Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 | /* * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Paul Mackerras <paulus@au1.ibm.com> * Alexander Graf <agraf@suse.de> * Kevin Wolf <mail@kevin-wolf.de> * * Description: KVM functions specific to running on Book 3S * processors in hypervisor mode (specifically POWER7 and later). * * This file is derived from arch/powerpc/kvm/book3s.c, * by Alexander Graf <agraf@suse.de>. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include <linux/kvm_host.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/preempt.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/fs.h> #include <linux/anon_inodes.h> #include <linux/cpumask.h> #include <linux/spinlock.h> #include <linux/page-flags.h> #include <linux/srcu.h> #include <asm/reg.h> #include <asm/cputable.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include <asm/mmu_context.h> #include <asm/lppaca.h> #include <asm/processor.h> #include <asm/cputhreads.h> #include <asm/page.h> #include <asm/hvcall.h> #include <asm/switch_to.h> #include <asm/smp.h> #include <linux/gfp.h> #include <linux/vmalloc.h> #include <linux/highmem.h> #include <linux/hugetlb.h> /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_INT */ /* Used to indicate that a guest page fault needs to be handled */ #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) /* Used as a "null" value for timebase values */ #define TB_NIL (~(u64)0) static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu) { int me; int cpu = vcpu->cpu; wait_queue_head_t *wqp; wqp = kvm_arch_vcpu_wq(vcpu); if (waitqueue_active(wqp)) { wake_up_interruptible(wqp); ++vcpu->stat.halt_wakeup; } me = get_cpu(); /* CPU points to the first thread of the core */ if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { #ifdef CONFIG_KVM_XICS int real_cpu = cpu + vcpu->arch.ptid; if (paca[real_cpu].kvm_hstate.xics_phys) xics_wake_cpu(real_cpu); else #endif if (cpu_online(cpu)) smp_send_reschedule(cpu); } put_cpu(); } /* * We use the vcpu_load/put functions to measure stolen time. * Stolen time is counted as time when either the vcpu is able to * run as part of a virtual core, but the task running the vcore * is preempted or sleeping, or when the vcpu needs something done * in the kernel by the task running the vcpu, but that task is * preempted or sleeping. Those two things have to be counted * separately, since one of the vcpu tasks will take on the job * of running the core, and the other vcpu tasks in the vcore will * sleep waiting for it to do that, but that sleep shouldn't count * as stolen time. * * Hence we accumulate stolen time when the vcpu can run as part of * a vcore using vc->stolen_tb, and the stolen time when the vcpu * needs its task to do other things in the kernel (for example, * service a page fault) in busy_stolen. We don't accumulate * stolen time for a vcore when it is inactive, or for a vcpu * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of * a misnomer; it means that the vcpu task is not executing in * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in * the kernel. We don't have any way of dividing up that time * between time that the vcpu is genuinely stopped, time that * the task is actively working on behalf of the vcpu, and time * that the task is preempted, so we don't count any of it as * stolen. * * Updates to busy_stolen are protected by arch.tbacct_lock; * updates to vc->stolen_tb are protected by the arch.tbacct_lock * of the vcpu that has taken responsibility for running the vcore * (i.e. vc->runner). The stolen times are measured in units of * timebase ticks. (Note that the != TB_NIL checks below are * purely defensive; they should never fail.) */ void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; spin_lock(&vcpu->arch.tbacct_lock); if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && vc->preempt_tb != TB_NIL) { vc->stolen_tb += mftb() - vc->preempt_tb; vc->preempt_tb = TB_NIL; } if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && vcpu->arch.busy_preempt != TB_NIL) { vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; vcpu->arch.busy_preempt = TB_NIL; } spin_unlock(&vcpu->arch.tbacct_lock); } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; spin_lock(&vcpu->arch.tbacct_lock); if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) vc->preempt_tb = mftb(); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) vcpu->arch.busy_preempt = mftb(); spin_unlock(&vcpu->arch.tbacct_lock); } void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) { vcpu->arch.shregs.msr = msr; kvmppc_end_cede(vcpu); } void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) { vcpu->arch.pvr = pvr; } void kvmppc_dump_regs(struct kvm_vcpu *vcpu) { int r; pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); pr_err("pc = %.16lx msr = %.16llx trap = %x\n", vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); for (r = 0; r < 16; ++r) pr_err("r%2d = %.16lx r%d = %.16lx\n", r, kvmppc_get_gpr(vcpu, r), r+16, kvmppc_get_gpr(vcpu, r+16)); pr_err("ctr = %.16lx lr = %.16lx\n", vcpu->arch.ctr, vcpu->arch.lr); pr_err("srr0 = %.16llx srr1 = %.16llx\n", vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); pr_err("fault dar = %.16lx dsisr = %.8x\n", vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); for (r = 0; r < vcpu->arch.slb_max; ++r) pr_err(" ESID = %.16llx VSID = %.16llx\n", vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, vcpu->arch.last_inst); } struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) { int r; struct kvm_vcpu *v, *ret = NULL; mutex_lock(&kvm->lock); kvm_for_each_vcpu(r, v, kvm) { if (v->vcpu_id == id) { ret = v; break; } } mutex_unlock(&kvm->lock); return ret; } static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) { vpa->shared_proc = 1; vpa->yield_count = 1; } static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, unsigned long addr, unsigned long len) { /* check address is cacheline aligned */ if (addr & (L1_CACHE_BYTES - 1)) return -EINVAL; spin_lock(&vcpu->arch.vpa_update_lock); if (v->next_gpa != addr || v->len != len) { v->next_gpa = addr; v->len = addr ? len : 0; v->update_pending = 1; } spin_unlock(&vcpu->arch.vpa_update_lock); return 0; } /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ struct reg_vpa { u32 dummy; union { u16 hword; u32 word; } length; }; static int vpa_is_registered(struct kvmppc_vpa *vpap) { if (vpap->update_pending) return vpap->next_gpa != 0; return vpap->pinned_addr != NULL; } static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long vcpuid, unsigned long vpa) { struct kvm *kvm = vcpu->kvm; unsigned long len, nb; void *va; struct kvm_vcpu *tvcpu; int err; int subfunc; struct kvmppc_vpa *vpap; tvcpu = kvmppc_find_vcpu(kvm, vcpuid); if (!tvcpu) return H_PARAMETER; subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || subfunc == H_VPA_REG_SLB) { /* Registering new area - address must be cache-line aligned */ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) return H_PARAMETER; /* convert logical addr to kernel addr and read length */ va = kvmppc_pin_guest_page(kvm, vpa, &nb); if (va == NULL) return H_PARAMETER; if (subfunc == H_VPA_REG_VPA) len = ((struct reg_vpa *)va)->length.hword; else len = ((struct reg_vpa *)va)->length.word; kvmppc_unpin_guest_page(kvm, va, vpa, false); /* Check length */ if (len > nb || len < sizeof(struct reg_vpa)) return H_PARAMETER; } else { vpa = 0; len = 0; } err = H_PARAMETER; vpap = NULL; spin_lock(&tvcpu->arch.vpa_update_lock); switch (subfunc) { case H_VPA_REG_VPA: /* register VPA */ if (len < sizeof(struct lppaca)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_REG_DTL: /* register DTL */ if (len < sizeof(struct dtl_entry)) break; len -= len % sizeof(struct dtl_entry); /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_REG_SLB: /* register SLB shadow buffer */ /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.slb_shadow; err = 0; break; case H_VPA_DEREG_VPA: /* deregister VPA */ /* Check they don't still have a DTL or SLB buf registered */ err = H_RESOURCE; if (vpa_is_registered(&tvcpu->arch.dtl) || vpa_is_registered(&tvcpu->arch.slb_shadow)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_DEREG_DTL: /* deregister DTL */ vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ vpap = &tvcpu->arch.slb_shadow; err = 0; break; } if (vpap) { vpap->next_gpa = vpa; vpap->len = len; vpap->update_pending = 1; } spin_unlock(&tvcpu->arch.vpa_update_lock); return