Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 | /* memcontrol.c - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> * * Memory thresholds * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Kernel Memory Controller * Copyright (C) 2012 Parallels Inc. and Google Inc. * Authors: Glauber Costa and Suleiman Souhlal * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/res_counter.h> #include <linux/memcontrol.h> #include <linux/cgroup.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/pagemap.h> #include <linux/smp.h> #include <linux/page-flags.h> #include <linux/backing-dev.h> #include <linux/bit_spinlock.h> #include <linux/rcupdate.h> #include <linux/limits.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/rbtree.h> #include <linux/slab.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/spinlock.h> #include <linux/eventfd.h> #include <linux/sort.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/vmalloc.h> #include <linux/vmpressure.h> #include <linux/mm_inline.h> #include <linux/page_cgroup.h> #include <linux/cpu.h> #include <linux/oom.h> #include <linux/lockdep.h> #include "internal.h" #include <net/sock.h> #include <net/ip.h> #include <net/tcp_memcontrol.h> #include <asm/uaccess.h> #include <trace/events/vmscan.h> struct cgroup_subsys mem_cgroup_subsys __read_mostly; EXPORT_SYMBOL(mem_cgroup_subsys); #define MEM_CGROUP_RECLAIM_RETRIES 5 static struct mem_cgroup *root_mem_cgroup __read_mostly; #ifdef CONFIG_MEMCG_SWAP /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ int do_swap_account __read_mostly; /* for remember boot option*/ #ifdef CONFIG_MEMCG_SWAP_ENABLED static int really_do_swap_account __initdata = 1; #else static int really_do_swap_account __initdata = 0; #endif #else #define do_swap_account 0 #endif static const char * const mem_cgroup_stat_names[] = { "cache", "rss", "rss_huge", "mapped_file", "writeback", "swap", }; enum mem_cgroup_events_index { MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ MEM_CGROUP_EVENTS_NSTATS, }; static const char * const mem_cgroup_events_names[] = { "pgpgin", "pgpgout", "pgfault", "pgmajfault", }; static const char * const mem_cgroup_lru_names[] = { "inactive_anon", "active_anon", "inactive_file", "active_file", "unevictable", }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremated by the number of pages. This counter is used for * for trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_TARGET_NUMAINFO, MEM_CGROUP_NTARGETS, }; #define THRESHOLDS_EVENTS_TARGET 128 #define SOFTLIMIT_EVENTS_TARGET 1024 #define NUMAINFO_EVENTS_TARGET 1024 struct mem_cgroup_stat_cpu { long count[MEM_CGROUP_STAT_NSTATS]; unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { /* * last scanned hierarchy member. Valid only if last_dead_count * matches memcg->dead_count of the hierarchy root group. */ struct mem_cgroup *last_visited; unsigned long last_dead_count; /* scan generation, increased every round-trip */ unsigned int generation; }; /* * per-zone information in memory controller. */ struct mem_cgroup_per_zone { struct lruvec lruvec; unsigned long lru_size[NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; struct rb_node tree_node; /* RB tree node */ unsigned long long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_per_node { struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; }; /* * Cgroups above their limits are maintained in a RB-Tree, independent of * their hierarchy representation */ struct mem_cgroup_tree_per_zone { struct rb_root rb_root; spinlock_t lock; }; struct mem_cgroup_tree_per_node { struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; }; struct mem_cgroup_tree { struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; }; static struct mem_cgroup_tree soft_limit_tree __read_mostly; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; u64 threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[0]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; /* for OOM */ struct mem_cgroup_eventfd_list { struct list_head list; struct eventfd_ctx *eventfd; }; static void mem_cgroup_threshold(struct mem_cgroup *memcg); static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. * * TODO: Add a water mark for the memory controller. Reclaim will begin when * we hit the water mark. May be even add a low water mark, such that * no reclaim occurs from a cgroup at it's low water mark, this is * a feature that will be implemented much later in the future. */ struct mem_cgroup { struct cgroup_subsys_state css; /* * the counter to account for memory usage */ struct res_counter res; /* vmpressure notifications */ struct vmpressure vmpressure; /* css_online() has been completed */ int initialized; /* * the counter to account for mem+swap usage. */ struct res_counter memsw; /* * the counter to account for kernel memory usage. */ struct res_counter kmem; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ bool oom_lock; atomic_t under_oom; atomic_t oom_wakeups; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* set when res.limit == memsw.limit */ bool memsw_is_minimum; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; /* taken only while moving_account > 0 */ spinlock_t move_lock; /* * percpu counter. */ struct mem_cgroup_stat_cpu __percpu *stat; /* * used when a cpu is offlined or other synchronizations * See mem_cgroup_read_stat(). */ struct mem_cgroup_stat_cpu nocpu_base; spinlock_t pcp_counter_lock; atomic_t dead_count; #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) struct tcp_memcontrol tcp_mem; #endif #if defined(CONFIG_MEMCG_KMEM) /* analogous to slab_common's slab_caches list. per-memcg */ struct list_head memcg_slab_caches; /* Not a spinlock, we can take a lot of time walking the list */ struct mutex slab_caches_mutex; /* Index in the kmem_cache->memcg_params->memcg_caches array */ int kmemcg_id; #endif int last_scanned_node; #if MAX_NUMNODES > 1 nodemask_t scan_nodes; atomic_t numainfo_events; atomic_t numainfo_updating; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; static size_t memcg_size(void) { return sizeof(struct mem_cgroup) + nr_node_ids * sizeof(struct mem_cgroup_per_node *); } /* internal only representation about the status of kmem accounting. */ enum { KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ }; /* We account when limit is on, but only after call sites are patched */ #define KMEM_ACCOUNTED_MASK \ ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) #ifdef CONFIG_MEMCG_KMEM static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) { set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); } static bool memcg_kmem_is_active(struct mem_cgroup *memcg) { return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); } static void memcg_kmem_set_activated(struct mem_cgroup *memcg) { set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); } static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) { clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); } static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) { /* * Our caller must use css_get() first, because memcg_uncharge_kmem() * will call css_put() if it sees the memcg is dead. */ smp_wmb(); if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); } static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) { return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); } #endif /* Stuffs for move charges at task migration. */ /* * Types of charges to be moved. "move_charge_at_immitgrate" and * "immigrate_flags" are treated as a left-shifted bitmap of these types. */ enum move_type { MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ NR_MOVE_TYPE, }; /* "mc" and its members are protected by cgroup_mutex */ static struct move_charge_struct { spinlock_t lock; /* for from, to */ struct mem_cgroup *from; struct mem_cgroup *to; unsigned long immigrate_flags; unsigned long precharge; unsigned long moved_charge; unsigned long moved_swap; struct task_struct *moving_task; /* a task moving charges */ wait_queue_head_t waitq; /* a waitq for other context */ } mc = { .lock = __SPIN_LOCK_UNLOCKED(mc.lock), .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), }; static bool move_anon(void) { return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); } static bool move_file(void) { return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); } /* * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft * limit reclaim to prevent infinite loops, if they ever occur. */ #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 enum charge_type { MEM_CGROUP_CHARGE_TYPE_CACHE = 0, MEM_CGROUP_CHARGE_TYPE_ANON, MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ NR_CHARGE_TYPE, }; /* for encoding cft->private value on file */ enum res_type { _MEM, _MEMSWAP, _OOM_TYPE, _KMEM, }; #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) #define MEMFILE_ATTR(val) ((val) & 0xffff) /* Used for OOM nofiier */ #define OOM_CONTROL (0) /* * Reclaim flags for mem_cgroup_hierarchical_reclaim */ #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) /* * The memcg_create_mutex will be held whenever a new cgroup is created. * As a consequence, any change that needs to protect against new child cgroups * appearing has to hold it as well. */ static DEFINE_MUTEX(memcg_create_mutex); struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) { return s ? container_of(s, struct mem_cgroup, css) : NULL; } /* Some nice accessors for the vmpressure. */ struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) { if (!memcg) memcg = root_mem_cgroup; return &memcg->vmpressure; } struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) { return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; } struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) { return &mem_cgroup_from_css(css)->vmpressure; } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } /* Writing them here to avoid exposing memcg's inner layout */ #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) void sock_update_memcg(struct sock *sk) { if (mem_cgroup_sockets_enabled) { struct mem_cgroup *memcg; struct cg_proto *cg_proto; BUG_ON(!sk->sk_prot->proto_cgroup); /* Socket cloning can throw us here with sk_cgrp already * filled. It won't however, necessarily happen from * process context. So the test for root memcg given * the current task's memcg won't help us in this case. * * Respecting the original socket's memcg is a better * decision in this case. */ if (sk->sk_cgrp) { BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); css_get(&sk->sk_cgrp->memcg->css); return; } rcu_read_lock(); memcg = mem_cgroup_from_task(current); cg_proto = sk->sk_prot->proto_cgroup(memcg); if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { sk->sk_cgrp = cg_proto; } rcu_read_unlock(); } } EXPORT_SYMBOL(sock_update_memcg); void sock_release_memcg(struct sock *sk) { if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { struct mem_cgroup *memcg; WARN_ON(!sk->sk_cgrp->memcg); memcg = sk->sk_cgrp->memcg; css_put(&sk->sk_cgrp->memcg->css); } } struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) { if (!memcg || mem_cgroup_is_root(memcg)) return NULL; return &memcg->tcp_mem.cg_proto; } EXPORT_SYMBOL(tcp_proto_cgroup); static void disarm_sock_keys(struct mem_cgroup *memcg) { if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) return; static_key_slow_dec(&memcg_socket_limit_enabled); } #else static void disarm_sock_keys(struct mem_cgroup *memcg) { } #endif #ifdef CONFIG_MEMCG_KMEM /* * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. * There are two main reasons for not using the css_id for this: * 1) this works better in sparse environments, where we have a lot of memcgs, * but only a few kmem-limited. Or also, if we have, for instance, 200 * memcgs, and none but the 200th is kmem-limited, we'd have to have a * 200 entry array for that. * * 2) In order not to violate the cgroup API, we would like to do all memory * allocation in ->create(). At that point, we haven't yet allocated the * css_id. Having a separate index prevents us from messing with the cgroup * core for this * * The current size of the caches array is stored in * memcg_limited_groups_array_size. It will double each time we have to * increase it. */ static DEFINE_IDA(kmem_limited_groups); int memcg_limited_groups_array_size; /* * MIN_SIZE is different than 1, because we would like to avoid going through * the alloc/free process all the time. In a small machine, 4 kmem-limited * cgroups is a reasonable guess. In the future, it could be a parameter or * tunable, but that is strictly not necessary. * * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get * this constant directly from cgroup, but it is understandable that this is * better kept as an internal representation in cgroup.c. In any case, the * css_id space is not getting any smaller, and we don't have to necessarily * increase ours as well if it increases. */ #define MEMCG_CACHES_MIN_SIZE 4 #define MEMCG_CACHES_MAX_SIZE 65535 /* * A lot of the calls to the cache allocation functions are expected to be * inlined by the compiler. Since the calls to memcg_kmem_get_cache are * conditional to this static branch, we'll have to allow modules that does * kmem_cache_alloc and the such to see this symbol as well */ struct static_key memcg_kmem_enabled_key; EXPORT_SYMBOL(memcg_kmem_enabled_key); static void disarm_kmem_keys(struct mem_cgroup *memcg) { if (memcg_kmem_is_active(memcg)) { static_key_slow_dec(&memcg_kmem_enabled_key); ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); } /* * This check can't live in kmem destruction function, * since the charges will outlive the cgroup */ WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); } #else static void disarm_kmem_keys(struct mem_cgroup *memcg) { } #endif /* CONFIG_MEMCG_KMEM */ static void disarm_static_keys(struct mem_cgroup *memcg) { disarm_sock_keys(memcg); disarm_kmem_keys(memcg); } static void drain_all_stock_async(struct mem_cgroup *memcg); static struct mem_cgroup_per_zone * mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) { VM_BUG_ON((unsigned)nid >= nr_node_ids); return &memcg->nodeinfo[nid]->zoneinfo[zid]; } struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) { return &memcg->css; } static struct mem_cgroup_per_zone * page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) { int nid = page_to_nid(page); int zid = page_zonenum(page); return mem_cgroup_zoneinfo(memcg, nid, zid); } static struct mem_cgroup_tree_per_zone * soft_limit_tree_node_zone(int nid, int zid) { return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; } static struct mem_cgroup_tree_per_zone * soft_limit_tree_from_page(struct page *page) { int nid = page_to_nid(page); int zid = page_zonenum(page); return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; } static void __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, struct mem_cgroup_per_zone *mz, struct mem_cgroup_tree_per_zone *mctz, unsigned long long new_usage_in_excess) { struct rb_node **p = &mctz->rb_root.rb_node; struct rb_node *parent = NULL; struct mem_cgroup_per_zone *mz_node; if (mz->on_tree) return; mz->usage_in_excess = new_usage_in_excess; if (!mz->usage_in_excess) return; while (*p) { parent = *p; mz_node = rb_entry(parent, struct mem_cgroup_per_zone, tree_node); if (mz->usage_in_excess < mz_node->usage_in_excess) p = &(*p)->rb_left; /* * We can't avoid mem cgroups that are over their soft * limit by the same amount */ else if (mz->usage_in_excess >= mz_node->usage_in_excess) p = &(*p)->rb_right; } rb_link_node(&mz->tree_node, parent, p); rb_insert_color(&mz->tree_node, &mctz->rb_root); mz->on_tree = true; } static void __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, struct mem_cgroup_per_zone *mz, struct mem_cgroup_tree_per_zone *mctz) { if (!mz->on_tree) return; rb_erase(&mz->tree_node, &mctz->rb_root); mz->on_tree = false; } static void mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, struct mem_cgroup_per_zone *mz, struct mem_cgroup_tree_per_zone *mctz) { spin_lock(&mctz->lock); __mem_cgroup_remove_exceeded(memcg, mz, mctz); spin_unlock(&mctz->lock); } static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) { unsigned long long excess; struct mem_cgroup_per_zone *mz; struct mem_cgroup_tree_per_zone *mctz; int nid = page_to_nid(page); int zid = page_zonenum(page); mctz = soft_limit_tree_from_page(page); /* * Necessary to update all ancestors when hierarchy is used. * because their event counter is not touched. */ for (; memcg; memcg = parent_mem_cgroup(memcg)) { mz = mem_cgroup_zoneinfo(memcg, nid, zid); excess = res_counter_soft_limit_excess(&memcg->res); /* * We have to update the tree if mz is on RB-tree or * mem is over its softlimit. */ if (excess || mz->on_tree) { spin_lock(&mctz->lock); /* if on-tree, remove it */ if (mz->on_tree) __mem_cgroup_remove_exceeded(memcg, mz, mctz); /* * Insert again. mz->usage_in_excess will be updated. * If excess is 0, no tree ops. */ __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); spin_unlock(&mctz->lock); } } } static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) { int node, zone; struct mem_cgroup_per_zone *mz; struct mem_cgroup_tree_per_zone *mctz; for_each_node(node) { for (zone = 0; zone < MAX_NR_ZONES; zone++) { mz = mem_cgroup_zoneinfo(memcg, node, zone); mctz = soft_limit_tree_node_zone(node, zone); mem_cgroup_remove_exceeded(memcg, mz, mctz); } } } static struct mem_cgroup_per_zone * __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) { struct rb_node *rightmost = NULL; struct mem_cgroup_per_zone *mz; retry: mz = NULL; rightmost = rb_last(&mctz->rb_root); if (!rightmost) goto done; /* Nothing to reclaim from */ mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); /* * Remove the node now but someone else can add it back, * we will to add it back at the end of reclaim to its correct * position in the tree. */ __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); if (!res_counter_soft_limit_excess(&mz->memcg->res) || !css_tryget(&mz->memcg->css)) goto retry; done: return mz; } static struct mem_cgroup_per_zone * mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) { struct mem_cgroup_per_zone *mz; spin_lock(&mctz->lock); mz = __mem_cgroup_largest_soft_limit_node(mctz); spin_unlock(&mctz->lock); return mz; } /* * Implementation Note: reading percpu statistics for memcg. * * Both of vmstat[] and percpu_counter has threshold and do periodic * synchronization to implement "quick" read. There are trade-off between * reading cost and precision of value. Then, we may have a chance to implement * a periodic synchronizion of counter in memcg's counter. * * But this _read() function is used for user interface now. The user accounts * memory usage by memory cgroup and he _always_ requires exact value because * he accounts memory. Even if we provide quick-and-fuzzy read, we always * have to visit all online cpus and make sum. So, for now, unnecessary * synchronization is not implemented. (just implemented for cpu hotplug) * * If there are kernel internal actions which can make use of some not-exact * value, and reading all cpu value can be performance bottleneck in some * common workload, threashold and synchonization as vmstat[] should be * implemented. */ static long mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) { long val = 0; int cpu; get_online_cpus(); for_each_online_cpu(cpu) val += per_cpu(memcg->stat->count[idx], cpu); #ifdef CONFIG_HOTPLUG_CPU spin_lock(&memcg->pcp_counter_lock); val += memcg->nocpu_base.count[idx]; spin_unlock(&memcg->pcp_counter_lock); #endif put_online_cpus(); return val; } static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, bool charge) { int val = (charge) ? 