfortunately the drivers cannot handle this operation properly. * unless they check for dma_mapping_error (most don't) * When the mapping is small enough return a static buffer to limit * the damage, or panic when the transfer is too big. */ printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at " "device %s\n", size, dev ? dev_name(dev) : "?"); if (size <= io_tlb_overflow || !do_panic) return; if (dir == DMA_BIDIRECTIONAL) panic("DMA: Random memory could be DMA accessed\n"); if (dir == DMA_FROM_DEVICE) panic("DMA: Random memory could be DMA written\n"); if (dir == DMA_TO_DEVICE) panic("DMA: Random memory could be DMA read\n"); } /* * Map a single buffer of the indicated size for DMA in streaming mode. The * physical address to use is returned. * * Once the device is given the dma address, the device owns this memory until * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. */ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { phys_addr_t map, phys = page_to_phys(page) + offset; dma_addr_t dev_addr = phys_to_dma(dev, phys); BUG_ON(dir == DMA_NONE); /* * If the address happens to be in the device's DMA window, * we can safely return the device addr and not worry about bounce * buffering it. */ if (dma_capable(dev, dev_addr, size) && !swiotlb_force) return dev_addr; /* Oh well, have to allocate and map a bounce buffer. */ map = map_single(dev, phys, size, dir); if (map == SWIOTLB_MAP_ERROR) { swiotlb_full(dev, size, dir, 1); return phys_to_dma(dev, io_tlb_overflow_buffer); } dev_addr = phys_to_dma(dev, map); /* Ensure that the address returned is DMA'ble */ if (!dma_capable(dev, dev_addr, size)) { swiotlb_tbl_unmap_single(dev, map, size, dir); return phys_to_dma(dev, io_tlb_overflow_buffer); } return dev_addr; } EXPORT_SYMBOL_GPL(swiotlb_map_page); /* * Unmap a single streaming mode DMA translation. The dma_addr and size must * match what was provided for in a previous swiotlb_map_page call. All * other usages are undefined. * * After this call, reads by the cpu to the buffer are guaranteed to see * whatever the device wrote there. */ static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); BUG_ON(dir == DMA_NONE); if (is_swiotlb_buffer(paddr)) { swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); return; } if (dir != DMA_FROM_DEVICE) return; /* * phys_to_virt doesn't work with hihgmem page but we could * call dma_mark_clean() with hihgmem page here. However, we * are fine since dma_mark_clean() is null on POWERPC. We can * make dma_mark_clean() take a physical address if necessary. */ dma_mark_clean(phys_to_virt(paddr), size); } void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unmap_single(hwdev, dev_addr, size, dir); } EXPORT_SYMBOL_GPL(swiotlb_unmap_page); /* * Make physical memory consistent for a single streaming mode DMA translation * after a transfer. * * If you perform a swiotlb_map_page() but wish to interrogate the buffer * using the cpu, yet do not wish to teardown the dma mapping, you must * call this function before doing so. At the next point you give the dma * address back to the card, you must first perform a * swiotlb_dma_sync_for_device, and then the device again owns the buffer */ static void swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, enum dma_sync_target target) { phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); BUG_ON(dir == DMA_NONE); if (is_swiotlb_buffer(paddr)) { swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); return; } if (dir != DMA_FROM_DEVICE) return; dma_mark_clean(phys_to_virt(paddr), size); } void swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); } EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); void swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); } EXPORT_SYMBOL(swiotlb_sync_single_for_device); /* * Map a set of buffers described by scatterlist in streaming mode for DMA. * This is the scatter-gather version of the above swiotlb_map_page * interface. Here the scatter gather list elements are each tagged with the * appropriate dma address and length. They are obtained via * sg_dma_{address,length}(SG). * * NOTE: An implementation may be able to use a smaller number of * DMA address/length pairs than there are SG table elements. * (for example via virtual mapping capabilities) * The routine returns the number of addr/length pairs actually * used, at most nents. * * Device ownership issues as mentioned above for swiotlb_map_page are the * same here. */ int swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(dir == DMA_NONE); for_each_sg(sgl, sg, nelems, i) { phys_addr_t paddr = sg_phys(sg); dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); if (swiotlb_force || !dma_capable(hwdev, dev_addr, sg->length)) { phys_addr_t map = map_single(hwdev, sg_phys(sg), sg->length, dir); if (map == SWIOTLB_MAP_ERROR) { /* Don't panic here, we expect map_sg users to do proper error handling. */ swiotlb_full(hwdev, sg->length, dir, 0); swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, attrs); sg_dma_len(sgl) = 0; return 0; } sg->dma_address = phys_to_dma(hwdev, map); } else sg->dma_address = dev_addr; sg_dma_len(sg) = sg->length; } return nelems; } EXPORT_SYMBOL(swiotlb_map_sg_attrs); int swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); } EXPORT_SYMBOL(swiotlb_map_sg); /* * Unmap a set of streaming mode DMA translations. Again, cpu read rules * concerning calls here are the same as for swiotlb_unmap_page() above. */ void swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(dir == DMA_NONE); for_each_sg(sgl, sg, nelems, i) unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir); } EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); void swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); } EXPORT_SYMBOL(swiotlb_unmap_sg); /* * Make physical memory consistent for a set of streaming mode DMA translations * after a transfer. * * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules * and usage. */ static void swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, enum dma_sync_target target) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nelems, i) swiotlb_sync_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, target); } void swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); } EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); void swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); } EXPORT_SYMBOL(swiotlb_sync_sg_for_device); int swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) { return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer)); } EXPORT_SYMBOL(swiotlb_dma_mapping_error); /* * Return whether the given device DMA address mask can be supported * properly. For example, if your device can only drive the low 24-bits * during bus mastering, then you would pass 0x00ffffff as the mask to * this function. */ int swiotlb_dma_supported(struct device *hwdev, u64 mask) { return phys_to_dma(hwdev, io_tlb_end - 1) <= mask; } EXPORT_SYMBOL(swiotlb_dma_supported); |