Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | /* * Cleancache frontend * * This code provides the generic "frontend" layer to call a matching * "backend" driver implementation of cleancache. See * Documentation/vm/cleancache.txt for more information. * * Copyright (C) 2009-2010 Oracle Corp. All rights reserved. * Author: Dan Magenheimer * * This work is licensed under the terms of the GNU GPL, version 2. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #include <linux/debugfs.h> #include <linux/cleancache.h> /* * cleancache_ops is set by cleancache_ops_register to contain the pointers * to the cleancache "backend" implementation functions. */ static struct cleancache_ops *cleancache_ops __read_mostly; /* * Counters available via /sys/kernel/debug/frontswap (if debugfs is * properly configured. These are for information only so are not protected * against increment races. */ static u64 cleancache_succ_gets; static u64 cleancache_failed_gets; static u64 cleancache_puts; static u64 cleancache_invalidates; /* * When no backend is registered all calls to init_fs and init_shared_fs * are registered and fake poolids (FAKE_FS_POOLID_OFFSET or * FAKE_SHARED_FS_POOLID_OFFSET, plus offset in the respective array * [shared_|]fs_poolid_map) are given to the respective super block * (sb->cleancache_poolid) and no tmem_pools are created. When a backend * registers with cleancache the previous calls to init_fs and init_shared_fs * are executed to create tmem_pools and set the respective poolids. While no * backend is registered all "puts", "gets" and "flushes" are ignored or failed. */ #define MAX_INITIALIZABLE_FS 32 #define FAKE_FS_POOLID_OFFSET 1000 #define FAKE_SHARED_FS_POOLID_OFFSET 2000 #define FS_NO_BACKEND (-1) #define FS_UNKNOWN (-2) static int fs_poolid_map[MAX_INITIALIZABLE_FS]; static int shared_fs_poolid_map[MAX_INITIALIZABLE_FS]; static char *uuids[MAX_INITIALIZABLE_FS]; /* * Mutex for the [shared_|]fs_poolid_map to guard against multiple threads * invoking umount (and ending in __cleancache_invalidate_fs) and also multiple * threads calling mount (and ending up in __cleancache_init_[shared|]fs). */ static DEFINE_MUTEX(poolid_mutex); /* * When set to false (default) all calls to the cleancache functions, except * the __cleancache_invalidate_fs and __cleancache_init_[shared|]fs are guarded * by the if (!cleancache_ops) return. This means multiple threads (from * different filesystems) will be checking cleancache_ops. The usage of a * bool instead of a atomic_t or a bool guarded by a spinlock is OK - we are * OK if the time between the backend's have been initialized (and * cleancache_ops has been set to not NULL) and when the filesystems start * actually calling the backends. The inverse (when unloading) is obviously * not good - but this shim does not do that (yet). */ /* * The backends and filesystems work all asynchronously. This is b/c the * backends can be built as modules. * The usual sequence of events is: * a) mount / -> __cleancache_init_fs is called. We set the * [shared_|]fs_poolid_map and uuids for. * * b). user does I/Os -> we call the rest of __cleancache_* functions * which return immediately as cleancache_ops is false. * * c). modprobe zcache -> cleancache_register_ops. We init the backend * and set cleancache_ops to true, and for any fs_poolid_map * (which is set by __cleancache_init_fs) we initialize the poolid. * * d). user does I/Os -> now that cleancache_ops is true all the * __cleancache_* functions can call the backend. They all check * that fs_poolid_map is valid and if so invoke the backend. * * e). umount / -> __cleancache_invalidate_fs, the fs_poolid_map is * reset (which is the second check in the __cleancache_* ops * to call the backend). * * The sequence of event could also be c), followed by a), and d). and e). The * c) would not happen anymore. There is also the chance of c), and one thread * doing a) + d), and another doing e). For that case we depend on the * filesystem calling __cleancache_invalidate_fs in the proper sequence (so * that it handles all I/Os before it invalidates the fs (which is last part * of unmounting process). * * Note: The acute reader will notice that there is no "rmmod zcache" case. * This is b/c the functionality for that is not yet implemented and when * done, will require some extra locking not yet devised. */ /* * Register operations for cleancache, returning previous thus allowing * detection of multiple backends and possible nesting. */ struct cleancache_ops *cleancache_register_ops(struct cleancache_ops *ops) { struct cleancache_ops *old = cleancache_ops; int i; mutex_lock(&poolid_mutex); for (i = 0; i < MAX_INITIALIZABLE_FS; i++) { if (fs_poolid_map[i] == FS_NO_BACKEND) fs_poolid_map[i] = ops->init_fs(PAGE_SIZE); if (shared_fs_poolid_map[i] == FS_NO_BACKEND) shared_fs_poolid_map[i] = ops->init_shared_fs (uuids[i], PAGE_SIZE); } /* * We MUST set cleancache_ops _after_ we have called the backends * init_fs or init_shared_fs functions. Otherwise the compiler might * re-order where cleancache_ops is set in this function. */ barrier(); cleancache_ops = ops; mutex_unlock(&poolid_mutex); return old; } EXPORT_SYMBOL(cleancache_register_ops); /* Called by a cleancache-enabled filesystem at time of mount */ void __cleancache_init_fs(struct super_block *sb) { int i; mutex_lock(&poolid_mutex); for (i = 0; i < MAX_INITIALIZABLE_FS; i++) { if (fs_poolid_map[i] == FS_UNKNOWN) { sb->cleancache_poolid = i + FAKE_FS_POOLID_OFFSET; if (cleancache_ops) fs_poolid_map[i] = cleancache_ops->init_fs(PAGE_SIZE); else fs_poolid_map[i] = FS_NO_BACKEND; break; } } mutex_unlock(&poolid_mutex); } EXPORT_SYMBOL(__cleancache_init_fs); /* Called by a cleancache-enabled clustered filesystem at time of mount */ void __cleancache_init_shared_fs(char *uuid, struct super_block *sb) { int i; mutex_lock(&poolid_mutex); for (i = 0; i < MAX_INITIALIZABLE_FS; i++) { if (shared_fs_poolid_map[i] == FS_UNKNOWN) { sb->cleancache_poolid = i + FAKE_SHARED_FS_POOLID_OFFSET; uuids[i] = uuid; if (cleancache_ops) shared_fs_poolid_map[i] = cleancache_ops->init_shared_fs (uuid, PAGE_SIZE); else shared_fs_poolid_map[i] = FS_NO_BACKEND; break; } } mutex_unlock(&poolid_mutex); } EXPORT_SYMBOL(__cleancache_init_shared_fs); /* * If the filesystem uses exportable filehandles, use the filehandle as * the key, else use the inode number. */ static int cleancache_get_key(struct inode *inode, struct cleancache_filekey *key) { int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *); int len = 0, maxlen = CLEANCACHE_KEY_MAX; struct super_block *sb = inode->i_sb; key->u.ino = inode->i_ino; if (sb->s_export_op != NULL) { fhfn = sb->s_export_op->encode_fh; if (fhfn) { len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL); if (len <= FILEID_ROOT || len == FILEID_INVALID) return -1; if (maxlen > CLEANCACHE_KEY_MAX) return -1; } } return 0; } /* * Returns a pool_id that is associated with a given fake poolid. */ static int get_poolid_from_fake(int fake_pool_id) { if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET) return shared_fs_poolid_map[fake_pool_id - FAKE_SHARED_FS_POOLID_OFFSET]; else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET) return fs_poolid_map[fake_pool_id - FAKE_FS_POOLID_OFFSET]; return FS_NO_BACKEND; } /* * "Get" data from cleancache associated with the poolid/inode/index * that were specified when the data was put to cleanache and, if * successful, use it to fill the specified page with data and return 0. * The pageframe is unchanged and returns -1 if the get fails. * Page must be locked by caller. * * The function has two checks before any action is taken - whether * a backend is registered and whether the sb->cleancache_poolid * is correct. */ int __cleancache_get_page(struct page *page) { int ret = -1; int pool_id; int fake_pool_id; struct cleancache_filekey key = { .u.key = { 0 } }; if (!cleancache_ops) { cleancache_failed_gets++; goto out; } VM_BUG_ON(!PageLocked(page)); fake_pool_id = page->mapping->host->i_sb->cleancache_poolid; if (fake_pool_id < 0) goto out; pool_id = get_poolid_from_fake(fake_pool_id); if (cleancache_get_key(page->mapping->host, &key) < 0) goto out; if (pool_id >= 0) ret = cleancache_ops->get_page(pool_id, key, page->index, page); if (ret == 0) cleancache_succ_gets++; else