1 : -1; this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); } static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, enum mem_cgroup_events_index idx) { unsigned long val = 0; int cpu; get_online_cpus(); for_each_online_cpu(cpu) val += per_cpu(memcg->stat->events[idx], cpu); #ifdef CONFIG_HOTPLUG_CPU spin_lock(&memcg->pcp_counter_lock); val += memcg->nocpu_base.events[idx]; spin_unlock(&memcg->pcp_counter_lock); #endif put_online_cpus(); return val; } static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, struct page *page, bool anon, int nr_pages) { preempt_disable(); /* * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is * counted as CACHE even if it's on ANON LRU. */ if (anon) __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_pages); else __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages); if (PageTransHuge(page)) __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_pages); /* pagein of a big page is an event. So, ignore page size */ if (nr_pages > 0) __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); else { __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); nr_pages = -nr_pages; /* for event */ } __this_cpu_add(memcg->stat->nr_page_events, nr_pages); preempt_enable(); } unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) { struct mem_cgroup_per_zone *mz; mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); return mz->lru_size[lru]; } static unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, unsigned int lru_mask) { struct mem_cgroup_per_zone *mz; enum lru_list lru; unsigned long ret = 0; mz = mem_cgroup_zoneinfo(memcg, nid, zid); for_each_lru(lru) { if (BIT(lru) & lru_mask) ret += mz->lru_size[lru]; } return ret; } static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, int nid, unsigned int lru_mask) { u64 total = 0; int zid; for (zid = 0; zid < MAX_NR_ZONES; zid++) total += mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, lru_mask); return total; } static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, unsigned int lru_mask) { int nid; u64 total = 0; for_each_node_state(nid, N_MEMORY) total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); return total; } static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, enum mem_cgroup_events_target target) { unsigned long val, next; val = __this_cpu_read(memcg->stat->nr_page_events); next = __this_cpu_read(memcg->stat->targets[target]); /* from time_after() in jiffies.h */ if ((long)next - (long)val < 0) { switch (target) { case MEM_CGROUP_TARGET_THRESH: next = val + THRESHOLDS_EVENTS_TARGET; break; case MEM_CGROUP_TARGET_SOFTLIMIT: next = val + SOFTLIMIT_EVENTS_TARGET; break; case MEM_CGROUP_TARGET_NUMAINFO: next = val + NUMAINFO_EVENTS_TARGET; break; default: break; } __this_cpu_write(memcg->stat->targets[target], next); return true; } return false; } /* * Check events in order. * */ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) { preempt_disable(); /* threshold event is triggered in finer grain than soft limit */ if (unlikely(mem_cgroup_event_ratelimit(memcg, MEM_CGROUP_TARGET_THRESH))) { bool do_softlimit; bool do_numainfo __maybe_unused; do_softlimit = mem_cgroup_event_ratelimit(memcg, MEM_CGROUP_TARGET_SOFTLIMIT); #if MAX_NUMNODES > 1 do_numainfo = mem_cgroup_event_ratelimit(memcg, MEM_CGROUP_TARGET_NUMAINFO); #endif preempt_enable(); mem_cgroup_threshold(memcg); if (unlikely(do_softlimit)) mem_cgroup_update_tree(memcg, page); #if MAX_NUMNODES > 1 if (unlikely(do_numainfo)) atomic_inc(&memcg->numainfo_events); #endif } else preempt_enable(); } struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) { /* * mm_update_next_owner() may clear mm->owner to NULL * if it races with swapoff, page migration, etc. * So this can be called with p == NULL. */ if (unlikely(!p)) return NULL; return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); } struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) { struct mem_cgroup *memcg = NULL; if (!mm) return NULL; /* * Because we have no locks, mm->owner's may be being moved to other * cgroup. We use css_tryget() here even if this looks * pessimistic (rather than adding locks here). */ rcu_read_lock(); do { memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (unlikely(!memcg)) break; } while (!css_tryget(&memcg->css)); rcu_read_unlock(); return memcg; } /* * Returns a next (in a pre-order walk) alive memcg (with elevated css * ref. count) or NULL if the whole root's subtree has been visited. * * helper function to be used by mem_cgroup_iter */ static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, struct mem_cgroup *last_visited) { struct cgroup_subsys_state *prev_css, *next_css; prev_css = last_visited ? &last_visited->css : NULL; skip_node: next_css = css_next_descendant_pre(prev_css, &root->css); /* * Even if we found a group we have to make sure it is * alive. css && !memcg means that the groups should be * skipped and we should continue the tree walk. * last_visited css is safe to use because it is * protected by css_get and the tree walk is rcu safe. * * We do not take a reference on the root of the tree walk * because we might race with the root removal when it would * be the only node in the iterated hierarchy and mem_cgroup_iter * would end up in an endless loop because it expects that at * least one valid node will be returned. Root cannot disappear * because caller of the iterator should hold it already so * skipping css reference should be safe. */ if (next_css) { struct mem_cgroup *memcg = mem_cgroup_from_css(next_css); if (next_css == &root->css) return memcg; if (css_tryget(next_css)) { if (memcg->initialized) { /* * Make sure the memcg is initialized: * mem_cgroup_css_online() orders the the * initialization against setting the flag. */ smp_rmb(); return memcg; } css_put(next_css); } prev_css = next_css; goto skip_node; } return NULL; } static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) { /* * When a group in the hierarchy below root is destroyed, the * hierarchy iterator can no longer be trusted since it might * have pointed to the destroyed group. Invalidate it. */ atomic_inc(&root->dead_count); } static struct mem_cgroup * mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, struct mem_cgroup *root, int *sequence) { struct mem_cgroup *position = NULL; /* * A cgroup destruction happens in two stages: offlining and * release. They are separated by a RCU grace period. * * If the iterator is valid, we may still race with an * offlining. The RCU lock ensures the object won't be * released, tryget will fail if we lost the race. */ *sequence = atomic_read(&root->dead_count); if (iter->last_dead_count == *sequence) { smp_rmb(); position = iter->last_visited; /* * We cannot take a reference to root because we might race * with root removal and returning NULL would end up in * an endless loop on the iterator user level when root * would be returned all the time. */ if (position && position != root && !css_tryget(&position->css)) position = NULL; } return position; } static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, struct mem_cgroup *last_visited, struct mem_cgroup *new_position, struct mem_cgroup *root, int sequence) { /* root reference counting symmetric to mem_cgroup_iter_load */ if (last_visited && last_visited != root) css_put(&last_visited->css); /* * We store the sequence count from the time @last_visited was * loaded successfully instead of rereading it here so that we * don't lose destruction events in between. We could have * raced with the destruction of @new_position after all. */ iter->last_visited = new_position; smp_wmb(); iter->last_dead_count = sequence; } /** * mem_cgroup_iter - iterate over memory cgroup hierarchy * @root: hierarchy root * @prev: previously returned memcg, NULL on first invocation * @reclaim: cookie for shared reclaim walks, NULL for full walks * * Returns references to children of the hierarchy below @root, or * @root itself, or %NULL after a full round-trip. * * Caller must pass the return value in @prev on subsequent * invocations for reference counting, or use mem_cgroup_iter_break() * to cancel a hierarchy walk before the round-trip is complete. * * Reclaimers can specify a zone and a priority level in @reclaim to * divide up the memcgs in the hierarchy among all concurrent * reclaimers operating on the same zone and priority. */ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { struct mem_cgroup *memcg = NULL; struct mem_cgroup *last_visited = NULL; if (mem_cgroup_disabled()) return NULL; if (!root) root = root_mem_cgroup; if (prev && !reclaim) last_visited = prev; if (!root->use_hierarchy && root != root_mem_cgroup) { if (prev) goto out_css_put; return root; } rcu_read_lock(); while (!memcg) { struct mem_cgroup_reclaim_iter *uninitialized_var(iter); int uninitialized_var(seq); if (reclaim) { int nid = zone_to_nid(reclaim->zone); int zid = zone_idx(reclaim->zone); struct mem_cgroup_per_zone *mz; mz = mem_cgroup_zoneinfo(root, nid, zid); iter = &mz->reclaim_iter[reclaim->priority]; if (prev && reclaim->generation != iter->generation) { iter->last_visited = NULL; goto out_unlock; } last_visited = mem_cgroup_iter_load(iter, root, &seq); } memcg = __mem_cgroup_iter_next(root, last_visited); if (reclaim) { mem_cgroup_iter_update(iter, last_visited, memcg, root, seq); if (!memcg) iter->generation++; else if (!prev && memcg) reclaim->generation = iter->generation; } if (prev && !memcg) goto out_unlock; } out_unlock: rcu_read_unlock(); out_css_put: if (prev && prev != root) css_put(&prev->css); return memcg; } /** * mem_cgroup_iter_break - abort a hierarchy walk prematurely * @root: hierarchy root * @prev: last visited hierarchy member as returned by mem_cgroup_iter() */ void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { if (!root) root = root_mem_cgroup; if (prev && prev != root) css_put(&prev->css); } /* * Iteration constructs for visiting all cgroups (under a tree). If * loops are exited prematurely (break), mem_cgroup_iter_break() must * be used for reference counting. */ #define for_each_mem_cgroup_tree(iter, root) \ for (iter = mem_cgroup_iter(root, NULL, NULL); \ iter != NULL; \ iter = mem_cgroup_iter(root, iter, NULL)) #define for_each_mem_cgroup(iter) \ for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ iter != NULL; \ iter = mem_cgroup_iter(NULL, iter, NULL)) void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (unlikely(!memcg)) goto out; switch (idx) { case PGFAULT: this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); break; case PGMAJFAULT: this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); break; default: BUG(); } out: rcu_read_unlock(); } EXPORT_SYMBOL(__mem_cgroup_count_vm_event); /** * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg * @zone: zone of the wanted lruvec * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for the given @zone and * @mem. This can be the global zone lruvec, if the memory controller * is disabled. */ struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, struct mem_cgroup *memcg) { struct mem_cgroup_per_zone *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &zone->lruvec; goto out; } mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->zone here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->zone != zone)) lruvec->zone = zone; return lruvec; } /* * Following LRU functions are allowed to be used without PCG_LOCK. * Operations are called by routine of global LRU independently from memcg. * What we have to take care of here is validness of pc->mem_cgroup. * * Changes to pc->mem_cgroup happens when * 1. charge * 2. moving account * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. * It is added to LRU before charge. * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. * When moving account, the page is not on LRU. It's isolated. */ /** * mem_cgroup_page_lruvec - return lruvec for adding an lru page * @page: the page * @zone: zone of the page */ struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) { struct mem_cgroup_per_zone *mz; struct mem_cgroup *memcg; struct page_cgroup *pc; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &zone->lruvec; goto out; } pc = lookup_page_cgroup(page); memcg = pc->mem_cgroup; /* * Surreptitiously switch any uncharged offlist page to root: * an uncharged page off lru does nothing to secure * its former mem_cgroup from sudden removal. * * Our caller holds lru_lock, and PageCgroupUsed is updated * under page_cgroup lock: between them, they make all uses * of pc->mem_cgroup safe. */ if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) pc->mem_cgroup = memcg = root_mem_cgroup; mz = page_cgroup_zoneinfo(memcg, page); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->zone here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->zone != zone)) lruvec->zone = zone; return lruvec; } /** * mem_cgroup_update_lru_size - account for adding or removing an lru page * @lruvec: mem_cgroup per zone lru vector * @lru: index of lru list the page is sitting on * @nr_pages: positive when adding or negative when removing * * This function must be called when a page is added to or removed from an * lru list. */ void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int nr_pages) { struct mem_cgroup_per_zone *mz; unsigned long *lru_size; if (mem_cgroup_disabled()) return; mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); lru_size = mz->lru_size + lru; *lru_size += nr_pages; VM_BUG_ON((long)(*lru_size) < 0); } /* * Checks whether given mem is same or in the root_mem_cgroup's * hierarchy subtree */ bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, struct mem_cgroup *memcg) { if (root_memcg == memcg) return true; if (!root_memcg->use_hierarchy || !memcg) return false; return css_is_ancestor(&memcg->css, &root_memcg->css); } static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, struct mem_cgroup *memcg) { bool ret; rcu_read_lock(); ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); rcu_read_unlock(); return ret; } bool task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) { struct mem_cgroup *curr = NULL; struct task_struct *p; bool ret; p = find_lock_task_mm(task); if (p) { curr = try_get_mem_cgroup_from_mm(p->mm); task_unlock(p); } else { /* * All threads may have already detached their mm's, but the oom * killer still needs to detect if they have already been oom * killed to prevent needlessly killing additional tasks. */ rcu_read_lock(); curr = mem_cgroup_from_task(task); if (curr) css_get(&curr->css); rcu_read_unlock(); } if (!curr) return false; /* * We should check use_hierarchy of "memcg" not "curr". Because checking * use_hierarchy of "curr" here make this function true if hierarchy is * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* * hierarchy(even if use_hierarchy is disabled in "memcg"). */ ret = mem_cgroup_same_or_subtree(memcg, curr); css_put(&curr->css); return ret; } int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) { unsigned long inactive_ratio; unsigned long inactive; unsigned long active; unsigned long gb; inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); gb = (inactive + active) >> (30 - PAGE_SHIFT); if (gb) inactive_ratio = int_sqrt(10 * gb); else inactive_ratio = 1; return inactive * inactive_ratio < active; } #define mem_cgroup_from_res_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) /** * mem_cgroup_margin - calculate chargeable space of a memory cgroup * @memcg: the memory cgroup * * Returns the maximum amount of memory @mem can be charged with, in * pages. */ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) { unsigned long long margin; margin = res_counter_margin(&memcg->res); if (do_swap_account) margin = min(margin, res_counter_margin(&memcg->memsw)); return margin >> PAGE_SHIFT; } int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* root ? */ if (!css_parent(&memcg->css)) return vm_swappiness; return memcg->swappiness; } /* * memcg->moving_account is used for checking possibility that some thread is * calling move_account(). When a thread on CPU-A starts moving pages under * a memcg, other threads should check memcg->moving_account under * rcu_read_lock(), like this: * * CPU-A CPU-B * rcu_read_lock() * memcg->moving_account+1 if (memcg->mocing_account) * take heavy locks. * synchronize_rcu() update something. * rcu_read_unlock() * start move here. */ /* for quick checking without looking up memcg */ atomic_t memcg_moving __read_mostly; static void mem_cgroup_start_move(struct mem_cgroup *memcg) { atomic_inc(&memcg_moving); atomic_inc(&memcg->moving_account); synchronize_rcu(); } static void mem_cgroup_end_move(struct mem_cgroup *memcg) { /* * Now, mem_cgroup_clear_mc() may call this function with NULL. * We check NULL in callee rather than caller. */ if (memcg) { atomic_dec(&memcg_moving); atomic_dec(&memcg->moving_account); } } /* * 2 routines for checking "mem" is under move_account() or not. * * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This * is used for avoiding races in accounting. If true, * pc->mem_cgroup may be overwritten. * * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or * under hierarchy of moving cgroups. This is for * waiting at hith-memory prressure caused by "move". */ static bool mem_cgroup_stolen(struct mem_cgroup *memcg) { VM_BUG_ON(!rcu_read_lock_held()); return atomic_read(&memcg->moving_account) > 0; } static bool mem_cgroup_under_move(struct mem_cgroup *memcg) { struct mem_cgroup *from; struct mem_cgroup *to; bool ret = false; /* * Unlike task_move routines, we access mc.to, mc.from not under * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. */ spin_lock(&mc.lock); from = mc.from; to = mc.to; if (!from) goto unlock; ret = mem_cgroup_same_or_subtree(memcg, from) || mem_cgroup_same_or_subtree(memcg, to); unlock: spin_unlock(&mc.lock); return ret; } static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) { if (mc.moving_task && current != mc.moving_task) { if (mem_cgroup_under_move(memcg)) { DEFINE_WAIT(wait); prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); /* moving charge context might have finished. */ if (mc.moving_task) schedule(); finish_wait(&mc.waitq, &wait); return true; } } return false; } /* * Take this lock when * - a code tries to modify page's memcg while it's USED. * - a code tries to modify page state accounting in a memcg. * see mem_cgroup_stolen(), too. */ static void move_lock_mem_cgroup(struct mem_cgroup *memcg, unsigned long *flags) { spin_lock_irqsave(&memcg->move_lock, *flags); } static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, unsigned long *flags) { spin_unlock_irqrestore(&memcg->move_lock, *flags); } #define K(x) ((x) << (PAGE_SHIFT-10)) /** * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. * @memcg: The memory cgroup that went over limit * @p: Task that is going to be killed * * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is * enabled */ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) { struct cgroup *task_cgrp; struct cgroup *mem_cgrp; /* * Need a buffer in BSS, can't rely on allocations. The code relies * on the assumption that OOM is serialized for memory controller. * If this assumption is broken, revisit this code. */ static char memcg_name[PATH_MAX]; int ret; struct mem_cgroup *iter; unsigned int i; if (!p) return; rcu_read_lock(); mem_cgrp = memcg->css.cgroup; task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); if (ret < 0) { /* * Unfortunately, we are unable to convert to a useful name * But we'll still print out the usage information */ rcu_read_unlock(); goto done; } rcu_read_unlock(); pr_info("Task in %s killed", memcg_name); rcu_read_lock(); ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); if (ret < 0) { rcu_read_unlock(); goto done; } rcu_read_unlock(); /* * Continues from above, so we don't need an KERN_ level */ pr_cont(" as a result of limit of %s\n", memcg_name); done: pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, res_counter_read_u64(&memcg->res, RES_FAILCNT)); pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); for_each_mem_cgroup_tree(iter, memcg) { pr_info("Memory cgroup stats"); rcu_read_lock(); ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); if (!ret) pr_cont(" for %s", memcg_name); rcu_read_unlock(); pr_cont(":"); for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) continue; pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], K(mem_cgroup_read_stat(iter, i))); } for (i = 0; i < NR_LRU_LISTS; i++) pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); pr_cont("\n"); } } /* * This function returns the number of memcg under hierarchy tree. Returns * 1(self count) if no children. */ static int mem_cgroup_count_children(struct mem_cgroup *memcg) { int num = 0; struct mem_cgroup *iter; for_each_mem_cgroup_tree(iter, memcg) num++; return num; } /* * Return the memory (and swap, if configured) limit for a memcg. */ static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) { u64 limit; limit = res_counter_read_u64(&memcg->res, RES_LIMIT); /* * Do not consider swap space if we cannot swap due to swappiness */ if (mem_cgroup_swappiness(memcg)) { u64 memsw; limit += total_swap_pages << PAGE_SHIFT; memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); /* * If memsw is finite and limits the amount of swap space * available to this memcg, return that limit. */ limit = min(limit, memsw); } return limit; } static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, int order) { struct mem_cgroup *iter; unsigned long chosen_points = 0; unsigned long totalpages; unsigned int points = 0; struct task_struct *chosen = NULL; /* * If current has a pending SIGKILL or is exiting, then automatically * select it. The goal is to allow it to allocate so that it may * quickly exit and free its memory. */ if (fatal_signal_pending(current) || current->flags & PF_EXITING) { set_thread_flag(TIF_MEMDIE); return; } check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; for_each_mem_cgroup_tree(iter, memcg) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&iter->css, &it); while ((task = css_task_iter_next(&it))) { switch (oom_scan_process_thread(task, totalpages, NULL, false)) { case OOM_SCAN_SELECT: if (chosen) put_task_struct(chosen); chosen = task; chosen_points = ULONG_MAX; get_task_struct(chosen); /* fall through */ case OOM_SCAN_CONTINUE: continue; case OOM_SCAN_ABORT: css_task_iter_end(&it); mem_cgroup_iter_break(memcg, iter); if (chosen) put_task_struct(chosen); return; case OOM_SCAN_OK: break; }; points = oom_badness(task, memcg, NULL, totalpages); if (!points || points < chosen_points) continue; /* Prefer thread group leaders for display purposes */ if (points == chosen_points && thread_group_leader(chosen)) continue; if (chosen) put_task_struct(chosen); chosen = task; chosen_points = points; get_task_struct(chosen); } css_task_iter_end(&it); } if (!chosen) return; points = chosen_points * 1000 / totalpages; oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, NULL, "Memory cgroup out of memory"); } static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned long flags) { unsigned long total = 0; bool noswap = false; int loop; if (flags & MEM_CGROUP_RECLAIM_NOSWAP) noswap = true; if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) noswap = true; for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { if (loop) drain_all_stock_async(memcg); total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); /* * Allow limit shrinkers, which are triggered directly * by userspace, to catch signals and stop reclaim * after minimal progress, regardless of the margin. */ if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) break; if (mem_cgroup_margin(memcg)) break; /* * If nothing was reclaimed after two attempts, there * may be no reclaimable pages in this hierarchy. */ if (loop && !total) break; } return total; } /** * test_mem_cgroup_node_reclaimable * @memcg: the target memcg * @nid: the node ID to be checked. * @noswap : specify true here if the user wants flle only information. * * This function returns whether the specified memcg contains any * reclaimable pages on a node. Returns true if there are any reclaimable * pages in the node. */ static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, int nid, bool noswap) { if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) return true; if (noswap || !total_swap_pages) return false; if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) return true; return false; } #if MAX_NUMNODES > 1 /* * Always updating the nodemask is not very good - even if we have an empty * list or the wrong list here, we can start from some node and traverse all * nodes based on the zonelist. So update the list loosely once per 10 secs. * */ static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) { int nid; /* * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET * pagein/pageout changes since the last update. */ if (!atomic_read(&memcg->numainfo_events)) return; if (atomic_inc_return(&memcg->numainfo_updating) > 1) return; /* make a nodemask where this memcg uses memory from */ memcg->scan_nodes = node_states[N_MEMORY]; for_each_node_mask(nid, node_states[N_MEMORY]) { if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) node_clear(nid, memcg->scan_nodes); } atomic_set(&memcg->numainfo_events, 0); atomic_set(&memcg->numainfo_updating, 0); } /* * Selecting a node where we start reclaim from. Because what we need is just * reducing usage counter, start from anywhere is O,K. Considering * memory reclaim from current node, there are pros. and cons. * * Freeing memory from current node means freeing memory from a node which * we'll use or we've used. So, it may make LRU bad. And if several threads * hit limits, it will see a contention on a node. But freeing from remote * node means more costs for memory reclaim because of memory latency. * * Now, we use round-robin. Better algorithm is welcomed. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) { int node; mem_cgroup_may_update_nodemask(memcg); node = memcg->last_scanned_node; node = next_node(node, memcg->scan_nodes); if (node == MAX_NUMNODES) node = first_node(memcg->scan_nodes); /* * We call this when we hit limit, not when pages are added to LRU. * No LRU may hold pages because all pages are UNEVICTABLE or * memcg is too small and all pages are not on LRU. In that case, * we use curret node. */ if (unlikely(node == MAX_NUMNODES)) node = numa_node_id(); memcg->last_scanned_node = node; return node; } /* * Check all nodes whether it contains reclaimable pages or not. * For quick scan, we make use of scan_nodes. This will allow us to skip * unused nodes. But scan_nodes is lazily updated and may not cotain * enough new information. We need to do double check. */ static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) { int nid; /* * quick check...making use of scan_node. * We can skip unused nodes. */ if (!nodes_empty(memcg->scan_nodes)) { for (nid = first_node(memcg->scan_nodes); nid < MAX_NUMNODES; nid = next_node(nid, memcg->scan_nodes)) { if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) return true; } } /* * Check rest of nodes. */ for_each_node_state(nid, N_MEMORY) { if (node_isset(nid, memcg->scan_nodes)) continue; if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) return true; } return false; } #else int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) { return 0; } static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) { return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); } #endif static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, struct zone *zone, gfp_t gfp_mask, unsigned long *total_scanned) { struct mem_cgroup *victim = NULL; int total = 0; int loop = 0; unsigned long excess; unsigned long nr_scanned; struct mem_cgroup_reclaim_cookie reclaim = { .zone = zone, .priority = 0, }; excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; while (1) { victim = mem_cgroup_iter(root_memcg, victim, &reclaim); if (!victim) { loop++; if (loop >= 2) { /* * If we have not been able to reclaim * anything, it might because there are * no reclaimable pages under this hierarchy */ if (!total) break; /* * We want to do more targeted reclaim. * excess >> 2 is not to excessive so as to * reclaim too much, nor too less that we keep * coming back to reclaim from this cgroup */ if (total >= (excess >> 2) || (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) break; } continue; } if (!mem_cgroup_reclaimable(victim, false)) continue; total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, zone, &nr_scanned); *total_scanned += nr_scanned; if (!res_counter_soft_limit_excess(&root_memcg->res)) break; } mem_cgroup_iter_break(root_memcg, victim); return total; } #ifdef CONFIG_LOCKDEP static struct lockdep_map memcg_oom_lock_dep_map = { .name = "memcg_oom_lock", }; #endif static DEFINE_SPINLOCK(memcg_oom_lock); /* * Check OOM-Killer is already running under our hierarchy. * If someone is running, return false. */ static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) { struct mem_cgroup *iter, *failed = NULL; spin_lock(&memcg_oom_lock); for_each_mem_cgroup_tree(iter, memcg) { if (iter->oom_lock) { /* * this subtree of our hierarchy is already locked * so we cannot give a lock. */ failed = iter; mem_cgroup_iter_break(memcg, iter); break; } else iter->oom_lock = true; } if (failed) { /* * OK, we failed to lock the whole subtree so we have * to clean up what we set up to the failing subtree */ for_each_mem_cgroup_tree(iter, memcg) { if (iter == failed) { mem_cgroup_iter_break(memcg, iter); break; } iter->oom_lock = false; } } else mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); spin_unlock(&memcg_oom_lock); return !failed; } static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) { struct mem_cgroup *iter; spin_lock(&memcg_oom_lock); mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); for_each_mem_cgroup_tree(iter, memcg) iter->oom_lock = false; spin_unlock(&memcg_oom_lock); } static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) { struct mem_cgroup *iter; for_each_mem_cgroup_tree(iter, memcg) atomic_inc(&iter->under_oom); } static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) { struct mem_cgroup *iter; /* * When a new child is created while the hierarchy is under oom, * mem_cgroup_oom_lock() may not be called. We have to use * atomic_add_unless() here. */ for_each_mem_cgroup_tree(iter, memcg) atomic_add_unless(&iter->under_oom, -1, 0); } static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); struct oom_wait_info { struct mem_cgroup *memcg; wait_queue_t wait; }; static int memcg_oom_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) { struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; struct mem_cgroup *oom_wait_memcg; struct oom_wait_info *oom_wait_info; oom_wait_info = container_of(wait, struct oom_wait_info, wait); oom_wait_memcg = oom_wait_info->memcg; /* * Both of oom_wait_info->memcg and wake_memcg are stable under us. * Then we can use css_is_ancestor without taking care of RCU. */ if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) return 0; return autoremove_wake_function(wait, mode, sync, arg); } static void memcg_wakeup_oom(struct mem_cgroup *memcg) { atomic_inc(&memcg->oom_wakeups); /* for filtering, pass "memcg" as argument. */ __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); } static void memcg_oom_recover(struct mem_cgroup *memcg) { if (memcg && atomic_read(&memcg->under_oom)) memcg_wakeup_oom(memcg); } static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) { if (!current->memcg_oom.may_oom) return; /* * We are in the middle of the charge context here, so we * don't want to block when potentially sitting on a callstack * that holds all kinds of filesystem and mm locks. * * Also, the caller may handle a failed allocation gracefully * (like optional page cache readahead) and so an OOM killer * invocation might not even be necessary. * * That's why we don't do anything here except remember the * OOM context and then deal with it at the end of the page * fault when the stack is unwound, the locks are released, * and when we know whether the fault was overall successful. */ css_get(&memcg->css); current->memcg_oom.memcg = memcg; current->memcg_oom.gfp_mask = mask; current->memcg_oom.order = order; } /** * mem_cgroup_oom_synchronize - complete memcg OOM handling * @handle: actually kill/wait or just clean up the OOM state * * This has to be called at the end of a page fault if the memcg OOM * handler was enabled. * * Memcg supports userspace OOM handling where failed allocations must * sleep on a waitqueue until the userspace task resolves the * situation. Sleeping directly in the charge context with all kinds * of locks held is not a good idea, instead we remember an OOM state * in the task and mem_cgroup_oom_synchronize() has to be called at * the end of the page fault to complete the OOM handling. * * Returns %true if an ongoing memcg OOM situation was detected and * completed, %false otherwise. */ bool mem_cgroup_oom_synchronize(bool handle) { struct mem_cgroup *memcg = current->memcg_oom.memcg; struct oom_wait_info owait; bool locked; /* OOM is global, do not handle */ if (!memcg) return false; if (!handle) goto cleanup; owait.memcg = memcg; owait.wait.flags = 0; owait.wait.func = memcg_oom_wake_function; owait.wait.private = current; INIT_LIST_HEAD(&owait.wait.task_list); prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); mem_cgroup_mark_under_oom(memcg); locked = mem_cgroup_oom_trylock(memcg); if (locked) mem_cgroup_oom_notify(memcg); if (locked && !memcg->oom_kill_disable) { mem_cgroup_unmark_under_oom(memcg); finish_wait(&memcg_oom_waitq, &owait.wait); mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, current->memcg_oom.order); } else { schedule(); mem_cgroup_unmark_under_oom(memcg); finish_wait(&memcg_oom_waitq, &owait.wait); } if (locked) { mem_cgroup_oom_unlock(memcg); /* * There is no guarantee that an OOM-lock contender * sees the wakeups triggered by the OOM kill * uncharges. Wake any sleepers explicitely. */ memcg_oom_recover(memcg); } cleanup: current->memcg_oom.memcg = NULL; css_put(&memcg->css); return true; } /* * Currently used to update mapped file statistics, but the routine can be * generalized to update other statistics as well. * * Notes: Race condition * * We usually use page_cgroup_lock() for accessing page_cgroup member but * it tends to be costly. But considering some conditions, we doesn't need * to do so _always_. * * Considering "charge", lock_page_cgroup() is not required because all * file-stat operations happen after a page is attached to radix-tree. There * are no race with "charge". * * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even * if there are race with "uncharge". Statistics itself is properly handled * by flags. * * Considering "move", this is an only case we see a race. To make the race * small, we check mm->moving_account and detect there are possibility of race * If there is, we take a lock. */ void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, unsigned long *flags) { struct mem_cgroup *memcg; struct page_cgroup *pc; pc = lookup_page_cgroup(page); again: memcg = pc->mem_cgroup; if (unlikely(!memcg || !PageCgroupUsed(pc))) return; /* * If this memory cgroup is not under account moving, we don't * need to take move_lock_mem_cgroup(). Because we already hold * rcu_read_lock(), any calls to move_account will be delayed until * rcu_read_unlock() if mem_cgroup_stolen() == true. */ if (!mem_cgroup_stolen(memcg)) return; move_lock_mem_cgroup(memcg, flags); if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { move_unlock_mem_cgroup(memcg, flags); goto again; } *locked = true; } void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) { struct page_cgroup *pc = lookup_page_cgroup(page); /* * It's guaranteed that pc->mem_cgroup never changes while * lock is held because a routine modifies pc->mem_cgroup * should take move_lock_mem_cgroup(). */ move_unlock_mem_cgroup(pc->mem_cgroup, flags); } void mem_cgroup_update_page_stat(struct page *page, enum mem_cgroup_stat_index idx, int val) { struct mem_cgroup *memcg; struct page_cgroup *pc = lookup_page_cgroup(page); unsigned long uninitialized_var(flags); if (mem_cgroup_disabled()) return; VM_BUG_ON(!rcu_read_lock_held()); memcg = pc->mem_cgroup; if (unlikely(!memcg || !PageCgroupUsed(pc))) return; this_cpu_add(memcg->stat->count[idx], val); } /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define CHARGE_BATCH 32U struct memcg_stock_pcp { struct mem_cgroup *cached; /* this never be root cgroup */ unsigned int nr_pages; struct work_struct work; unsigned long flags; #define FLUSHING_CACHED_CHARGE 0 }; static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); static DEFINE_MUTEX(percpu_charge_mutex); /** * consume_stock: Try to consume stocked charge on this cpu. * @memcg: memcg to consume from. * @nr_pages: how many pages to charge. * * The charges will only happen if @memcg matches the current cpu's memcg * stock, and at least @nr_pages are available in that stock. Failure to * service an allocation will refill the stock. * * returns true if successful, false otherwise. */ static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) { struct memcg_stock_pcp *stock; bool ret = true; if (nr_pages > CHARGE_BATCH) return false; stock = &get_cpu_var(memcg_stock); if (memcg == stock->cached && stock->nr_pages >= nr_pages) stock->nr_pages -= nr_pages; else /* need to call res_counter_charge */ ret = false; put_cpu_var(memcg_stock); return ret; } /* * Returns stocks cached in percpu to res_counter and reset cached information. */ static void drain_stock(struct memcg_stock_pcp *stock) { struct mem_cgroup *old = stock->cached; if (stock->nr_pages) { unsigned long bytes = stock->nr_pages * PAGE_SIZE; res_counter_uncharge(&old->res, bytes); if (do_swap_account) res_counter_uncharge(&old->memsw, bytes); stock->nr_pages = 0; } stock->cached = NULL; } /* * This must be called under preempt disabled or must be called by * a thread which is pinned to local cpu. */ static void drain_local_stock(struct work_struct *dummy) { struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); drain_stock(stock); clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); } static void __init memcg_stock_init(void) { int cpu; for_each_possible_cpu(cpu) { struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); INIT_WORK(&stock->work, drain_local_stock); } } /* * Cache charges(val) which is from res_counter, to local per_cpu area. * This will be consumed by consume_stock() function, later. */ static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) { struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); if (stock->cached != memcg) { /* reset if necessary */ drain_stock(stock); stock->cached = memcg; } stock->nr_pages += nr_pages; put_cpu_var(memcg_stock); } /* * Drains all per-CPU charge caches for given root_memcg resp. subtree * of the hierarchy under it. sync flag says whether we should block * until the work is done. */ static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) { int cpu, curcpu; /* Notify other cpus that system-wide "drain" is running */ get_online_cpus(); curcpu = get_cpu(); for_each_online_cpu(cpu) { struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); struct mem_cgroup *memcg; memcg = stock->cached; if (!memcg || !stock->nr_pages) continue; if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) continue; if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { if (cpu == curcpu) drain_local_stock(&stock->work); else schedule_work_on(cpu, &stock->work); } } put_cpu(); if (!sync) goto out; for_each_online_cpu(cpu) { struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) flush_work(&stock->work); } out: put_online_cpus(); } /* * Tries to drain stocked charges in other cpus. This function is asynchronous * and just put a work per cpu for draining localy on each cpu. Caller can * expects some charges will be back to res_counter later but cannot wait for * it. */ static void drain_all_stock_async(struct mem_cgroup *root_memcg) { /* * If someone calls draining, avoid adding more kworker runs. */ if (!mutex_trylock(&percpu_charge_mutex)) return; drain_all_stock(root_memcg, false); mutex_unlock(&percpu_charge_mutex); } /* This is a synchronous drain interface. */ static void drain_all_stock_sync(struct mem_cgroup *root_memcg) { /* called when force_empty is called */ mutex_lock(&percpu_charge_mutex); drain_all_stock(root_memcg, true); mutex_unlock(&percpu_charge_mutex); } /* * This function drains percpu counter value from DEAD cpu and * move it to local cpu. Note that this function can be preempted. */ static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) { int i; spin_lock(&memcg->pcp_counter_lock); for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { long x = per_cpu(memcg->stat->count[i], cpu); per_cpu(memcg->stat->count[i], cpu) = 0; memcg->nocpu_base.count[i] += x; } for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { unsigned long x = per_cpu(memcg->stat->events[i], cpu); per_cpu(memcg->stat->events[i], cpu) = 0; memcg->nocpu_base.events[i] += x; } spin_unlock(&memcg->pcp_counter_lock); } static int memcg_cpu_hotplug_callback(struct notifier_block *nb, unsigned long action, void *hcpu) { int cpu = (unsigned long)hcpu; struct memcg_stock_pcp *stock; struct mem_cgroup *iter; if (action == CPU_ONLINE) return NOTIFY_OK; if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) return NOTIFY_OK; for_each_mem_cgroup(iter) mem_cgroup_drain_pcp_counter(iter, cpu); stock = &per_cpu(memcg_stock, cpu); drain_stock(stock); return NOTIFY_OK; } /* See __mem_cgroup_try_charge() for details */ enum { CHARGE_OK, /* success */ CHARGE_RETRY, /* need to retry but retry is not bad */ CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ }; static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned int nr_pages, unsigned int min_pages, bool invoke_oom) { unsigned long csize = nr_pages * PAGE_SIZE; struct mem_cgroup *mem_over_limit; struct res_counter *fail_res; unsigned long flags = 0; int ret; ret = res_counter_charge(&memcg->res, csize, &fail_res); if (likely(!ret)) { if (!do_swap_account) return CHARGE_OK; ret = res_counter_charge(&memcg->memsw, csize, &fail_res); if (likely(!ret)) return CHARGE_OK; res_counter_uncharge(&memcg->res, csize); mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); flags |= MEM_CGROUP_RECLAIM_NOSWAP; } else mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); /* * Never reclaim on behalf of optional batching, retry with a * single page instead. */ if (nr_pages > min_pages) return CHARGE_RETRY; if (!(gfp_mask & __GFP_WAIT)) return CHARGE_WOULDBLOCK; if (gfp_mask & __GFP_NORETRY) return CHARGE_NOMEM; ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); if (mem_cgroup_margin(mem_over_limit) >= nr_pages) return CHARGE_RETRY; /* * Even though the limit is exceeded at this point, reclaim * may have been able to free some pages. Retry the charge * before killing the task. * * Only for regular pages, though: huge pages are rather * unlikely to succeed so close to the limit, and we fall back * to regular pages anyway in case of failure. */ if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) return CHARGE_RETRY; /* * At task move, charge accounts can be doubly counted. So, it's * better to wait until the end of task_move if something is going on. */ if (mem_cgroup_wait_acct_move(mem_over_limit)) return CHARGE_RETRY; if (invoke_oom) mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); return CHARGE_NOMEM; } /* * __mem_cgroup_try_charge() does * 1. detect memcg to be charged against from passed *mm and *ptr, * 2. update res_counter * 3. call memory reclaim if necessary. * * In some special case, if the task is fatal, fatal_signal_pending() or * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon * as possible without any hazards. 