Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | /* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/types.h> #include <linux/kprobes.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kdebug.h> #include <linux/sched.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <asm/current.h> #include <asm/disasm.h> #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \ (unsigned long)current_thread_info() + THREAD_SIZE - (addr)) DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); int __kprobes arch_prepare_kprobe(struct kprobe *p) { /* Attempt to probe at unaligned address */ if ((unsigned long)p->addr & 0x01) return -EINVAL; /* Address should not be in exception handling code */ p->ainsn.is_short = is_short_instr((unsigned long)p->addr); p->opcode = *p->addr; return 0; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = UNIMP_S_INSTRUCTION; flush_icache_range((unsigned long)p->addr, (unsigned long)p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_icache_range((unsigned long)p->addr, (unsigned long)p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_remove_kprobe(struct kprobe *p) { arch_disarm_kprobe(p); /* Can we remove the kprobe in the middle of kprobe handling? */ if (p->ainsn.t1_addr) { *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; flush_icache_range((unsigned long)p->ainsn.t1_addr, (unsigned long)p->ainsn.t1_addr + sizeof(kprobe_opcode_t)); p->ainsn.t1_addr = NULL; } if (p->ainsn.t2_addr) { *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; flush_icache_range((unsigned long)p->ainsn.t2_addr, (unsigned long)p->ainsn.t2_addr + sizeof(kprobe_opcode_t)); p->ainsn.t2_addr = NULL; } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; kcb->kprobe_status = kcb->prev_kprobe.status; } static inline void __kprobes set_current_kprobe(struct kprobe *p) { __get_cpu_var(current_kprobe) = p; } static void __kprobes resume_execution(struct kprobe *p, unsigned long addr, struct pt_regs *regs) { /* Remove the trap instructions inserted for single step and * restore the original instructions */ if (p->ainsn.t1_addr) { *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; flush_icache_range((unsigned long)p->ainsn.t1_addr, (unsigned long)p->ainsn.t1_addr + sizeof(kprobe_opcode_t)); p->ainsn.t1_addr = NULL; } if (p->ainsn.t2_addr) { *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; flush_icache_range((unsigned long)p->ainsn.t2_addr, (unsigned long)p->ainsn.t2_addr + sizeof(kprobe_opcode_t)); p->ainsn.t2_addr = NULL; } return; } static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs) { unsigned long next_pc; unsigned long tgt_if_br = 0; int is_branch; unsigned long bta; /* Copy the opcode back to the kprobe location and execute the * instruction. Because of this we will not be able to get into the * same kprobe until this kprobe is done */ *(p->addr) = p->opcode; flush_icache_range((unsigned long)p->addr, (unsigned long)p->addr + sizeof(kprobe_opcode_t)); /* Now we insert the trap at the next location after this instruction to * single step. If it is a branch we insert the trap at possible branch * targets */ bta = regs->bta; if (regs->status32 & 0x40) { /* We are in a delay slot with the branch taken */ next_pc = bta & ~0x01; if (!p->ainsn.is_short) { if (bta & 0x01) regs->blink += 2; else { /* Branch not taken */ next_pc += 2; /* next pc is taken from bta after executing the * delay slot instruction */ regs->bta += 2; } } is_branch = 0; } else is_branch = disasm_next_pc((unsigned long)p->addr, regs, (struct callee_regs *) current->thread.callee_reg, &next_pc, &tgt_if_br); p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc; p->ainsn.t1_opcode = *(p->ainsn.t1_addr); *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION; flush_icache_range((unsigned long)p->ainsn.t1_addr, (unsigned long)p->ainsn.t1_addr + sizeof(kprobe_opcode_t)); if (is_branch) { p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br; p->ainsn.t2_opcode = *(p->ainsn.t2_addr); *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION; flush_icache_range((unsigned long)p->ainsn.t2_addr, (unsigned long)p->ainsn.t2_addr + sizeof(kprobe_opcode_t)); } } int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs) { struct kprobe *p; struct kprobe_ctlblk *kcb; preempt_disable(); kcb = get_kprobe_ctlblk(); p = get_kprobe((unsigned long *)addr); if (p) { /* * We have reentered the kprobe_handler, since another kprobe * was hit while within the handler, we save the original * kprobes and single step on the instruction of the new probe * without calling any user handlers to avoid recursive * kprobes. */ if (kprobe_running()) { save_previous_kprobe(kcb); set_current_kprobe(p); kprobes_inc_nmissed_count(p); setup_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* If we have no pre-handler or it returned 0, we continue with * normal processing. If we have a pre-handler and it returned * non-zero - which is expected from setjmp_pre_handler for * jprobe, we return without single stepping and leave that to * the break-handler which is invoked by a kprobe from * jprobe_return */ if (!p->pre_handler || !p->pre_handler(p, regs)) { setup_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; } return 1; } else if (kprobe_running()) { p = __get_cpu_var(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) { setup_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; } } /* no_kprobe: */ preempt_enable_no_resched(); return 0; } static int __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; resume_execution(cur, addr, regs); /* Rearm the kprobe */ arch_arm_kprobe(cur); /* * When we return from trap instruction we go to the next instruction * We restored the actual instruction in resume_exectuiont and we to * return to the same address and execute it */ regs->ret = addr; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); return 1; } /* * Fault can be for the instruction being single stepped or for the * pre/post handlers in the module. * This is applicable for applications like user probes, where we have the * probe in user space and the handlers in the kernel */ int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single stepped * caused the fault. We reset the current kprobe and allow the * exception handler as if it is regular exception. In our * case it doesn't matter because the system will be halted */ resume_execution(cur, (unsigned long)cur->addr, regs); if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We are here because the instructions in the pre/post handler * caused the fault. */ /* We increment the nmissed count for accounting, * we can also use npre/npostfault count for accouting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned zero, * try to fix up. */ if (fixup_exception(regs)) return 1; /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = data; unsigned long addr = args->err; int ret = NOTIFY_DONE; switch (val) { case DIE_IERR: if (arc_kprobe_handler(addr, args->regs)) return NOTIFY_STOP; break; case DIE_TRAP: if (arc_post_kprobe_handler(addr, args->regs)) return NOTIFY_STOP; break; default: break; } return ret; } int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long sp_addr = regs->sp; kcb->jprobe_saved_regs = *regs; memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); regs->ret = (unsigned long)(jp->entry); return 1; } void __kprobes jprobe_return(void) { __asm__ __volatile__("unimp_s"); return; } int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long sp_addr; *regs = kcb->jprobe_saved_regs; sp_addr = regs->sp; memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr)); preempt_enable_no_resched(); return 1; } static void __used kretprobe_trampoline_holder(void) { __asm__ __volatile__(".global kretprobe_trampoline\n" "kretprobe_trampoline:\n" "nop\n"); } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *) regs->blink; /* Replace the return addr with trampoline addr */ regs->blink = (unsigned long)&kretprobe_trampoline; } static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more than one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) { /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } } kretprobe_assert(ri, orig_ret_address, trampoline_address); regs->ret = orig_ret_address; reset_current_kprobe(); kretprobe_hash_unlock(current, &flags); preempt_enable_no_resched(); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } /* By returning a non zero value, we are telling the kprobe handler * that we don't want the post_handler to run */ return 1; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { /* Registering the trampoline code for the kret probe */ return register_kprobe(&trampoline_p); } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline) return 1; return 0; } void trap_is_kprobe(unsigned long address, struct pt_regs *regs) { notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP); } |