cleancache_failed_gets++; out: return ret; } EXPORT_SYMBOL(__cleancache_get_page); /* * "Put" data from a page to cleancache and associate it with the * (previously-obtained per-filesystem) poolid and the page's, * inode and page index. Page must be locked. Note that a put_page * always "succeeds", though a subsequent get_page may succeed or fail. * * The function has two checks before any action is taken - whether * a backend is registered and whether the sb->cleancache_poolid * is correct. */ void __cleancache_put_page(struct page *page) { int pool_id; int fake_pool_id; struct cleancache_filekey key = { .u.key = { 0 } }; if (!cleancache_ops) { cleancache_puts++; return; } VM_BUG_ON(!PageLocked(page)); fake_pool_id = page->mapping->host->i_sb->cleancache_poolid; if (fake_pool_id < 0) return; pool_id = get_poolid_from_fake(fake_pool_id); if (pool_id >= 0 && cleancache_get_key(page->mapping->host, &key) >= 0) { cleancache_ops->put_page(pool_id, key, page->index, page); cleancache_puts++; } } EXPORT_SYMBOL(__cleancache_put_page); /* * Invalidate any data from cleancache associated with the poolid and the * page's inode and page index so that a subsequent "get" will fail. * * The function has two checks before any action is taken - whether * a backend is registered and whether the sb->cleancache_poolid * is correct. */ void __cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ int pool_id; int fake_pool_id = mapping->host->i_sb->cleancache_poolid; struct cleancache_filekey key = { .u.key = { 0 } }; if (!cleancache_ops) return; if (fake_pool_id >= 0) { pool_id = get_poolid_from_fake(fake_pool_id); if (pool_id < 0) return; VM_BUG_ON(!PageLocked(page)); if (cleancache_get_key(mapping->host, &key) >= 0) { cleancache_ops->invalidate_page(pool_id, key, page->index); cleancache_invalidates++; } } } EXPORT_SYMBOL(__cleancache_invalidate_page); /* * Invalidate all data from cleancache associated with the poolid and the * mappings's inode so that all subsequent gets to this poolid/inode * will fail. * * The function has two checks before any action is taken - whether * a backend is registered and whether the sb->cleancache_poolid * is correct. */ void __cleancache_invalidate_inode(struct address_space *mapping) { int pool_id; int fake_pool_id = mapping->host->i_sb->cleancache_poolid; struct cleancache_filekey key = { .u.key = { 0 } }; if (!cleancache_ops) return; if (fake_pool_id < 0) return; pool_id = get_poolid_from_fake(fake_pool_id); if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0) cleancache_ops->invalidate_inode(pool_id, key); } EXPORT_SYMBOL(__cleancache_invalidate_inode); /* * Called by any cleancache-enabled filesystem at time of unmount; * note that pool_id is surrendered and may be returned by a subsequent * cleancache_init_fs or cleancache_init_shared_fs. */ void __cleancache_invalidate_fs(struct super_block *sb) { int index; int fake_pool_id = sb->cleancache_poolid; int old_poolid = fake_pool_id; mutex_lock(&poolid_mutex); if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET) { index = fake_pool_id - FAKE_SHARED_FS_POOLID_OFFSET; old_poolid = shared_fs_poolid_map[index]; shared_fs_poolid_map[index] = FS_UNKNOWN; uuids[index] = NULL; } else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET) { index = fake_pool_id - FAKE_FS_POOLID_OFFSET; old_poolid = fs_poolid_map[index]; fs_poolid_map[index] = FS_UNKNOWN; } sb->cleancache_poolid = -1; if (cleancache_ops) cleancache_ops->invalidate_fs(old_poolid); mutex_unlock(&poolid_mutex); } EXPORT_SYMBOL(__cleancache_invalidate_fs); static int __init init_cleancache(void) { int i; #ifdef CONFIG_DEBUG_FS struct dentry *root = debugfs_create_dir("cleancache", NULL); if (root == NULL) return -ENXIO; debugfs_create_u64("succ_gets", S_IRUGO, root, &cleancache_succ_gets); debugfs_create_u64("failed_gets", S_IRUGO, root, &cleancache_failed_gets); debugfs_create_u64("puts", S_IRUGO, root, &cleancache_puts); debugfs_create_u64("invalidates", S_IRUGO, root, &cleancache_invalidates); #endif for (i = 0; i < MAX_INITIALIZABLE_FS; i++) { fs_poolid_map[i] = FS_UNKNOWN; shared_fs_poolid_map[i] = FS_UNKNOWN; } return 0; } module_init(init_cleancache) |