2: all pages should have a valid * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg * pointer, that is treated as a charge to root_mem_cgroup. * * So __mem_cgroup_try_charge() will return * 0 ... on success, filling *ptr with a valid memcg pointer. * -ENOMEM ... charge failure because of resource limits. * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. * * Unlike the exported interface, an "oom" parameter is added. if oom==true, * the oom-killer can be invoked. */ static int __mem_cgroup_try_charge(struct mm_struct *mm, gfp_t gfp_mask, unsigned int nr_pages, struct mem_cgroup **ptr, bool oom) { unsigned int batch = max(CHARGE_BATCH, nr_pages); int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; struct mem_cgroup *memcg = NULL; int ret; /* * Unlike gloval-vm's OOM-kill, we're not in memory shortage * in system level. So, allow to go ahead dying process in addition to * MEMDIE process. */ if (unlikely(test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))) goto bypass; if (unlikely(task_in_memcg_oom(current))) goto nomem; if (gfp_mask & __GFP_NOFAIL) oom = false; /* * We always charge the cgroup the mm_struct belongs to. * The mm_struct's mem_cgroup changes on task migration if the * thread group leader migrates. It's possible that mm is not * set, if so charge the root memcg (happens for pagecache usage). */ if (!*ptr && !mm) *ptr = root_mem_cgroup; again: if (*ptr) { /* css should be a valid one */ memcg = *ptr; if (mem_cgroup_is_root(memcg)) goto done; if (consume_stock(memcg, nr_pages)) goto done; css_get(&memcg->css); } else { struct task_struct *p; rcu_read_lock(); p = rcu_dereference(mm->owner); /* * Because we don't have task_lock(), "p" can exit. * In that case, "memcg" can point to root or p can be NULL with * race with swapoff. Then, we have small risk of mis-accouning. * But such kind of mis-account by race always happens because * we don't have cgroup_mutex(). It's overkill and we allo that * small race, here. * (*) swapoff at el will charge against mm-struct not against * task-struct. So, mm->owner can be NULL. */ memcg = mem_cgroup_from_task(p); if (!memcg) memcg = root_mem_cgroup; if (mem_cgroup_is_root(memcg)) { rcu_read_unlock(); goto done; } if (consume_stock(memcg, nr_pages)) { /* * It seems dagerous to access memcg without css_get(). * But considering how consume_stok works, it's not * necessary. If consume_stock success, some charges * from this memcg are cached on this cpu. So, we * don't need to call css_get()/css_tryget() before * calling consume_stock(). */ rcu_read_unlock(); goto done; } /* after here, we may be blocked. we need to get refcnt */ if (!css_tryget(&memcg->css)) { rcu_read_unlock(); goto again; } rcu_read_unlock(); } do { bool invoke_oom = oom && !nr_oom_retries; /* If killed, bypass charge */ if (fatal_signal_pending(current)) { css_put(&memcg->css); goto bypass; } ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, invoke_oom); switch (ret) { case CHARGE_OK: break; case CHARGE_RETRY: /* not in OOM situation but retry */ batch = nr_pages; css_put(&memcg->css); memcg = NULL; goto again; case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ css_put(&memcg->css); goto nomem; case CHARGE_NOMEM: /* OOM routine works */ if (!oom || invoke_oom) { css_put(&memcg->css); goto nomem; } nr_oom_retries--; break; } } while (ret != CHARGE_OK); if (batch > nr_pages) refill_stock(memcg, batch - nr_pages); css_put(&memcg->css); done: *ptr = memcg; return 0; nomem: if (!(gfp_mask & __GFP_NOFAIL)) { *ptr = NULL; return -ENOMEM; } bypass: *ptr = root_mem_cgroup; return -EINTR; } /* * Somemtimes we have to undo a charge we got by try_charge(). * This function is for that and do uncharge, put css's refcnt. * gotten by try_charge(). */ static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (!mem_cgroup_is_root(memcg)) { unsigned long bytes = nr_pages * PAGE_SIZE; res_counter_uncharge(&memcg->res, bytes); if (do_swap_account) res_counter_uncharge(&memcg->memsw, bytes); } } /* * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. * This is useful when moving usage to parent cgroup. */ static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, unsigned int nr_pages) { unsigned long bytes = nr_pages * PAGE_SIZE; if (mem_cgroup_is_root(memcg)) return; res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); if (do_swap_account) res_counter_uncharge_until(&memcg->memsw, memcg->memsw.parent, bytes); } /* * A helper function to get mem_cgroup from ID. must be called under * rcu_read_lock(). The caller is responsible for calling css_tryget if * the mem_cgroup is used for charging. (dropping refcnt from swap can be * called against removed memcg.) */ static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) { struct cgroup_subsys_state *css; /* ID 0 is unused ID */ if (!id) return NULL; css = css_lookup(&mem_cgroup_subsys, id); if (!css) return NULL; return mem_cgroup_from_css(css); } struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) { struct mem_cgroup *memcg = NULL; struct page_cgroup *pc; unsigned short id; swp_entry_t ent; VM_BUG_ON(!PageLocked(page)); pc = lookup_page_cgroup(page); lock_page_cgroup(pc); if (PageCgroupUsed(pc)) { memcg = pc->mem_cgroup; if (memcg && !css_tryget(&memcg->css)) memcg = NULL; } else if (PageSwapCache(page)) { ent.val = page_private(page); id = lookup_swap_cgroup_id(ent); rcu_read_lock(); memcg = mem_cgroup_lookup(id); if (memcg && !css_tryget(&memcg->css)) memcg = NULL; rcu_read_unlock(); } unlock_page_cgroup(pc); return memcg; } static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, struct page *page, unsigned int nr_pages, enum charge_type ctype, bool lrucare) { struct page_cgroup *pc = lookup_page_cgroup(page); struct zone *uninitialized_var(zone); struct lruvec *lruvec; bool was_on_lru = false; bool anon; lock_page_cgroup(pc); VM_BUG_ON(PageCgroupUsed(pc)); /* * we don't need page_cgroup_lock about tail pages, becase they are not * accessed by any other context at this point. */ /* * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page * may already be on some other mem_cgroup's LRU. Take care of it. */ if (lrucare) { zone = page_zone(page); spin_lock_irq(&zone->lru_lock); if (PageLRU(page)) { lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_lru(page)); was_on_lru = true; } } pc->mem_cgroup = memcg; /* * We access a page_cgroup asynchronously without lock_page_cgroup(). * Especially when a page_cgroup is taken from a page, pc->mem_cgroup * is accessed after testing USED bit. To make pc->mem_cgroup visible * before USED bit, we need memory barrier here. * See mem_cgroup_add_lru_list(), etc. */ smp_wmb(); SetPageCgroupUsed(pc); if (lrucare) { if (was_on_lru) { lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); VM_BUG_ON(PageLRU(page)); SetPageLRU(page); add_page_to_lru_list(page, lruvec, page_lru(page)); } spin_unlock_irq(&zone->lru_lock); } if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) anon = true; else anon = false; mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); unlock_page_cgroup(pc); /* * "charge_statistics" updated event counter. Then, check it. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. * if they exceeds softlimit. */ memcg_check_events(memcg, page); } static DEFINE_MUTEX(set_limit_mutex); #ifdef CONFIG_MEMCG_KMEM static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) { return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); } /* * This is a bit cumbersome, but it is rarely used and avoids a backpointer * in the memcg_cache_params struct. */ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) { struct kmem_cache *cachep; VM_BUG_ON(p->is_root_cache); cachep = p->root_cache; return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; } #ifdef CONFIG_SLABINFO static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, struct cftype *cft, struct seq_file *m) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct memcg_cache_params *params; if (!memcg_can_account_kmem(memcg)) return -EIO; print_slabinfo_header(m); mutex_lock(&memcg->slab_caches_mutex); list_for_each_entry(params, &memcg->memcg_slab_caches, list) cache_show(memcg_params_to_cache(params), m); mutex_unlock(&memcg->slab_caches_mutex); return 0; } #endif static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) { struct res_counter *fail_res; struct mem_cgroup *_memcg; int ret = 0; bool may_oom; ret = res_counter_charge(&memcg->kmem, size, &fail_res); if (ret) return ret; /* * Conditions under which we can wait for the oom_killer. Those are * the same conditions tested by the core page allocator */ may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); _memcg = memcg; ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, &_memcg, may_oom); if (ret == -EINTR) { /* * __mem_cgroup_try_charge() chosed to bypass to root due to * OOM kill or fatal signal. Since our only options are to * either fail the allocation or charge it to this cgroup, do * it as a temporary condition. But we can't fail. From a * kmem/slab perspective, the cache has already been selected, * by mem_cgroup_kmem_get_cache(), so it is too late to change * our minds. * * This condition will only trigger if the task entered * memcg_charge_kmem in a sane state, but was OOM-killed during * __mem_cgroup_try_charge() above. Tasks that were already * dying when the allocation triggers should have been already * directed to the root cgroup in memcontrol.h */ res_counter_charge_nofail(&memcg->res, size, &fail_res); if (do_swap_account) res_counter_charge_nofail(&memcg->memsw, size, &fail_res); ret = 0; } else if (ret) res_counter_uncharge(&memcg->kmem, size); return ret; } static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) { res_counter_uncharge(&memcg->res, size); if (do_swap_account) res_counter_uncharge(&memcg->memsw, size); /* Not down to 0 */ if (res_counter_uncharge(&memcg->kmem, size)) return; /* * Releases a reference taken in kmem_cgroup_css_offline in case * this last uncharge is racing with the offlining code or it is * outliving the memcg existence. * * The memory barrier imposed by test&clear is paired with the * explicit one in memcg_kmem_mark_dead(). */ if (memcg_kmem_test_and_clear_dead(memcg)) css_put(&memcg->css); } void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) { if (!memcg) return; mutex_lock(&memcg->slab_caches_mutex); list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); mutex_unlock(&memcg->slab_caches_mutex); } /* * helper for acessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function * will return -1 when this is not a kmem-limited memcg. */ int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } /* * This ends up being protected by the set_limit mutex, during normal * operation, because that is its main call site. * * But when we create a new cache, we can call this as well if its parent * is kmem-limited. That will have to hold set_limit_mutex as well. */ int memcg_update_cache_sizes(struct mem_cgroup *memcg) { int num, ret; num = ida_simple_get(&kmem_limited_groups, 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); if (num < 0) return num; /* * After this point, kmem_accounted (that we test atomically in * the beginning of this conditional), is no longer 0. This * guarantees only one process will set the following boolean * to true. We don't need test_and_set because we're protected * by the set_limit_mutex anyway. */ memcg_kmem_set_activated(memcg); ret = memcg_update_all_caches(num+1); if (ret) { ida_simple_remove(&kmem_limited_groups, num); memcg_kmem_clear_activated(memcg); return ret; } memcg->kmemcg_id = num; INIT_LIST_HEAD(&memcg->memcg_slab_caches); mutex_init(&memcg->slab_caches_mutex); return 0; } static size_t memcg_caches_array_size(int num_groups) { ssize_t size; if (num_groups <= 0) return 0; size = 2 * num_groups; if (size < MEMCG_CACHES_MIN_SIZE) size = MEMCG_CACHES_MIN_SIZE; else if (size > MEMCG_CACHES_MAX_SIZE) size = MEMCG_CACHES_MAX_SIZE; return size; } /* * We should update the current array size iff all caches updates succeed. This * can only be done from the slab side. The slab mutex needs to be held when * calling this. */ void memcg_update_array_size(int num) { if (num > memcg_limited_groups_array_size) memcg_limited_groups_array_size = memcg_caches_array_size(num); } static void kmem_cache_destroy_work_func(struct work_struct *w); int memcg_update_cache_size(struct kmem_cache *s, int num_groups) { struct memcg_cache_params *cur_params = s->memcg_params; VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); if (num_groups > memcg_limited_groups_array_size) { int i; ssize_t size = memcg_caches_array_size(num_groups); size *= sizeof(void *); size += offsetof(struct memcg_cache_params, memcg_caches); s->memcg_params = kzalloc(size, GFP_KERNEL); if (!s->memcg_params) { s->memcg_params = cur_params; return -ENOMEM; } s->memcg_params->is_root_cache = true; /* * There is the chance it will be bigger than * memcg_limited_groups_array_size, if we failed an allocation * in a cache, in which case all caches updated before it, will * have a bigger array. * * But if that is the case, the data after * memcg_limited_groups_array_size is certainly unused */ for (i = 0; i < memcg_limited_groups_array_size; i++) { if (!cur_params->memcg_caches[i]) continue; s->memcg_params->memcg_caches[i] = cur_params->memcg_caches[i]; } /* * Ideally, we would wait until all caches succeed, and only * then free the old one. But this is not worth the extra * pointer per-cache we'd have to have for this. * * It is not a big deal if some caches are left with a size * bigger than the others. And all updates will reset this * anyway. */ kfree(cur_params); } return 0; } int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache) { size_t size; if (!memcg_kmem_enabled()) return 0; if (!memcg) { size = offsetof(struct memcg_cache_params, memcg_caches); size += memcg_limited_groups_array_size * sizeof(void *); } else size = sizeof(struct memcg_cache_params); s->memcg_params = kzalloc(size, GFP_KERNEL); if (!s->memcg_params) return -ENOMEM; if (memcg) { s->memcg_params->memcg = memcg; s->memcg_params->root_cache = root_cache; INIT_WORK(&s->memcg_params->destroy, kmem_cache_destroy_work_func); } else s->memcg_params->is_root_cache = true; return 0; } void memcg_release_cache(struct kmem_cache *s) { struct kmem_cache *root; struct mem_cgroup *memcg; int id; /* * This happens, for instance, when a root cache goes away before we * add any memcg. */ if (!s->memcg_params) return; if (s->memcg_params->is_root_cache) goto out; memcg = s->memcg_params->memcg; id = memcg_cache_id(memcg); root = s->memcg_params->root_cache; root->memcg_params->memcg_caches[id] = NULL; mutex_lock(&memcg->slab_caches_mutex); list_del(&s->memcg_params->list); mutex_unlock(&memcg->slab_caches_mutex); css_put(&memcg->css); out: kfree(s->memcg_params); } /* * During the creation a new cache, we need to disable our accounting mechanism * altogether. This is true even if we are not creating, but rather just * enqueing new caches to be created. * * This is because that process will trigger allocations; some visible, like * explicit kmallocs to auxiliary data structures, name strings and internal * cache structures; some well concealed, like INIT_WORK() that can allocate * objects during debug. * * If any allocation happens during memcg_kmem_get_cache, we will recurse back * to it. This may not be a bounded recursion: since the first cache creation * failed to complete (waiting on the allocation), we'll just try to create the * cache again, failing at the same point. * * memcg_kmem_get_cache is prepared to abort after seeing a positive count of * memcg_kmem_skip_account. So we enclose anything that might allocate memory * inside the following two functions. */ static inline void memcg_stop_kmem_account(void) { VM_BUG_ON(!current->mm); current->memcg_kmem_skip_account++; } static inline void memcg_resume_kmem_account(void) { VM_BUG_ON(!current->mm); current->memcg_kmem_skip_account--; } static void kmem_cache_destroy_work_func(struct work_struct *w) { struct kmem_cache *cachep; struct memcg_cache_params *p; p = container_of(w, struct memcg_cache_params, destroy); cachep = memcg_params_to_cache(p); /* * If we get down to 0 after shrink, we could delete right away. * However, memcg_release_pages() already puts us back in the workqueue * in that case. If we proceed deleting, we'll get a dangling * reference, and removing the object from the workqueue in that case * is unnecessary complication. We are not a fast path. * * Note that this case is fundamentally different from racing with * shrink_slab(): if memcg_cgroup_destroy_cache() is called in * kmem_cache_shrink, not only we would be reinserting a dead cache * into the queue, but doing so from inside the worker racing to * destroy it. * * So if we aren't down to zero, we'll just schedule a worker and try * again */ if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { kmem_cache_shrink(cachep); if (atomic_read(&cachep->memcg_params->nr_pages) == 0) return; } else kmem_cache_destroy(cachep); } void mem_cgroup_destroy_cache(struct kmem_cache *cachep) { if (!cachep->memcg_params->dead) return; /* * There are many ways in which we can get here. * * We can get to a memory-pressure situation while the delayed work is * still pending to run. The vmscan shrinkers can then release all * cache memory and get us to destruction. If this is the case, we'll * be executed twice, which is a bug (the second time will execute over * bogus data). In this case, cancelling the work should be fine. * * But we can also get here from the worker itself, if * kmem_cache_shrink is enough to shake all the remaining objects and * get the page count to 0. In this case, we'll deadlock if we try to * cancel the work (the worker runs with an internal lock held, which * is the same lock we would hold for cancel_work_sync().) * * Since we can't possibly know who got us here, just refrain from * running if there is already work pending */ if (work_pending(&cachep->memcg_params->destroy)) return; /* * We have to defer the actual destroying to a workqueue, because * we might currently be in a context that cannot sleep. */ schedule_work(&cachep->memcg_params->destroy); } /* * This lock protects updaters, not readers. We want readers to be as fast as * they can, and they will either see NULL or a valid cache value. Our model * allow them to see NULL, in which case the root memcg will be selected. * * We need this lock because multiple allocations to the same cache from a non * will span more than one worker. Only one of them can create the cache. */ static DEFINE_MUTEX(memcg_cache_mutex); /* * Called with memcg_cache_mutex held */ static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, struct kmem_cache *s) { struct kmem_cache *new; static char *tmp_name = NULL; lockdep_assert_held(&memcg_cache_mutex); /* * kmem_cache_create_memcg duplicates the given name and * cgroup_name for this name requires RCU context. * This static temporary buffer is used to prevent from * pointless shortliving allocation. */ if (!tmp_name) { tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); if (!tmp_name) return NULL; } rcu_read_lock(); snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); rcu_read_unlock(); new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, (s->flags & ~SLAB_PANIC), s->ctor, s); if (new) new->allocflags |= __GFP_KMEMCG; return new; } static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, struct kmem_cache *cachep) { struct kmem_cache *new_cachep; int idx; BUG_ON(!memcg_can_account_kmem(memcg)); idx = memcg_cache_id(memcg); mutex_lock(&memcg_cache_mutex); new_cachep = cachep->memcg_params->memcg_caches[idx]; if (new_cachep) { css_put(&memcg->css); goto out; } new_cachep = kmem_cache_dup(memcg, cachep); if (new_cachep == NULL) { new_cachep = cachep; css_put(&memcg->css); goto out; } atomic_set(&new_cachep->memcg_params->nr_pages , 0); cachep->memcg_params->memcg_caches[idx] = new_cachep; /* * the readers won't lock, make sure everybody sees the updated value, * so they won't put stuff in the queue again for no reason */ wmb(); out: mutex_unlock(&memcg_cache_mutex); return new_cachep; } void kmem_cache_destroy_memcg_children(struct kmem_cache *s) { struct kmem_cache *c; int i; if (!s->memcg_params) return; if (!s->memcg_params->is_root_cache) return; /* * If the cache is being destroyed, we trust that there is no one else * requesting objects from it. Even if there are, the sanity checks in * kmem_cache_destroy should caught this ill-case. * * Still, we don't want anyone else freeing memcg_caches under our * noses, which can happen if a new memcg comes to life. As usual, * we'll take the set_limit_mutex to protect ourselves against this. */ mutex_lock(&set_limit_mutex); for (i = 0; i < memcg_limited_groups_array_size; i++) { c = s->memcg_params->memcg_caches[i]; if (!c) continue; /* * We will now manually delete the caches, so to avoid races * we need to cancel all pending destruction workers and * proceed with destruction ourselves. * * kmem_cache_destroy() will call kmem_cache_shrink internally, * and that could spawn the workers again: it is likely that * the cache still have active pages until this very moment. * This would lead us back to mem_cgroup_destroy_cache. * * But that will not execute at all if the "dead" flag is not * set, so flip it down to guarantee we are in control. */ c->memcg_params->dead = false; cancel_work_sync(&c->memcg_params->destroy); kmem_cache_destroy(c); } mutex_unlock(&set_limit_mutex); } struct create_work { struct mem_cgroup *memcg; struct kmem_cache *cachep; struct work_struct work; }; static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) { struct kmem_cache *cachep; struct memcg_cache_params *params; if (!memcg_kmem_is_active(memcg)) return; mutex_lock(&memcg->slab_caches_mutex); list_for_each_entry(params, &memcg->memcg_slab_caches, list) { cachep = memcg_params_to_cache(params); cachep->memcg_params->dead = true; schedule_work(&cachep->memcg_params->destroy); } mutex_unlock(&memcg->slab_caches_mutex); } static void memcg_create_cache_work_func(struct work_struct *w) { struct create_work *cw; cw = container_of(w, struct create_work, work); memcg_create_kmem_cache(cw->memcg, cw->cachep); kfree(cw); } /* * Enqueue the creation of a per-memcg kmem_cache. */ static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, struct kmem_cache *cachep) { struct create_work *cw; cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); if (cw == NULL) { css_put(&memcg->css); return; } cw->memcg = memcg; cw->cachep = cachep; INIT_WORK(&cw->work, memcg_create_cache_work_func); schedule_work(&cw->work); } static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, struct kmem_cache *cachep) { /* * We need to stop accounting when we kmalloc, because if the * corresponding kmalloc cache is not yet created, the first allocation * in __memcg_create_cache_enqueue will recurse. * * However, it is better to enclose the whole function. Depending on * the debugging options enabled, INIT_WORK(), for instance, can * trigger an allocation. This too, will make us recurse. Because at * this point we can't allow ourselves back into memcg_kmem_get_cache, * the safest choice is to do it like this, wrapping the whole function. */ memcg_stop_kmem_account(); __memcg_create_cache_enqueue(memcg, cachep); memcg_resume_kmem_account(); } /* * Return the kmem_cache we're supposed to use for a slab allocation. * We try to use the current memcg's version of the cache. * * If the cache does not exist yet, if we are the first user of it, * we either create it immediately, if possible, or create it asynchronously * in a workqueue. * In the latter case, we will let the current allocation go through with * the original cache. * * Can't be called in interrupt context or from kernel threads. * This function needs to be called with rcu_read_lock() held. */ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) { struct mem_cgroup *memcg; int idx; VM_BUG_ON(!cachep->memcg_params); VM_BUG_ON(!cachep->memcg_params->is_root_cache); if (!current->mm || current->memcg_kmem_skip_account) return cachep; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); if (!memcg_can_account_kmem(memcg)) goto out; idx = memcg_cache_id(memcg); /* * barrier to mare sure we're always seeing the up to date value. The * code updating memcg_caches will issue a write barrier to match this. */ read_barrier_depends(); if (likely(cachep->memcg_params->memcg_caches[idx])) { cachep = cachep->memcg_params->memcg_caches[idx]; goto out; } /* The corresponding put will be done in the workqueue. */ if (!css_tryget(&memcg->css)) goto out; rcu_read_unlock(); /* * If we are in a safe context (can wait, and not in interrupt * context), we could be be predictable and return right away. * This would guarantee that the allocation being performed * already belongs in the new cache. * * However, there are some clashes that can arrive from locking. * For instance, because we acquire the slab_mutex while doing * kmem_cache_dup, this means no further allocation could happen * with the slab_mutex held. * * Also, because cache creation issue get_online_cpus(), this * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, * that ends up reversed during cpu hotplug. (cpuset allocates * a bunch of GFP_KERNEL memory during cpuup). Due to all that, * better to defer everything. */ memcg_create_cache_enqueue(memcg, cachep); return cachep; out: rcu_read_unlock(); return cachep; } EXPORT_SYMBOL(__memcg_kmem_get_cache); /* * We need to verify if the allocation against current->mm->owner's memcg is * possible for the given order. But the page is not allocated yet, so we'll * need a further commit step to do the final arrangements. * * It is possible for the task to switch cgroups in this mean time, so at * commit time, we can't rely on task conversion any longer. We'll then use * the handle argument to return to the caller which cgroup we should commit * against. We could also return the memcg directly and avoid the pointer * passing, but a boolean return value gives better semantics considering * the compiled-out case as well. * * Returning true means the allocation is possible. */ bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) { struct mem_cgroup *memcg; int ret; *_memcg = NULL; /* * Disabling accounting is only relevant for some specific memcg * internal allocations. Therefore we would initially not have such * check here, since direct calls to the page allocator that are marked * with GFP_KMEMCG only happen outside memcg core. We are mostly * concerned with cache allocations, and by having this test at * memcg_kmem_get_cache, we are already able to relay the allocation to * the root cache and bypass the memcg cache altogether. * * There is one exception, though: the SLUB allocator does not create * large order caches, but rather service large kmallocs directly from * the page allocator. Therefore, the following sequence when backed by * the SLUB allocator: * * memcg_stop_kmem_account(); * kmalloc(<large_number>) * memcg_resume_kmem_account(); * * would effectively ignore the fact that we should skip accounting, * since it will drive us directly to this function without passing * through the cache selector memcg_kmem_get_cache. Such large * allocations are extremely rare but can happen, for instance, for the * cache arrays. We bring this test here. */ if (!current->mm || current->memcg_kmem_skip_account) return true; memcg = try_get_mem_cgroup_from_mm(current->mm); /* * very rare case described in mem_cgroup_from_task. Unfortunately there * isn't much we can do without complicating this too much, and it would * be gfp-dependent anyway. Just let it go */ if (unlikely(!memcg)) return true; if (!memcg_can_account_kmem(memcg)) { css_put(&memcg->css); return true; } ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); if (!ret) *_memcg = memcg; css_put(&memcg->css); return (ret == 0); } void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) { struct page_cgroup *pc; VM_BUG_ON(mem_cgroup_is_root(memcg)); /* The page allocation failed. Revert */ if (!page) { memcg_uncharge_kmem(memcg, PAGE_SIZE << order); return; } pc = lookup_page_cgroup(page); lock_page_cgroup(pc); pc->mem_cgroup = memcg; SetPageCgroupUsed(pc); unlock_page_cgroup(pc); } void __memcg_kmem_uncharge_pages(struct page *page, int order) { struct mem_cgroup *memcg = NULL; struct page_cgroup *pc; pc = lookup_page_cgroup(page); /* * Fast unlocked return. Theoretically might have changed, have to * check again after locking. */ if (!PageCgroupUsed(pc)) return; lock_page_cgroup(pc); if (PageCgroupUsed(pc)) { memcg = pc->mem_cgroup; ClearPageCgroupUsed(pc); } unlock_page_cgroup(pc); /* * We trust that only if there is a memcg associated with the page, it * is a valid allocation */ if (!memcg) return; VM_BUG_ON(mem_cgroup_is_root(memcg)); memcg_uncharge_kmem(memcg, PAGE_SIZE << order); } #else static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) { } #endif /* CONFIG_MEMCG_KMEM */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) /* * Because tail pages are not marked as "used", set it. We're under * zone->lru_lock, 'splitting on pmd' and compound_lock. * charge/uncharge will be never happen and move_account() is done under * compound_lock(), so we don't have to take care of races. */ void mem_cgroup_split_huge_fixup(struct page *head) { struct page_cgroup *head_pc = lookup_page_cgroup(head); struct page_cgroup *pc; struct mem_cgroup *memcg; int i; if (mem_cgroup_disabled()) return; memcg = head_pc->mem_cgroup; for (i = 1; i < HPAGE_PMD_NR; i++) { pc = head_pc + i; pc->mem_cgroup = memcg; smp_wmb();/* see __commit_charge() */ pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; } __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], HPAGE_PMD_NR); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, struct mem_cgroup *to, unsigned int nr_pages, enum mem_cgroup_stat_index idx) { /* Update stat data for mem_cgroup */ preempt_disable(); __this_cpu_sub(from->stat->count[idx], nr_pages); __this_cpu_add(to->stat->count[idx], nr_pages); preempt_enable(); } /** * mem_cgroup_move_account - move account of the page * @page: the page * @nr_pages: number of regular pages (>1 for huge pages) * @pc: page_cgroup of the page. * @from: mem_cgroup which the page is moved from. * @to: mem_cgroup which the page is moved to. @from != @to. * * The caller must confirm following. * - page is not on LRU (isolate_page() is useful.) * - compound_lock is held when nr_pages > 1 * * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" * from old cgroup. */ static int mem_cgroup_move_account(struct page *page, unsigned int nr_pages, struct page_cgroup *pc, struct mem_cgroup *from, struct mem_cgroup *to) { unsigned long flags; int ret; bool anon = PageAnon(page); VM_BUG_ON(from == to); VM_BUG_ON(PageLRU(page)); /* * The page is isolated from LRU. So, collapse function * will not handle this page. But page splitting can happen. * Do this check under compound_page_lock(). The caller should * hold it. */ ret = -EBUSY; if (nr_pages > 1 && !PageTransHuge(page)) goto out; lock_page_cgroup(pc); ret = -EINVAL; if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) goto unlock; move_lock_mem_cgroup(from, &flags); if (!anon && page_mapped(page)) mem_cgroup_move_account_page_stat(from, to, nr_pages, MEM_CGROUP_STAT_FILE_MAPPED); if (PageWriteback(page)) mem_cgroup_move_account_page_stat(from, to, nr_pages, MEM_CGROUP_STAT_WRITEBACK); mem_cgroup_charge_statistics(from, page, anon, -nr_pages); /* caller should have done css_get */ pc->mem_cgroup = to; mem_cgroup_charge_statistics(to, page, anon, nr_pages); move_unlock_mem_cgroup(from, &flags); ret = 0; unlock: unlock_page_cgroup(pc); /* * check events */ memcg_check_events(to, page); memcg_check_events(from, page); out: return ret; } /** * mem_cgroup_move_parent - moves page to the parent group * @page: the page to move * @pc: page_cgroup of the page * @child: page's cgroup * * move charges to its parent or the root cgroup if the group has no * parent (aka use_hierarchy==0). * Although this might fail (get_page_unless_zero, isolate_lru_page or * mem_cgroup_move_account fails) the failure is always temporary and * it signals a race with a page removal/uncharge or migration. In the * first case the page is on the way out and it will vanish from the LRU * on the next attempt and the call should be retried later. * Isolation from the LRU fails only if page has been isolated from * the LRU since we looked at it and that usually means either global * reclaim or migration going on. The page will either get back to the * LRU or vanish. * Finaly mem_cgroup_move_account fails only if the page got uncharged * (!PageCgroupUsed) or moved to a different group. The page will * disappear in the next attempt. */ static int mem_cgroup_move_parent(struct page *page, struct page_cgroup *pc, struct mem_cgroup *child) { struct mem_cgroup *parent; unsigned int nr_pages; unsigned long uninitialized_var(flags); int ret; VM_BUG_ON(mem_cgroup_is_root(child)); ret = -EBUSY; if (!get_page_unless_zero(page)) goto out; if (isolate_lru_page(page)) goto put; nr_pages = hpage_nr_pages(page); parent = parent_mem_cgroup(child); /* * If no parent, move charges to root cgroup. */ if (!parent) parent = root_mem_cgroup; if (nr_pages > 1) { VM_BUG_ON(!PageTransHuge(page)); flags = compound_lock_irqsave(page); } ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent); if (!ret) __mem_cgroup_cancel_local_charge(child, nr_pages); if (nr_pages > 1) compound_unlock_irqrestore(page, flags); putback_lru_page(page); put: put_page(page); out: return ret; } /* * Charge the memory controller for page usage. * Return * 0 if the charge was successful * < 0 if the cgroup is over its limit */ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, gfp_t gfp_mask, enum charge_type ctype) { struct mem_cgroup *memcg = NULL; unsigned int nr_pages = 1; bool oom = true; int ret; if (PageTransHuge(page)) { nr_pages <<= compound_order(page); VM_BUG_ON(!PageTransHuge(page)); /* * Never OOM-kill a process for a huge page. The * fault handler will fall back to regular pages. */ oom = false; } ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); if (ret == -ENOMEM) return ret; __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); return 0; } int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { if (mem_cgroup_disabled()) return 0; VM_BUG_ON(page_mapped(page)); VM_BUG_ON(page->mapping && !PageAnon(page)); VM_BUG_ON(!mm); return mem_cgroup_charge_common(page, mm, gfp_mask, MEM_CGROUP_CHARGE_TYPE_ANON); } /* * While swap-in, try_charge -> commit or cancel, the page is locked. * And when try_charge() successfully returns, one refcnt to memcg without * struct page_cgroup is acquired. This refcnt will be consumed by * "commit()" or removed by "cancel()" */ static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, gfp_t mask, struct mem_cgroup **memcgp) { struct mem_cgroup *memcg; struct page_cgroup *pc; int ret; pc = lookup_page_cgroup(page); /* * Every swap fault against a single page tries to charge the * page, bail as early as possible. shmem_unuse() encounters * already charged pages, too. The USED bit is protected by * the page lock, which serializes swap cache removal, which * in turn serializes uncharging. */ if (PageCgroupUsed(pc)) return 0; if (!do_swap_account) goto charge_cur_mm; memcg = try_get_mem_cgroup_from_page(page); if (!memcg) goto charge_cur_mm; *memcgp = memcg; ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); css_put(&memcg->css); if (ret == -EINTR) ret = 0; return ret; charge_cur_mm: ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); if (ret == -EINTR) ret = 0; return ret; } int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) { *memcgp = NULL; if (mem_cgroup_disabled()) return 0; /* * A racing thread's fault, or swapoff, may have already * updated the pte, and even removed page from swap cache: in * those cases unuse_pte()'s pte_same() test will fail; but * there's also a KSM case which does need to charge the page. */ if (!PageSwapCache(page)) { int ret; ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); if (ret == -EINTR) ret = 0; return ret; } return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); } void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return; if (!memcg) return; __mem_cgroup_cancel_charge(memcg, 1); } static void __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, enum charge_type ctype) { if (mem_cgroup_disabled()) return; if (!memcg) return; __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); /* * Now swap is on-memory. This means this page may be * counted both as mem and swap....double count. * Fix it by uncharging from memsw. Basically, this SwapCache is stable * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() * may call delete_from_swap_cache() before reach here. */ if (do_swap_account && PageSwapCache(page)) { swp_entry_t ent = {.val = page_private(page)}; mem_cgroup_uncharge_swap(ent); } } void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg) { __mem_cgroup_commit_charge_swapin(page, memcg, MEM_CGROUP_CHARGE_TYPE_ANON); } int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { struct mem_cgroup *memcg = NULL; enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; int ret; if (mem_cgroup_disabled()) return 0; if (PageCompound(page)) return 0; if (!PageSwapCache(page)) ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); else { /* page is swapcache/shmem */ ret = __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); if (!ret) __mem_cgroup_commit_charge_swapin(page, memcg, type); } return ret; } static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages, const enum charge_type ctype) { struct memcg_batch_info *batch = NULL; bool uncharge_memsw = true; /* If swapout, usage of swap doesn't decrease */ if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) uncharge_memsw = false; batch = ¤t->memcg_batch; /* * In usual, we do css_get() when we remember memcg pointer. * But in this case, we keep res->usage until end of a series of * uncharges. Then, it's ok to ignore memcg's refcnt. */ if (!batch->memcg) batch->memcg = memcg; /* * do_batch > 0 when unmapping pages or inode invalidate/truncate. * In those cases, all pages freed continuously can be expected to be in * the same cgroup and we have chance to coalesce uncharges. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) * because we want to do uncharge as soon as possible. */ if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) goto direct_uncharge; if (nr_pages > 1) goto direct_uncharge; /* * In typical case, batch->memcg == mem. This means we can * merge a series of uncharges to an uncharge of res_counter. * If not, we uncharge res_counter ony by one. */ if (batch->memcg != memcg) goto direct_uncharge; /* remember freed charge and uncharge it later */ batch->nr_pages++; if (uncharge_memsw) batch->memsw_nr_pages++; return; direct_uncharge: res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); if (uncharge_memsw) res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); if (unlikely(batch->memcg != memcg)) memcg_oom_recover(memcg); } /* * uncharge if !page_mapped(page) */ static struct mem_cgroup * __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, bool end_migration) { struct mem_cgroup *memcg = NULL; unsigned int nr_pages = 1; struct page_cgroup *pc; bool anon; if (mem_cgroup_disabled()) return NULL; if (PageTransHuge(page)) { nr_pages <<= compound_order(page); VM_BUG_ON(!PageTransHuge(page)); } /* * Check if our page_cgroup is valid */ pc = lookup_page_cgroup(page); if (unlikely(!PageCgroupUsed(pc))) return NULL; lock_page_cgroup(pc); memcg = pc->mem_cgroup; if (!PageCgroupUsed(pc)) goto unlock_out; anon = PageAnon(page); switch (ctype) { case MEM_CGROUP_CHARGE_TYPE_ANON: /* * Generally PageAnon tells if it's the anon statistics to be * updated; but sometimes e.g. mem_cgroup_uncharge_page() is * used before page reached the stage of being marked PageAnon. */ anon = true; /* fallthrough */ case MEM_CGROUP_CHARGE_TYPE_DROP: /* See mem_cgroup_prepare_migration() */ if (page_mapped(page)) goto unlock_out; /* * Pages under migration may not be uncharged. But * end_migration() /must/ be the one uncharging the * unused post-migration page and so it has to call * here with the migration bit still set. See the * res_counter handling below. */ if (!end_migration && PageCgroupMigration(pc)) goto unlock_out; break; case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: if (!PageAnon(page)) { /* Shared memory */ if (page->mapping && !page_is_file_cache(page)) goto unlock_out; } else if (page_mapped(page)) /* Anon */ goto unlock_out; break; default: break; } mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); ClearPageCgroupUsed(pc); /* * pc->mem_cgroup is not cleared here. It will be accessed when it's * freed from LRU. This is safe because uncharged page is expected not * to be reused (freed soon). Exception is SwapCache, it's handled by * special functions. */ unlock_page_cgroup(pc); /* * even after unlock, we have memcg->res.usage here and this memcg * will never be freed, so it's safe to call css_get(). */ memcg_check_events(memcg, page); if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { mem_cgroup_swap_statistics(memcg, true); css_get(&memcg->css); } /* * Migration does not charge the res_counter for the * replacement page, so leave it alone when phasing out the * page that is unused after the migration. */ if (!end_migration && !mem_cgroup_is_root(memcg)) mem_cgroup_do_uncharge(memcg, nr_pages, ctype); return memcg; unlock_out: unlock_page_cgroup(pc); return NULL; } void mem_cgroup_uncharge_page(struct page *page) { /* early check. */ if (page_mapped(page)) return; VM_BUG_ON(page->mapping && !PageAnon(page)); /* * If the page is in swap cache, uncharge should be deferred * to the swap path, which also properly accounts swap usage * and handles memcg lifetime. * * Note that this check is not stable and reclaim may add the * page to swap cache at any time after this. However, if the * page is not in swap cache by the time page->mapcount hits * 0, there won't be any page table references to the swap * slot, and reclaim will free it and not actually write the * page to disk. */ if (PageSwapCache(page)) return; __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); } void mem_cgroup_uncharge_cache_page(struct page *page) { VM_BUG_ON(page_mapped(page)); VM_BUG_ON(page->mapping); __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); } /* * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. * In that cases, pages are freed continuously and we can expect pages * are in the same memcg. All these calls itself limits the number of * pages freed at once, then uncharge_start/end() is called properly. * This may be called prural(2) times in a context, */ void mem_cgroup_uncharge_start(void) { current->memcg_batch.do_batch++; /* We can do nest. */ if (current->memcg_batch.do_batch == 1) { current->memcg_batch.memcg = NULL; current->memcg_batch.nr_pages = 0; current->memcg_batch.memsw_nr_pages = 0; } } void mem_cgroup_uncharge_end(void) { struct memcg_batch_info *batch = ¤t->memcg_batch; if (!batch->do_batch) return; batch->do_batch--; if (batch->do_batch) /* If stacked, do nothing. */ return; if (!batch->memcg) return; /* * This "batch->memcg" is valid without any css_get/put etc... * bacause we hide charges behind us. */ if (batch->nr_pages) res_counter_uncharge(&batch->memcg->res, batch->nr_pages * PAGE_SIZE); if (batch->memsw_nr_pages) res_counter_uncharge(&batch->memcg->memsw, batch->memsw_nr_pages * PAGE_SIZE); memcg_oom_recover(batch->memcg); /* forget this pointer (for sanity check) */ batch->memcg = NULL; } #ifdef CONFIG_SWAP /* * called after __delete_from_swap_cache() and drop "page" account. * memcg information is recorded to swap_cgroup of "ent" */ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) { struct mem_cgroup *memcg; int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; if (!swapout) /* this was a swap cache but the swap is unused ! */ ctype = MEM_CGROUP_CHARGE_TYPE_DROP; memcg = __mem_cgroup_uncharge_common(page, ctype, false); /* * record memcg information, if swapout && memcg != NULL, * css_get() was called in uncharge(). */ if (do_swap_account && swapout && memcg) swap_cgroup_record(ent, css_id(&memcg->css)); } #endif #ifdef CONFIG_MEMCG_SWAP /* * called from swap_entry_free(). remove record in swap_cgroup and * uncharge "memsw" account. */ void mem_cgroup_uncharge_swap(swp_entry_t ent) { struct mem_cgroup *memcg; unsigned short id; if (!do_swap_account) return; id = swap_cgroup_record(ent, 0); rcu_read_lock(); memcg = mem_cgroup_lookup(id); if (memcg) { /* * We uncharge this because swap is freed. * This memcg can be obsolete one. We avoid calling css_tryget */ if (!mem_cgroup_is_root(memcg)) res_counter_uncharge(&memcg->memsw, PAGE_SIZE); mem_cgroup_swap_statistics(memcg, false); css_put(&memcg->css); } rcu_read_unlock(); } /** * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. * @entry: swap entry to be moved * @from: mem_cgroup which the entry is moved from * @to: mem_cgroup which the entry is moved to * * It succeeds only when the swap_cgroup's record for this entry is the same * as the mem_cgroup's id of @from. * * Returns 0 on success, -EINVAL on failure. * * The caller must have charged to @to, IOW, called res_counter_charge() about * both res and memsw, and called css_get(). */ static int mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to) { unsigned short old_id, new_id; old_id = css_id(&from->css); new_id = css_id(&to->css); if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { mem_cgroup_swap_statistics(from, false); mem_cgroup_swap_statistics(to, true); /* * This function is only called from task migration context now. * It postpones res_counter and refcount handling till the end * of task migration(mem_cgroup_clear_mc()) for performance * improvement. But we cannot postpone css_get(to) because if * the process that has been moved to @to does swap-in, the * refcount of @to might be decreased to 0. * * We are in attach() phase, so the cgroup is guaranteed to be * alive, so we can just call css_get(). */ css_get(&to->css); return 0; } return -EINVAL; } #else static inline int mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to) { return -EINVAL; } #endif /* * Before starting migration, account PAGE_SIZE to mem_cgroup that the old * page belongs to. */ void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, struct mem_cgroup **memcgp) { struct mem_cgroup *memcg = NULL; unsigned int nr_pages = 1; struct page_cgroup *pc; enum charge_type ctype; *memcgp = NULL; if (mem_cgroup_disabled()) return; if (PageTransHuge(page)) nr_pages <<= compound_order(page); pc = lookup_page_cgroup(page); lock_page_cgroup(pc); if (PageCgroupUsed(pc)) { memcg = pc->mem_cgroup; css_get(&memcg->css); /* * At migrating an anonymous page, its mapcount goes down * to 0 and uncharge() will be called. But, even if it's fully * unmapped, migration may fail and this page has to be * charged again. We set MIGRATION flag here and delay uncharge * until end_migration() is called * * Corner Case Thinking * A) * When the old page was mapped as Anon and it's unmap-and-freed * while migration was ongoing. * If unmap finds the old page, uncharge() of it will be delayed * until end_migration(). If unmap finds a new page, it's * uncharged when it make mapcount to be 1->0. If unmap code * finds swap_migration_entry, the new page will not be mapped * and end_migration() will find it(mapcount==0). * * B) * When the old page was mapped but migraion fails, the kernel * remaps it. A charge for it is kept by MIGRATION flag even * if mapcount goes down to 0. We can do remap successfully * without charging it again. * * C) * The "old" page is under lock_page() until the end of * migration, so, the old page itself will not be swapped-out. * If the new page is swapped out before end_migraton, our * hook to usual swap-out path will catch the event. */ if (PageAnon(page)) SetPageCgroupMigration(pc); } unlock_page_cgroup(pc); /* * If the page is not charged at this point, * we return here. */ if (!memcg) return; *memcgp = memcg; /* * We charge new page before it's used/mapped. So, even if unlock_page() * is called before end_migration, we can catch all events on this new * page. In the case new page is migrated but not remapped, new page's * mapcount will be finally 0 and we call uncharge in end_migration(). */ if (PageAnon(page)) ctype = MEM_CGROUP_CHARGE_TYPE_ANON; else ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; /* * The page is committed to the memcg, but it's not actually * charged to the res_counter since we plan on replacing the * old one and only one page is going to be left afterwards. */ __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); } /* remove redundant charge if migration failed*/ void mem_cgroup_end_migration(struct mem_cgroup *memcg, struct page *oldpage, struct page *newpage, bool migration_ok) { struct page *used, *unused; struct page_cgroup *pc; bool anon; if (!memcg) return; if (!migration_ok) { used = oldpage; unused = newpage; } else { used = newpage; unused = oldpage; } anon = PageAnon(used); __mem_cgroup_uncharge_common(unused, anon ? MEM_CGROUP_CHARGE_TYPE_ANON : MEM_CGROUP_CHARGE_TYPE_CACHE, true); css_put(&memcg->css); /* * We disallowed uncharge of pages under migration because mapcount * of the page goes down to zero, temporarly. * Clear the flag and check the page should be charged. */ pc = lookup_page_cgroup(oldpage); lock_page_cgroup(pc); ClearPageCgroupMigration(pc); unlock_page_cgroup(pc); /* * If a page is a file cache, radix-tree replacement is very atomic * and we can skip this check. When it was an Anon page, its mapcount * goes down to 0. But because we added MIGRATION flage, it's not * uncharged yet. There are several case but page->mapcount check * and USED bit check in mem_cgroup_uncharge_page() will do enough * check. (see prepare_charge() also) */ if (anon) mem_cgroup_uncharge_page(used); } /* * At replace page cache, newpage is not under any memcg but it's on * LRU. So, this function doesn't touch res_counter but handles LRU * in correct way. Both pages are locked so we cannot race with uncharge. */ void mem_cgroup_replace_page_cache(struct page *oldpage, struct page *newpage) { struct mem_cgroup *memcg = NULL; struct page_cgroup *pc; enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; if (mem_cgroup_disabled()) return; pc = lookup_page_cgroup(oldpage); /* fix accounting on old pages */ lock_page_cgroup(pc); if (PageCgroupUsed(pc)) { memcg = pc->mem_cgroup; mem_cgroup_charge_statistics(memcg, oldpage, false, -1); ClearPageCgroupUsed(pc); } unlock_page_cgroup(pc); /* * When called from shmem_replace_page(), in some cases the * oldpage has already been charged, and in some cases not. */ if (!memcg) return; /* * Even if newpage->mapping was NULL before starting replacement, * the newpage may be on LRU(or pagevec for LRU) already. We lock * LRU while we overwrite pc->mem_cgroup. */ __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); } #ifdef CONFIG_DEBUG_VM static struct page_cgroup *lookup_page_cgroup_used(struct page *page) { struct page_cgroup *pc; pc = lookup_page_cgroup(page); /* * Can be NULL while feeding pages into the page allocator for * the first time, i.e. during boot or memory hotplug; * or when mem_cgroup_disabled(). */ if (likely(pc) && PageCgroupUsed(pc)) return pc; return NULL; } bool mem_cgroup_bad_page_check(struct page *page) { if (mem_cgroup_disabled()) return false; return lookup_page_cgroup_used(page) != NULL; } void mem_cgroup_print_bad_page(struct page *page) { struct page_cgroup *pc; pc = lookup_page_cgroup_used(page); if (pc) { pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", pc, pc->flags, pc->mem_cgroup); } } #endif static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) { int retry_count; u64 memswlimit, memlimit; int ret = 0; int children = mem_cgroup_count_children(memcg); u64 curusage, oldusage; int enlarge; /* * For keeping hierarchical_reclaim simple, how long we should retry * is depends on callers. We set our retry-count to be function * of # of children which we should visit in this loop. */ retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); enlarge = 0; while (retry_count) { if (signal_pending(current)) { ret = -EINTR; break; } /* * Rather than hide all in some function, I do this in * open coded manner. You see what this really does. * We have to guarantee memcg->res.limit <= memcg->memsw.limit. */ mutex_lock(&set_limit_mutex); memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); if (memswlimit < val) { ret = -EINVAL; mutex_unlock(&set_limit_mutex); break; } memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); if (memlimit < val) enlarge = 1; ret = res_counter_set_limit(&memcg->res, val); if (!ret) { if (memswlimit == val) memcg->memsw_is_minimum = true; else memcg->memsw_is_minimum = false; } mutex_unlock(&set_limit_mutex); if (!ret) break; mem_cgroup_reclaim(memcg, GFP_KERNEL, MEM_CGROUP_RECLAIM_SHRINK); curusage = res_counter_read_u64(&memcg->res, RES_USAGE); /* Usage is reduced ? */ if (curusage >= oldusage) retry_count--; else oldusage = curusage; } if (!ret && enlarge) memcg_oom_recover(memcg); return ret; } static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, unsigned long long val) { int retry_count; u64 memlimit, memswlimit, oldusage, curusage; int children = mem_cgroup_count_children(memcg); int ret = -EBUSY; int enlarge = 0; /* see mem_cgroup_resize_res_limit */ retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); while (retry_count) { if (signal_pending(current)) { ret = -EINTR; break; } /* * Rather than hide all in some function, I do this in * open coded manner. You see what this really does. * We have to guarantee memcg->res.limit <= memcg->memsw.limit. */ mutex_lock(&set_limit_mutex); memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); if (memlimit > val) { ret = -EINVAL; mutex_unlock(&set_limit_mutex); break; } memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); if (memswlimit < val) enlarge = 1; ret = res_counter_set_limit(&memcg->memsw, val); if (!ret) { if (memlimit == val) memcg->memsw_is_minimum = true; else memcg->memsw_is_minimum = false; } mutex_unlock(&set_limit_mutex); if (!ret) break; mem_cgroup_reclaim(memcg, GFP_KERNEL, MEM_CGROUP_RECLAIM_NOSWAP | MEM_CGROUP_RECLAIM_SHRINK); curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); /* Usage is reduced ? */ if (curusage >= oldusage) retry_count--; else oldusage = curusage; } if (!ret && enlarge) memcg_oom_recover(memcg); return ret; } unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, gfp_t gfp_mask, unsigned long *total_scanned) { unsigned long nr_reclaimed = 0; struct mem_cgroup_per_zone *mz, *next_mz = NULL; unsigned long reclaimed; int loop = 0; struct mem_cgroup_tree_per_zone *mctz; unsigned long long excess; unsigned long nr_scanned; if (order > 0) return 0; mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); /* * This loop can run a while, specially if mem_cgroup's continuously * keep exceeding their soft limit and putting the system under * pressure */ do { if (next_mz) mz = next_mz; else mz = mem_cgroup_largest_soft_limit_node(mctz); if (!mz) break; nr_scanned = 0; reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, gfp_mask, &nr_scanned); nr_reclaimed += reclaimed; *total_scanned += nr_scanned; spin_lock(&mctz->lock); /* * If we failed to reclaim anything from this memory cgroup * it is time to move on to the next cgroup */ next_mz = NULL; if (!reclaimed) { do { /* * Loop until we find yet another one. * * By the time we get the soft_limit lock * again, someone might have aded the * group back on the RB tree. Iterate to * make sure we get a different mem. * mem_cgroup_largest_soft_limit_node returns * NULL if no other cgroup is present on * the tree */ next_mz = __mem_cgroup_largest_soft_limit_node(mctz); if (next_mz == mz) css_put(&next_mz->memcg->css); else /* next_mz == NULL or other memcg */ break; } while (1); } __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); excess = res_counter_soft_limit_excess(&mz->memcg->res); /* * One school of thought says that we should not add * back the node to the tree if reclaim returns 0. * But our reclaim could return 0, simply because due * to priority we are exposing a smaller subset of * memory to reclaim from. Consider this as a longer * term TODO. */ /* If excess == 0, no tree ops */ __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); spin_unlock(&mctz->lock); css_put(&mz->memcg->css); loop++; /* * Could not reclaim anything and there are no more * mem cgroups to try or we seem to be looping without * reclaiming anything. */ if (!nr_reclaimed && (next_mz == NULL || loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) break; } while (!nr_reclaimed); if (next_mz) css_put(&next_mz->memcg->css); return nr_reclaimed; } /** * mem_cgroup_force_empty_list - clears LRU of a group * @memcg: group to clear * @node: NUMA node * @zid: zone id * @lru: lru to to clear * * Traverse a specified page_cgroup list and try to drop them all. This doesn't * reclaim the pages page themselves - pages are moved to the parent (or root) * group. */ static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, int node, int zid, enum lru_list lru) { struct lruvec *lruvec; unsigned long flags; struct list_head *list; struct page *busy; struct zone *zone; zone = &NODE_DATA(node)->node_zones[zid]; lruvec = mem_cgroup_zone_lruvec(zone, memcg); list = &lruvec->lists[lru]; busy = NULL; do { struct page_cgroup *pc; struct page *page; spin_lock_irqsave(&zone->lru_lock, flags); if (list_empty(list)) { spin_unlock_irqrestore(&zone->lru_lock, flags); break; } page = list_entry(list->prev, struct page, lru); if (busy == page) { list_move(&page->lru, list); busy = NULL; spin_unlock_irqrestore(&zone->lru_lock, flags); continue; } spin_unlock_irqrestore(&zone->lru_lock, flags); pc = lookup_page_cgroup(page); if (mem_cgroup_move_parent(page, pc, memcg)) { /* found lock contention or "pc" is obsolete. */ busy = page; cond_resched(); } else busy = NULL; } while (!list_empty(list)); } /* * make mem_cgroup's charge to be 0 if there is no task by moving * all the charges and pages to the parent. * This enables deleting this mem_cgroup. * * Caller is responsible for holding css reference on the memcg. */ static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) { int node, zid; u64 usage; do { /* This is for making all *used* pages to be on LRU. */ lru_add_drain_all(); drain_all_stock_sync(memcg); mem_cgroup_start_move(memcg); for_each_node_state(node, N_MEMORY) { for (zid = 0; zid < MAX_NR_ZONES; zid++) { enum lru_list lru; for_each_lru(lru) { mem_cgroup_force_empty_list(memcg, node, zid, lru); } } } mem_cgroup_end_move(memcg); memcg_oom_recover(memcg); cond_resched(); /* * Kernel memory may not necessarily be trackable to a specific * process. So they are not migrated, and therefore we can't * expect their value to drop to 0 here. * Having res filled up with kmem only is enough. * * This is a safety check because mem_cgroup_force_empty_list * could have raced with mem_cgroup_replace_page_cache callers * so the lru seemed empty but the page could have been added * right after the check. RES_USAGE should be safe as we always * charge before adding to the LRU. */ usage = res_counter_read_u64(&memcg->res, RES_USAGE) - res_counter_read_u64(&memcg->kmem, RES_USAGE); } while (usage > 0); } static inline bool memcg_has_children(struct mem_cgroup *memcg) { lockdep_assert_held(&memcg_create_mutex); /* * The lock does not prevent addition or deletion to the list * of children, but it prevents a new child from being * initialized based on this parent in css_online(), so it's * enough to decide whether hierarchically inherited * attributes can still be changed or not. */ return memcg->use_hierarchy && !list_empty(&memcg->css.cgroup->children); } /* * Reclaims as many pages from the given memcg as possible and moves * the rest to the parent. * * Caller is responsible for holding css reference for memcg. */ static int mem_cgroup_force_empty(struct mem_cgroup *memcg) { int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; struct cgroup *cgrp = memcg->css.cgroup; /* returns EBUSY if there is a task or if we come here twice. */ if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) return -EBUSY; /* we call try-to-free pages for make this cgroup empty */ lru_add_drain_all(); /* try to free all pages in this cgroup */ while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { int progress; if (signal_pending(current)) return -EINTR; progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, false); if (!progress) { nr_retries--; /* maybe some writeback is necessary */ congestion_wait(BLK_RW_ASYNC, HZ/10); } } lru_add_drain(); mem_cgroup_reparent_charges(memcg); return 0; } static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, unsigned int event) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); if (mem_cgroup_is_root(memcg)) return -EINVAL; return mem_cgroup_force_empty(memcg); } static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, struct cftype *cft) { return mem_cgroup_from_css(css)->use_hierarchy; } static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { int retval = 0; struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); mutex_lock(&memcg_create_mutex); if (memcg->use_hierarchy == val) goto out; /* * If parent's use_hierarchy is set, we can't make any modifications * in the child subtrees. If it is unset, then the change can * occur, provided the current cgroup has no children. * * For the root cgroup, parent_mem is NULL, we allow value to be * set if there are no children. */ if ((!parent_memcg || !parent_memcg->use_hierarchy) && (val == 1 || val == 0)) { if (list_empty(&memcg->css.cgroup->children)) memcg->use_hierarchy = val; else retval = -EBUSY; } else retval = -EINVAL; out: mutex_unlock(&memcg_create_mutex); return retval; } static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) { struct mem_cgroup *iter; long val = 0; /* Per-cpu values can be negative, use a signed accumulator */ for_each_mem_cgroup_tree(iter, memcg) val += mem_cgroup_read_stat(iter, idx); if (val < 0) /* race ? */ val = 0; return val; } static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) { u64 val; if (!mem_cgroup_is_root(memcg)) { if (!swap) return res_counter_read_u64(&memcg->res, RES_USAGE); else return res_counter_read_u64(&memcg->memsw, RES_USAGE); } /* * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS * as well as in MEM_CGROUP_STAT_RSS_HUGE. */ val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); if (swap) val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); return val << PAGE_SHIFT; } static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft, struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); char str[64]; u64 val; int name, len; enum res_type type; type = MEMFILE_TYPE(cft->private); name = MEMFILE_ATTR(cft->private); switch (type) { case _MEM: if (name == RES_USAGE) val = mem_cgroup_usage(memcg, false); else val = res_counter_read_u64(&memcg->res, name); break; case _MEMSWAP: if (name == RES_USAGE) val = mem_cgroup_usage(memcg, true); else val = res_counter_read_u64(&memcg->memsw, name); break; case _KMEM: val = res_counter_read_u64(&memcg->kmem, name); break; default: BUG(); } len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); return simple_read_from_buffer(buf, nbytes, ppos, str, len); } static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) { int ret = -EINVAL; #ifdef CONFIG_MEMCG_KMEM struct mem_cgroup *memcg = mem_cgroup_from_css(css); /* * For simplicity, we won't allow this to be disabled. It also can't * be changed if the cgroup has children already, or if tasks had * already joined. * * If tasks join before we set the limit, a person looking at * kmem.usage_in_bytes will have no way to determine when it took * place, which makes the value quite meaningless. * * After it first became limited, changes in the value of the limit are * of course permitted. */ mutex_lock(&memcg_create_mutex); mutex_lock(&set_limit_mutex); if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { ret = -EBUSY; goto out; } ret = res_counter_set_limit(&memcg->kmem, val); VM_BUG_ON(ret); ret = memcg_update_cache_sizes(memcg); if (ret) { res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); goto out; } static_key_slow_inc(&memcg_kmem_enabled_key); /* * setting the active bit after the inc will guarantee no one * starts accounting before all call sites are patched */ memcg_kmem_set_active(memcg); } else ret = res_counter_set_limit(&memcg->kmem, val); out: mutex_unlock(&set_limit_mutex); mutex_unlock(&memcg_create_mutex); #endif return ret; } #ifdef CONFIG_MEMCG_KMEM static int memcg_propagate_kmem(struct mem_cgroup *memcg) { int ret = 0; struct mem_cgroup *parent = parent_mem_cgroup(memcg); if (!parent) goto out; memcg->kmem_account_flags = parent->kmem_account_flags; /* * When that happen, we need to disable the static branch only on those * memcgs that enabled it. To achieve this, we would be forced to * complicate the code by keeping track of which memcgs were the ones * that actually enabled limits, and which ones got it from its * parents. * * It is a lot simpler just to do static_key_slow_inc() on every child * that is accounted. */ if (!memcg_kmem_is_active(memcg)) goto out; /* * __mem_cgroup_free() will issue static_key_slow_dec() because this * memcg is active already. If the later initialization fails then the * cgroup core triggers the cleanup so we do not have to do it here. */ static_key_slow_inc(&memcg_kmem_enabled_key); mutex_lock(&set_limit_mutex); memcg_stop_kmem_account(); ret = memcg_update_cache_sizes(memcg); memcg_resume_kmem_account(); mutex_unlock(&set_limit_mutex); out: return ret; } #endif /* CONFIG_MEMCG_KMEM */ /* * The user of this function is... * RES_LIMIT. */ static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, const char *buffer) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); enum res_type type; int name; unsigned long long val; int ret; type = MEMFILE_TYPE(cft->private); name = MEMFILE_ATTR(cft->private); switch (name) { case RES_LIMIT: if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ ret = -EINVAL; break; } /* This function does all necessary parse...reuse it */ ret = res_counter_memparse_write_strategy(buffer, &val); if (ret) break; if (type == _MEM) ret = mem_cgroup_resize_limit(memcg, val); else if (type == _MEMSWAP) ret = mem_cgroup_resize_memsw_limit(memcg, val); else if (type == _KMEM) ret = memcg_update_kmem_limit(css, val); else return -EINVAL; break; case RES_SOFT_LIMIT: ret = res_counter_memparse_write_strategy(buffer, &val); if (ret) break; /* * For memsw, soft limits are hard to implement in terms * of semantics, for now, we support soft limits for * control without swap */ if (type == _MEM) ret = res_counter_set_soft_limit(&memcg->res, val); else ret = -EINVAL; break; default: ret = -EINVAL; /* should be BUG() ? */ break; } return ret; } static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, unsigned long long *mem_limit, unsigned long long *memsw_limit) { unsigned long long min_limit, min_memsw_limit, tmp; min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); if (!memcg->use_hierarchy) goto out; while (css_parent(&memcg->css)) { memcg = mem_cgroup_from_css(css_parent(&memcg->css)); if (!memcg->use_hierarchy) break; tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); min_limit = min(min_limit, tmp); tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); min_memsw_limit = min(min_memsw_limit, tmp); } out: *mem_limit = min_limit; *memsw_limit = min_memsw_limit; } static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); int name; enum res_type type; type = MEMFILE_TYPE(event); name = MEMFILE_ATTR(event); switch (name) { case RES_MAX_USAGE: if (type == _MEM) res_counter_reset_max(&memcg->res); else if (type == _MEMSWAP) res_counter_reset_max(&memcg->memsw); else if (type == _KMEM) res_counter_reset_max(&memcg->kmem); else return -EINVAL; break; case RES_FAILCNT: if (type == _MEM) res_counter_reset_failcnt(&memcg->res); else if (type == _MEMSWAP) res_counter_reset_failcnt(&memcg->memsw); else if (type == _KMEM) res_counter_reset_failcnt(&memcg->kmem); else return -EINVAL; break; } return 0; } static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, struct cftype *cft) { return mem_cgroup_from_css(css)->move_charge_at_immigrate; } #ifdef CONFIG_MMU static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); if (val >= (1 << NR_MOVE_TYPE)) return -EINVAL; /* * No kind of locking is needed in here, because ->can_attach() will * check this value once in the beginning of the process, and then carry * on with stale data. This means that changes to this value will only * affect task migrations starting after the change. */ memcg->move_charge_at_immigrate = val; return 0; } #else static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { return -ENOSYS; } #endif #ifdef CONFIG_NUMA static int memcg_numa_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, struct seq_file *m) { int nid; unsigned long total_nr, file_nr, anon_nr, unevictable_nr; unsigned long node_nr; struct mem_cgroup *memcg = mem_cgroup_from_css(css); total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); seq_printf(m, "total=%lu", total_nr); for_each_node_state(nid, N_MEMORY) { node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); seq_printf(m, " N%d=%lu", nid, node_nr); } seq_putc(m, '\n'); file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); seq_printf(m, "file=%lu", file_nr); for_each_node_state(nid, N_MEMORY) { node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE); seq_printf(m, " N%d=%lu", nid, node_nr); } seq_putc(m, '\n'); anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); seq_printf(m, "anon=%lu", anon_nr); for_each_node_state(nid, N_MEMORY) { node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON); seq_printf(m, " N%d=%lu", nid, node_nr); } seq_putc(m, '\n'); unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); seq_printf(m, "unevictable=%lu", unevictable_nr); for_each_node_state(nid, N_MEMORY) { node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, BIT(LRU_UNEVICTABLE)); seq_printf(m, " N%d=%lu", nid, node_nr); } seq_putc(m, '\n'); return 0; } #endif /* CONFIG_NUMA */ static inline void mem_cgroup_lru_names_not_uptodate(void) { BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); } static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, struct seq_file *m) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *mi; unsigned int i; for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) continue; seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); } for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], mem_cgroup_read_events(memcg, i)); for (i = 0; i < NR_LRU_LISTS; i++) seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); /* Hierarchical information */ { unsigned long long limit, memsw_limit; memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); seq_printf(m, "hierarchical_memory_limit %llu\n", limit); if (do_swap_account) seq_printf(m, "hierarchical_memsw_limit %llu\n", memsw_limit); } for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { long long val = 0; if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) continue; for_each_mem_cgroup_tree(mi, memcg) val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); } for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { unsigned long long val = 0; for_each_mem_cgroup_tree(mi, memcg) val += mem_cgroup_read_events(mi, i); seq_printf(m, "total_%s %llu\n", mem_cgroup_events_names[i], val); } for (i = 0; i < NR_LRU_LISTS; i++) { unsigned long long val = 0; for_each_mem_cgroup_tree(mi, memcg) val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); } #ifdef CONFIG_DEBUG_VM { int nid, zid; struct mem_cgroup_per_zone *mz; struct zone_reclaim_stat *rstat; unsigned long recent_rotated[2] = {0, 0}; unsigned long recent_scanned[2] = {0, 0}; for_each_online_node(nid) for (zid = 0; zid < MAX_NR_ZONES; zid++) { mz = mem_cgroup_zoneinfo(memcg, nid, zid); rstat = &mz->lruvec.reclaim_stat; recent_rotated[0] += rstat->recent_rotated[0]; recent_rotated[1] += rstat->recent_rotated[1]; recent_scanned[0] += rstat->recent_scanned[0]; recent_scanned[1] += rstat->recent_scanned[1]; } seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); } #endif return 0; } static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); return mem_cgroup_swappiness(memcg); } static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); if (val > 100 || !parent) return -EINVAL; mutex_lock(&memcg_create_mutex); /* If under hierarchy, only empty-root can set this value */ if ((parent->use_hierarchy) || memcg_has_children(memcg)) { mutex_unlock(&memcg_create_mutex); return -EINVAL; } memcg->swappiness = val; mutex_unlock(&memcg_create_mutex); return 0; } static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) { struct mem_cgroup_threshold_ary *t; u64 usage; int i; rcu_read_lock(); if (!swap) t = rcu_dereference(memcg->thresholds.primary); else t = rcu_dereference(memcg->memsw_thresholds.primary); if (!t) goto unlock; usage = mem_cgroup_usage(memcg, swap); /* * current_threshold points to threshold just below or equal to usage. * If it's not true, a threshold was crossed after last * call of __mem_cgroup_threshold(). */ i = t->current_threshold; /* * Iterate backward over array of thresholds starting from * current_threshold and check if a threshold is crossed. * If none of thresholds below usage is crossed, we read * only one element of the array here. */ for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) eventfd_signal(t->entries[i].eventfd, 1); /* i = current_threshold + 1 */ i++; /* * Iterate forward over array of thresholds starting from * current_threshold+1 and check if a threshold is crossed. * If none of thresholds above usage is crossed, we read * only one element of the array here. */ for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) eventfd_signal(t->entries[i].eventfd, 1); /* Update current_threshold */ t->current_threshold = i - 1; unlock: rcu_read_unlock(); } static void mem_cgroup_threshold(struct mem_cgroup *memcg) { while (memcg) { __mem_cgroup_threshold(memcg, false); if (do_swap_account) __mem_cgroup_threshold(memcg, true); memcg = parent_mem_cgroup(memcg); } } static int compare_thresholds(const void *a, const void *b) { const struct mem_cgroup_threshold *_a = a; const struct mem_cgroup_threshold *_b = b; if (_a->threshold > _b->threshold) return 1; if (_a->threshold < _b->threshold) return -1; return 0; } static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) { struct mem_cgroup_eventfd_list *ev; spin_lock(&memcg_oom_lock); list_for_each_entry(ev, &memcg->oom_notify, list) eventfd_signal(ev->eventfd, 1); spin_unlock(&memcg_oom_lock); return 0; } static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) { struct mem_cgroup *iter; for_each_mem_cgroup_tree(iter, memcg) mem_cgroup_oom_notify_cb(iter); } static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; enum res_type type = MEMFILE_TYPE(cft->private); u64 threshold, usage; int i, size, ret; ret = res_counter_memparse_write_strategy(args, &threshold); if (ret) return ret; mutex_lock(&memcg->thresholds_lock); if (type == _MEM) thresholds = &memcg->thresholds; else if (type == _MEMSWAP) thresholds = &memcg->memsw_thresholds; else BUG(); usage = mem_cgroup_usage(memcg, type == _MEMSWAP); /* Check if a threshold crossed before adding a new one */ if (thresholds->primary) __mem_cgroup_threshold(memcg, type == _MEMSWAP); size = thresholds->primary ? thresholds->primary->size + 1 : 1; /* Allocate memory for new array of thresholds */ new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto unlock; } new->size = size; /* Copy thresholds (if any) to new array */ if (thresholds->primary) { memcpy(new->entries, thresholds->primary->entries, (size - 1) * sizeof(struct mem_cgroup_threshold)); } /* Add new threshold */ new->entries[size - 1].eventfd = eventfd; new->entries[size - 1].threshold = threshold; /* Sort thresholds. Registering of new threshold isn't time-critical */ sort(new->entries, size, sizeof(struct mem_cgroup_threshold), compare_thresholds, NULL); /* Find current threshold */ new->current_threshold = -1; for (i = 0; i < size; i++) { if (new->entries[i].threshold <= usage) { /* * new->current_threshold will not be used until * rcu_assign_pointer(), so it's safe to increment * it here. */ ++new->current_threshold; } else break; } /* Free old spare buffer and save old primary buffer as spare */ kfree(thresholds->spare); thresholds->spare = thresholds->primary; rcu_assign_pointer(thresholds->primary, new); /* To be sure that nobody uses thresholds */ synchronize_rcu(); unlock: mutex_unlock(&memcg->thresholds_lock); return ret; } static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; enum res_type type = MEMFILE_TYPE(cft->private); u64 usage; int i, j, size; mutex_lock(&memcg->thresholds_lock); if (type == _MEM) thresholds = &memcg->thresholds; else if (type == _MEMSWAP) thresholds = &memcg->memsw_thresholds; else BUG(); if (!thresholds->primary) goto unlock; usage = mem_cgroup_usage(memcg, type == _MEMSWAP); /* Check if a threshold crossed before removing */ __mem_cgroup_threshold(memcg, type == _MEMSWAP); /* Calculate new number of threshold */ size = 0; for (i = 0; i < thresholds->primary->size; i++) { if (thresholds->primary->entries[i].eventfd != eventfd) size++; } new = thresholds->spare; /* Set thresholds array to NULL if we don't have thresholds */ if (!size) { kfree(new); new = NULL; goto swap_buffers; } new->size = size; /* Copy thresholds and find current threshold */ new->current_threshold = -1; for (i = 0, j = 0; i < thresholds->primary->size; i++) { if (thresholds->primary->entries[i].eventfd == eventfd) continue; new->entries[j] = thresholds->primary->entries[i]; if (new->entries[j].threshold <= usage) { /* * new->current_threshold will not be used * until rcu_assign_pointer(), so it's safe to increment * it here. */ ++new->current_threshold; } j++; } swap_buffers: /* Swap primary and spare array */ thresholds->spare = thresholds->primary; rcu_assign_pointer(thresholds->primary, new); /* To be sure that nobody uses thresholds */ synchronize_rcu(); /* If all events are unregistered, free the spare array */ if (!new) { kfree(thresholds->spare); thresholds->spare = NULL; } unlock: mutex_unlock(&memcg->thresholds_lock); } static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *event; enum res_type type = MEMFILE_TYPE(cft->private); BUG_ON(type != _OOM_TYPE); event = kmalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; spin_lock(&memcg_oom_lock); event->eventfd = eventfd; list_add(&event->list, &memcg->oom_notify); /* already in OOM ? */ if (atomic_read(&memcg->under_oom)) eventfd_signal(eventfd, 1); spin_unlock(&memcg_oom_lock); return 0; } static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *ev, *tmp; enum res_type type = MEMFILE_TYPE(cft->private); BUG_ON(type != _OOM_TYPE); spin_lock(&memcg_oom_lock); list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { if (ev->eventfd == eventfd) { list_del(&ev->list); kfree(ev); } } spin_unlock(&memcg_oom_lock); } static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, struct cftype *cft, struct cgroup_map_cb *cb) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); if (atomic_read(&memcg->under_oom)) cb->fill(cb, "under_oom", 1); else cb->fill(cb, "under_oom", 0); return 0; } static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); /* cannot set to root cgroup and only 0 and 1 are allowed */ if (!parent || !((val == 0) || (val == 1))) return -EINVAL; mutex_lock(&memcg_create_mutex); /* oom-kill-disable is a flag for subhierarchy. */ if ((parent->use_hierarchy) || memcg_has_children(memcg)) { mutex_unlock(&memcg_create_mutex); return -EINVAL; } memcg->oom_kill_disable = val; if (!val) memcg_oom_recover(memcg); mutex_unlock(&memcg_create_mutex); return 0; } #ifdef CONFIG_MEMCG_KMEM static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) { int ret; memcg->kmemcg_id = -1; ret = memcg_propagate_kmem(memcg); if (ret) return ret; return mem_cgroup_sockets_init(memcg, ss); } static void memcg_destroy_kmem(struct mem_cgroup *memcg) { mem_cgroup_sockets_destroy(memcg); } static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) { if (!memcg_kmem_is_active(memcg)) return; /* * kmem charges can outlive the cgroup. In the case of slab * pages, for instance, a page contain objects from various * processes. As we prevent from taking a reference for every * such allocation we have to be careful when doing uncharge * (see memcg_uncharge_kmem) and here during offlining. * * The idea is that that only the _last_ uncharge which sees * the dead memcg will drop the last reference. An additional * reference is taken here before the group is marked dead * which is then paired with css_put during uncharge resp. here. * * Although this might sound strange as this path is called from * css_offline() when the referencemight have dropped down to 0 * and shouldn't be incremented anymore (css_tryget would fail) * we do not have other options because of the kmem allocations * lifetime. */ css_get(&memcg->css); memcg_kmem_mark_dead(memcg); if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) return; if (memcg_kmem_test_and_clear_dead(memcg)) css_put(&memcg->css); } #else static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) { return 0; } static void memcg_destroy_kmem(struct mem_cgroup *memcg) { } static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) { } #endif static struct cftype mem_cgroup_files[] = { { .name = "usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), .read = mem_cgroup_read, .register_event = mem_cgroup_usage_register_event, .unregister_event = mem_cgroup_usage_unregister_event, }, { .name = "max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, { .name = "limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), .write_string = mem_cgroup_write, .read = mem_cgroup_read, }, { .name = "soft_limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), .write_string = mem_cgroup_write, .read = mem_cgroup_read, }, { .name = "failcnt", .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, { .name = "stat", .read_seq_string = memcg_stat_show, }, { .name = "force_empty", .trigger = mem_cgroup_force_empty_write, }, { .name = "use_hierarchy", .flags = CFTYPE_INSANE, .write_u64 = mem_cgroup_hierarchy_write, .read_u64 = mem_cgroup_hierarchy_read, }, { .name = "swappiness", .read_u64 = mem_cgroup_swappiness_read, .write_u64 = mem_cgroup_swappiness_write, }, { .name = "move_charge_at_immigrate", .read_u64 = mem_cgroup_move_charge_read, .write_u64 = mem_cgroup_move_charge_write, }, { .name = "oom_control", .read_map = mem_cgroup_oom_control_read, .write_u64 = mem_cgroup_oom_control_write, .register_event = mem_cgroup_oom_register_event, .unregister_event = mem_cgroup_oom_unregister_event, .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), }, { .name = "pressure_level", .register_event = vmpressure_register_event, .unregister_event = vmpressure_unregister_event, }, #ifdef CONFIG_NUMA { .name = "numa_stat", .read_seq_string = memcg_numa_stat_show, }, #endif #ifdef CONFIG_MEMCG_KMEM { .name = "kmem.limit_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), .write_string = mem_cgroup_write, .read = mem_cgroup_read, }, { .name = "kmem.usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), .read = mem_cgroup_read, }, { .name = "kmem.failcnt", .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, { .name = "kmem.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, #ifdef CONFIG_SLABINFO { .name = "kmem.slabinfo", .read_seq_string = mem_cgroup_slabinfo_read, }, #endif #endif { }, /* terminate */ }; #ifdef CONFIG_MEMCG_SWAP static struct cftype memsw_cgroup_files[] = { { .name = "memsw.usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), .read = mem_cgroup_read, .register_event = mem_cgroup_usage_register_event, .unregister_event = mem_cgroup_usage_unregister_event, }, { .name = "memsw.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, { .name = "memsw.limit_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), .write_string = mem_cgroup_write, .read = mem_cgroup_read, }, { .name = "memsw.failcnt", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), .trigger = mem_cgroup_reset, .read = mem_cgroup_read, }, { }, /* terminate */ }; #endif static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) { struct mem_cgroup_per_node *pn; struct mem_cgroup_per_zone *mz; int zone, tmp = node; /* * This routine is called against possible nodes. * But it's BUG to call kmalloc() against offline node. * * TODO: this routine can waste much memory for nodes which will * never be onlined. It's better to use memory hotplug callback * function. */ if (!node_state(node, N_NORMAL_MEMORY)) tmp = -1; pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); if (!pn) return 1; for (zone = 0; zone < MAX_NR_ZONES; zone++) { mz = &pn->zoneinfo[zone]; lruvec_init(&mz->lruvec); mz->usage_in_excess = 0; mz->on_tree = false; mz->memcg = memcg; } memcg->nodeinfo[node] = pn; return 0; } static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) { kfree(memcg->nodeinfo[node]); } static struct mem_cgroup *mem_cgroup_alloc(void) { struct mem_cgroup *memcg; size_t size = memcg_size(); /* Can be very big if nr_node_ids is very big */ if (size < PAGE_SIZE) memcg = kzalloc(size, GFP_KERNEL); else memcg = vzalloc(size); if (!memcg) return NULL; memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); if (!memcg->stat) goto out_free; spin_lock_init(&memcg->pcp_counter_lock); return memcg; out_free: if (size < PAGE_SIZE) kfree(memcg); else vfree(memcg); return NULL; } /* * At destroying mem_cgroup, references from swap_cgroup can remain. * (scanning all at force_empty is too costly...) * * Instead of clearing all references at force_empty, we remember * the number of reference from swap_cgroup and free mem_cgroup when * it goes down to 0. * * Removal of cgroup itself succeeds regardless of refs from swap. */ static void __mem_cgroup_free(struct mem_cgroup *memcg) { int node; size_t size = memcg_size(); mem_cgroup_remove_from_trees(memcg); free_css_id(&mem_cgroup_subsys, &memcg->css); for_each_node(node) free_mem_cgroup_per_zone_info(memcg, node); free_percpu(memcg->stat); /* * We need to make sure that (at least for now), the jump label * destruction code runs outside of the cgroup lock. This is because * get_online_cpus(), which is called from the static_branch update, * can't be called inside the cgroup_lock. cpusets are the ones * enforcing this dependency, so if they ever change, we might as well. * * schedule_work() will guarantee this happens. Be careful if you need * to move this code around, and make sure it is outside * the cgroup_lock. */ disarm_static_keys(memcg); if (size < PAGE_SIZE) kfree(memcg); else vfree(memcg); } /* * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. */ struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->res.parent) return NULL; return mem_cgroup_from_res_counter(memcg->res.parent, res); } EXPORT_SYMBOL(parent_mem_cgroup); static void __init mem_cgroup_soft_limit_tree_init(void) { struct mem_cgroup_tree_per_node *rtpn; struct mem_cgroup_tree_per_zone *rtpz; int tmp, node, zone; for_each_node(node) { tmp = node; if (!node_state(node, N_NORMAL_MEMORY)) tmp = -1; rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); BUG_ON(!rtpn); soft_limit_tree.rb_tree_per_node[node] = rtpn; for (zone = 0; zone < MAX_NR_ZONES; zone++) { rtpz = &rtpn->rb_tree_per_zone[zone]; rtpz->rb_root = RB_ROOT; spin_lock_init(&rtpz->lock); } } } static struct cgroup_subsys_state * __ref mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { struct mem_cgroup *memcg; long error = -ENOMEM; int node; memcg = mem_cgroup_alloc(); if (!memcg) return ERR_PTR(error); for_each_node(node) if (alloc_mem_cgroup_per_zone_info(memcg, node)) goto free_out; /* root ? */ if (parent_css == NULL) { root_mem_cgroup = memcg; res_counter_init(&memcg->res, NULL); res_counter_init(&memcg->memsw, NULL); res_counter_init(&memcg->kmem, NULL); } memcg->last_scanned_node = MAX_NUMNODES; INIT_LIST_HEAD(&memcg->oom_notify); memcg->move_charge_at_immigrate = 0; mutex_init(&memcg->thresholds_lock); spin_lock_init(&memcg->move_lock); vmpressure_init(&memcg->vmpressure); return &memcg->css; free_out: __mem_cgroup_free(memcg); return ERR_PTR(error); } static int mem_cgroup_css_online(struct cgroup_subsys_state *css) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); int error = 0; if (!parent) return 0; mutex_lock(&memcg_create_mutex); memcg->use_hierarchy = parent->use_hierarchy; memcg->oom_kill_disable = parent->oom_kill_disable; memcg->swappiness = mem_cgroup_swappiness(parent); if (parent->use_hierarchy) { res_counter_init(&memcg->res, &parent->res); res_counter_init(&memcg->memsw, &parent->memsw); res_counter_init(&memcg->kmem, &parent->kmem); /* * No need to take a reference to the parent because cgroup * core guarantees its existence. */ } else { res_counter_init(&memcg->res, NULL); res_counter_init(&memcg->memsw, NULL); res_counter_init(&memcg->kmem, NULL); /* * Deeper hierachy with use_hierarchy == false doesn't make * much sense so let cgroup subsystem know about this * unfortunate state in our controller. */ if (parent != root_mem_cgroup) mem_cgroup_subsys.broken_hierarchy = true; } error = memcg_init_kmem(memcg, &mem_cgroup_subsys); mutex_unlock(&memcg_create_mutex); if (!error) { /* * Make sure the memcg is initialized: mem_cgroup_iter() * orders reading memcg->initialized against its callers * reading the memcg members. */ smp_wmb(); memcg->initialized = 1; } return error; } /* * Announce all parents that a group from their hierarchy is gone. */ static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) { struct mem_cgroup *parent = memcg; while ((parent = parent_mem_cgroup(parent))) mem_cgroup_iter_invalidate(parent); /* * if the root memcg is not hierarchical we have to check it * explicitely. */ if (!root_mem_cgroup->use_hierarchy) mem_cgroup_iter_invalidate(root_mem_cgroup); } static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct cgroup_subsys_state *iter; kmem_cgroup_css_offline(memcg); mem_cgroup_invalidate_reclaim_iterators(memcg); /* * This requires that offlining is serialized. Right now that is * guaranteed because css_killed_work_fn() holds the cgroup_mutex. */ rcu_read_lock(); css_for_each_descendant_post(iter, css) { rcu_read_unlock(); mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); rcu_read_lock(); } rcu_read_unlock(); mem_cgroup_destroy_all_caches(memcg); vmpressure_cleanup(&memcg->vmpressure); } static void mem_cgroup_css_free(struct cgroup_subsys_state *css) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); /* * XXX: css_offline() would be where we should reparent all * memory to prepare the cgroup for destruction. However, * memcg does not do css_tryget() and res_counter charging * under the same RCU lock region, which means that charging * could race with offlining. Offlining only happens to * cgroups with no tasks in them but charges can show up * without any tasks from the swapin path when the target * memcg is looked up from the swapout record and not from the * current task as it usually is. A race like this can leak * charges and put pages with stale cgroup pointers into * circulation: * * #0 #1 * lookup_swap_cgroup_id() * rcu_read_lock() * mem_cgroup_lookup() * css_tryget() * rcu_read_unlock() * disable css_tryget() * call_rcu() * offline_css() * reparent_charges() * res_counter_charge() * css_put() * css_free() * pc->mem_cgroup = dead memcg * add page to lru * * The bulk of the charges are still moved in offline_css() to * avoid pinning a lot of pages in case a long-term reference * like a swapout record is deferring the css_free() to long * after offlining. But this makes sure we catch any charges * made after offlining: */ mem_cgroup_reparent_charges(memcg); memcg_destroy_kmem(memcg); __mem_cgroup_free(memcg); } #ifdef CONFIG_MMU /* Handlers for move charge at task migration. */ #define PRECHARGE_COUNT_AT_ONCE 256 static int mem_cgroup_do_precharge(unsigned long count) { int ret = 0; int batch_count = PRECHARGE_COUNT_AT_ONCE; struct mem_cgroup *memcg = mc.to; if (mem_cgroup_is_root(memcg)) { mc.precharge += count; /* we don't need css_get for root */ return ret; } /* try to charge at once */ if (count > 1) { struct res_counter *dummy; /* * "memcg" cannot be under rmdir() because we've already checked * by cgroup_lock_live_cgroup() that it is not removed and we * are still under the same cgroup_mutex. So we can postpone * css_get(). */ if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) goto one_by_one; if (do_swap_account && res_counter_charge(&memcg->memsw, PAGE_SIZE * count, &dummy)) { res_counter_uncharge(&memcg->res, PAGE_SIZE * count); goto one_by_one; } mc.precharge += count; return ret; } one_by_one: /* fall back to one by one charge */ while (count--) { if (signal_pending(current)) { ret = -EINTR; break; } if (!batch_count--) { batch_count = PRECHARGE_COUNT_AT_ONCE; cond_resched(); } ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &memcg, false); if (ret) /* mem_cgroup_clear_mc() will do uncharge later */ return ret; mc.precharge++; } return ret; } /** * get_mctgt_type - get target type of moving charge * @vma: the vma the pte to be checked belongs * @addr: the address corresponding to the pte to be checked * @ptent: the pte to be checked * @target: the pointer the target page or swap ent will be stored(can be NULL) * * Returns * 0(MC_TARGET_NONE): if the pte is not a target for move charge. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for * move charge. if @target is not NULL, the page is stored in target->page * with extra refcnt got(Callers should handle it). * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a * target for charge migration. if @target is not NULL, the entry is stored * in target->ent. * * Called with pte lock held. */ union mc_target { struct page *page; swp_entry_t ent; }; enum mc_target_type { MC_TARGET_NONE = 0, MC_TARGET_PAGE, MC_TARGET_SWAP, }; static struct page *mc_handle_present_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent) { struct page *page = vm_normal_page(vma, addr, ptent); if (!page || !page_mapped(page)) return NULL; if (PageAnon(page)) { /* we don't move shared anon */ if (!move_anon()) return NULL; } else if (!move_file()) /* we ignore mapcount for file pages */ return NULL; if (!get_page_unless_zero(page)) return NULL; return page; } #ifdef CONFIG_SWAP static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, swp_entry_t *entry) { struct page *page = NULL; swp_entry_t ent = pte_to_swp_entry(ptent); if (!move_anon() || non_swap_entry(ent)) return NULL; /* * Because lookup_swap_cache() updates some statistics counter, * we call find_get_page() with swapper_space directly. */ page = find_get_page(swap_address_space(ent), ent.val); if (do_swap_account) entry->val = ent.val; return page; } #else static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, swp_entry_t *entry) { return NULL; } #endif static struct page *mc_handle_file_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, swp_entry_t *entry) { struct page *page = NULL; struct address_space *mapping; pgoff_t pgoff; if (!vma->vm_file) /* anonymous vma */ return NULL; if (!move_file()) return NULL; mapping = vma->vm_file->f_mapping; if (pte_none(ptent)) pgoff = linear_page_index(vma, addr); else /* pte_file(ptent) is true */ pgoff = pte_to_pgoff(ptent); /* page is moved even if it's not RSS of this task(page-faulted). */ page = find_get_page(mapping, pgoff); #ifdef CONFIG_SWAP /* shmem/tmpfs may report page out on swap: account for that too. */ if (radix_tree_exceptional_entry(page)) { swp_entry_t swap = radix_to_swp_entry(page); if (do_swap_account) *entry = swap; page = find_get_page(swap_address_space(swap), swap.val); } #endif return page; } static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, union mc_target *target) { struct page *page = NULL; struct page_cgroup *pc; enum mc_target_type ret = MC_TARGET_NONE; swp_entry_t ent = { .val = 0 }; if (pte_present(ptent)) page = mc_handle_present_pte(vma, addr, ptent); else if (is_swap_pte(ptent)) page = mc_handle_swap_pte(vma, addr, ptent, &ent); else if (pte_none(ptent) || pte_file(ptent)) page = mc_handle_file_pte(vma, addr, ptent, &ent); if (!page && !ent.val) return ret; if (page) { pc = lookup_page_cgroup(page); /* * Do only loose check w/o page_cgroup lock. * mem_cgroup_move_account() checks the pc is valid or not under * the lock. */ if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { ret = MC_TARGET_PAGE; if (target) target->page = page; } if (!ret || !target) put_page(page); } /* There is a swap entry and a page doesn't exist or isn't charged */ if (ent.val && !ret && css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { ret = MC_TARGET_SWAP; if (target) target->ent = ent; } return ret; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * We don't consider swapping or file mapped pages because THP does not * support them for now. * Caller should make sure that pmd_trans_huge(pmd) is true. */ static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target) { struct page *page = NULL; struct page_cgroup *pc; enum mc_target_type ret = MC_TARGET_NONE; page = pmd_page(pmd); VM_BUG_ON(!page || !PageHead(page)); if (!move_anon()) return ret; pc = lookup_page_cgroup(page); if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { ret = MC_TARGET_PAGE; if (target) { get_page(page); target->page = page; } } return ret; } #else static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target) { return MC_TARGET_NONE; } #endif static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->private; pte_t *pte; spinlock_t *ptl; if (pmd_trans_huge_lock(pmd, vma) == 1) { if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) mc.precharge += HPAGE_PMD_NR; spin_unlock(&vma->vm_mm->page_table_lock); return 0; } if (pmd_trans_unstable(pmd)) return 0; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) if (get_mctgt_type(vma, addr, *pte, NULL)) mc.precharge++; /* increment precharge temporarily */ pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) { unsigned long precharge; struct vm_area_struct *vma; down_read(&mm->mmap_sem); for (vma = mm->mmap; vma; vma = vma->vm_next) { struct mm_walk mem_cgroup_count_precharge_walk = { .pmd_entry = mem_cgroup_count_precharge_pte_range, .mm = mm, .private = vma, }; if (is_vm_hugetlb_page(vma)) continue; walk_page_range(vma->vm_start, vma->vm_end, &mem_cgroup_count_precharge_walk); } up_read(&mm->mmap_sem); precharge = mc.precharge; mc.precharge = 0; return precharge; } static int mem_cgroup_precharge_mc(struct mm_struct *mm) { unsigned long precharge = mem_cgroup_count_precharge(mm); VM_BUG_ON(mc.moving_task); mc.moving_task = current; return mem_cgroup_do_precharge(precharge); } /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ static void __mem_cgroup_clear_mc(void) { struct mem_cgroup *from = mc.from; struct mem_cgroup *to = mc.to; int i; /* we must uncharge all the leftover precharges from mc.to */ if (mc.precharge) { __mem_cgroup_cancel_charge(mc.to, mc.precharge); mc.precharge = 0; } /* * we didn't uncharge from mc.from at mem_cgroup_move_account(), so * we must uncharge here. */ if (mc.moved_charge) { __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); mc.moved_charge = 0; } /* we must fixup refcnts and charges */ if (mc.moved_swap) { /* uncharge swap account from the old cgroup */ if (!mem_cgroup_is_root(mc.from)) res_counter_uncharge(&mc.from->memsw, PAGE_SIZE * mc.moved_swap); for (i = 0; i < mc.moved_swap; i++) css_put(&mc.from->css); if (!mem_cgroup_is_root(mc.to)) { /* * we charged both to->res and to->memsw, so we should * uncharge to->res. */ res_counter_uncharge(&mc.to->res, PAGE_SIZE * mc.moved_swap); } /* we've already done css_get(mc.to) */ mc.moved_swap = 0; } memcg_oom_recover(from); memcg_oom_recover(to); wake_up_all(&mc.waitq); } static void mem_cgroup_clear_mc(void) { struct mem_cgroup *from = mc.from; /* * we must clear moving_task before waking up waiters at the end of * task migration. */ mc.moving_task = NULL; __mem_cgroup_clear_mc(); spin_lock(&mc.lock); mc.from = NULL; mc.to = NULL; spin_unlock(&mc.lock); mem_cgroup_end_move(from); } static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct task_struct *p = cgroup_taskset_first(tset); int ret = 0; struct mem_cgroup *memcg = mem_cgroup_from_css(css); unsigned long move_charge_at_immigrate; /* * We are now commited to this value whatever it is. Changes in this * tunable will only affect upcoming migrations, not the current one. * So we need to save it, and keep it going. */ move_charge_at_immigrate = memcg->move_charge_at_immigrate; if (move_charge_at_immigrate) { struct mm_struct *mm; struct mem_cgroup *from = mem_cgroup_from_task(p); VM_BUG_ON(from == memcg); mm = get_task_mm(p); if (!mm) return 0; /* We move charges only when we move a owner of the mm */ if (mm->owner == p) { VM_BUG_ON(mc.from); VM_BUG_ON(mc.to); VM_BUG_ON(mc.precharge); VM_BUG_ON(mc.moved_charge); VM_BUG_ON(mc.moved_swap); mem_cgroup_start_move(from); spin_lock(&mc.lock); mc.from = from; mc.to = memcg; mc.immigrate_flags = move_charge_at_immigrate; spin_unlock(&mc.lock); /* We set mc.moving_task later */ ret = mem_cgroup_precharge_mc(mm); if (ret) mem_cgroup_clear_mc(); } mmput(mm); } return ret; } static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { mem_cgroup_clear_mc(); } static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; struct vm_area_struct *vma = walk->private; pte_t *pte; spinlock_t *ptl; enum mc_target_type target_type; union mc_target target; struct page *page; struct page_cgroup *pc; /* * We don't take compound_lock() here but no race with splitting thp * happens because: * - if pmd_trans_huge_lock() returns 1, the relevant thp is not * under splitting, which means there's no concurrent thp split, * - if another thread runs into split_huge_page() just after we * entered this if-block, the thread must wait for page table lock * to be unlocked in __split_huge_page_splitting(), where the main * part of thp split is not executed yet. */ if (pmd_trans_huge_lock(pmd, vma) == 1) { if (mc.precharge < HPAGE_PMD_NR) { spin_unlock(&vma->vm_mm->page_table_lock); return 0; } target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); if (target_type == MC_TARGET_PAGE) { page = target.page; if (!isolate_lru_page(page)) { pc = lookup_page_cgroup(page); if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, pc, mc.from, mc.to)) { mc.precharge -= HPAGE_PMD_NR; mc.moved_charge += HPAGE_PMD_NR; } putback_lru_page(page); } put_page(page); } spin_unlock(&vma->vm_mm->page_table_lock); return 0; } if (pmd_trans_unstable(pmd)) return 0; retry: pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; addr += PAGE_SIZE) { pte_t ptent = *(pte++); swp_entry_t ent; if (!mc.precharge) break; switch (get_mctgt_type(vma, addr, ptent, &target)) { case MC_TARGET_PAGE: page = target.page; if (isolate_lru_page(page)) goto put; pc = lookup_page_cgroup(page); if (!mem_cgroup_move_account(page, 1, pc, mc.from, mc.to)) { mc.precharge--; /* we uncharge from mc.from later. */ mc.moved_charge++; } putback_lru_page(page); put: /* get_mctgt_type() gets the page */ put_page(page); break; case MC_TARGET_SWAP: ent = target.ent; if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { mc.precharge--; /* we fixup refcnts and charges later. */ mc.moved_swap++; } break; default: break; } } pte_unmap_unlock(pte - 1, ptl); cond_resched(); if (addr != end) { /* * We have consumed all precharges we got in can_attach(). * We try charge one by one, but don't do any additional * charges to mc.to if we have failed in charge once in attach() * phase. */ ret = mem_cgroup_do_precharge(1); if (!ret) goto retry; } return ret; } static void mem_cgroup_move_charge(struct mm_struct *mm) { struct vm_area_struct *vma; lru_add_drain_all(); retry: if (unlikely(!down_read_trylock(&mm->mmap_sem))) { /* * Someone who are holding the mmap_sem might be waiting in * waitq. So we cancel all extra charges, wake up all waiters, * and retry. Because we cancel precharges, we might not be able * to move enough charges, but moving charge is a best-effort * feature anyway, so it wouldn't be a big problem. */ __mem_cgroup_clear_mc(); cond_resched(); goto retry; } for (vma = mm->mmap; vma; vma = vma->vm_next) { int ret; struct mm_walk mem_cgroup_move_charge_walk = { .pmd_entry = mem_cgroup_move_charge_pte_range, .mm = mm, .private = vma, }; if (is_vm_hugetlb_page(vma)) continue; ret = walk_page_range(vma->vm_start, vma->vm_end, &mem_cgroup_move_charge_walk); if (ret) /* * means we have consumed all precharges and failed in * doing additional charge. Just abandon here. */ break; } up_read(&mm->mmap_sem); } static void mem_cgroup_move_task(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct task_struct *p = cgroup_taskset_first(tset); struct mm_struct *mm = get_task_mm(p); if (mm) { if (mc.to) mem_cgroup_move_charge(mm); mmput(mm); } if (mc.to) mem_cgroup_clear_mc(); } #else /* !CONFIG_MMU */ static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { return 0; } static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { } static void mem_cgroup_move_task(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { } #endif /* * Cgroup retains root cgroups across [un]mount cycles making it necessary * to verify sane_behavior flag on each mount attempt. */ static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) { /* * use_hierarchy is forced with sane_behavior. cgroup core * guarantees that @root doesn't have any children, so turning it * on for the root memcg is enough. */ if (cgroup_sane_behavior(root_css->cgroup)) mem_cgroup_from_css(root_css)->use_hierarchy = true; } struct cgroup_subsys mem_cgroup_subsys = { .name = "memory", .subsys_id = mem_cgroup_subsys_id, .css_alloc = mem_cgroup_css_alloc, .css_online = mem_cgroup_css_online, .css_offline = mem_cgroup_css_offline, .css_free = mem_cgroup_css_free, .can_attach = mem_cgroup_can_attach, .cancel_attach = mem_cgroup_cancel_attach, .attach = mem_cgroup_move_task, .bind = mem_cgroup_bind, .base_cftypes = mem_cgroup_files, .early_init = 0, .use_id = 1, }; #ifdef CONFIG_MEMCG_SWAP static int __init enable_swap_account(char *s) { if (!strcmp(s, "1")) really_do_swap_account = 1; else if (!strcmp(s, "0")) really_do_swap_account = 0; return 1; } __setup("swapaccount=", enable_swap_account); static void __init memsw_file_init(void) { WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); } static void __init enable_swap_cgroup(void) { if (!mem_cgroup_disabled() && really_do_swap_account) { do_swap_account = 1; memsw_file_init(); } } #else static void __init enable_swap_cgroup(void) { } #endif /* * subsys_initcall() for memory controller. * * Some parts like hotcpu_notifier() have to be initialized from this context * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically * everything that doesn't depend on a specific mem_cgroup structure should * be initialized from here. */ static int __init mem_cgroup_init(void) { hotcpu_notifier(memcg_cpu_hotplug_callback, 0); enable_swap_cgroup(); mem_cgroup_soft_limit_tree_init(); memcg_stock_init(); return 0; } subsys_initcall(mem_cgroup_init); |