err; } static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) { struct kvm *kvm = vcpu->kvm; void *va; unsigned long nb; unsigned long gpa; /* * We need to pin the page pointed to by vpap->next_gpa, * but we can't call kvmppc_pin_guest_page under the lock * as it does get_user_pages() and down_read(). So we * have to drop the lock, pin the page, then get the lock * again and check that a new area didn't get registered * in the meantime. */ for (;;) { gpa = vpap->next_gpa; spin_unlock(&vcpu->arch.vpa_update_lock); va = NULL; nb = 0; if (gpa) va = kvmppc_pin_guest_page(kvm, gpa, &nb); spin_lock(&vcpu->arch.vpa_update_lock); if (gpa == vpap->next_gpa) break; /* sigh... unpin that one and try again */ if (va) kvmppc_unpin_guest_page(kvm, va, gpa, false); } vpap->update_pending = 0; if (va && nb < vpap->len) { /* * If it's now too short, it must be that userspace * has changed the mappings underlying guest memory, * so unregister the region. */ kvmppc_unpin_guest_page(kvm, va, gpa, false); va = NULL; } if (vpap->pinned_addr) kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, vpap->dirty); vpap->gpa = gpa; vpap->pinned_addr = va; vpap->dirty = false; if (va) vpap->pinned_end = va + vpap->len; } static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending)) return; spin_lock(&vcpu->arch.vpa_update_lock); if (vcpu->arch.vpa.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); if (vcpu->arch.vpa.pinned_addr) init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); } if (vcpu->arch.dtl.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_index = 0; } if (vcpu->arch.slb_shadow.update_pending) kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); spin_unlock(&vcpu->arch.vpa_update_lock); } /* * Return the accumulated stolen time for the vcore up until `now'. * The caller should hold the vcore lock. */ static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) { u64 p; /* * If we are the task running the vcore, then since we hold * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb * can't be updated, so we don't need the tbacct_lock. * If the vcore is inactive, it can't become active (since we * hold the vcore lock), so the vcpu load/put functions won't * update stolen_tb/preempt_tb, and we don't need tbacct_lock. */ if (vc->vcore_state != VCORE_INACTIVE && vc->runner->arch.run_task != current) { spin_lock(&vc->runner->arch.tbacct_lock); p = vc->stolen_tb; if (vc->preempt_tb != TB_NIL) p += now - vc->preempt_tb; spin_unlock(&vc->runner->arch.tbacct_lock); } else { p = vc->stolen_tb; } return p; } static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { struct dtl_entry *dt; struct lppaca *vpa; unsigned long stolen; unsigned long core_stolen; u64 now; dt = vcpu->arch.dtl_ptr; vpa = vcpu->arch.vpa.pinned_addr; now = mftb(); core_stolen = vcore_stolen_time(vc, now); stolen = core_stolen - vcpu->arch.stolen_logged; vcpu->arch.stolen_logged = core_stolen; spin_lock(&vcpu->arch.tbacct_lock); stolen += vcpu->arch.busy_stolen; vcpu->arch.busy_stolen = 0; spin_unlock(&vcpu->arch.tbacct_lock); if (!dt || !vpa) return; memset(dt, 0, sizeof(struct dtl_entry)); dt->dispatch_reason = 7; dt->processor_id = vc->pcpu + vcpu->arch.ptid; dt->timebase = now; dt->enqueue_to_dispatch_time = stolen; dt->srr0 = kvmppc_get_pc(vcpu); dt->srr1 = vcpu->arch.shregs.msr; ++dt; if (dt == vcpu->arch.dtl.pinned_end) dt = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_ptr = dt; /* order writing *dt vs. writing vpa->dtl_idx */ smp_wmb(); vpa->dtl_idx = ++vcpu->arch.dtl_index; vcpu->arch.dtl.dirty = true; } int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) { unsigned long req = kvmppc_get_gpr(vcpu, 3); unsigned long target, ret = H_SUCCESS; struct kvm_vcpu *tvcpu; int idx, rc; switch (req) { case H_ENTER: idx = srcu_read_lock(&vcpu->kvm->srcu); ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; case H_CEDE: break; case H_PROD: target = kvmppc_get_gpr(vcpu, 4); tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } tvcpu->arch.prodded = 1; smp_mb(); if (vcpu->arch.ceded) { if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } break; case H_CONFER: break; case H_REGISTER_VPA: ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_RTAS: if (list_empty(&vcpu->kvm->arch.rtas_tokens)) return RESUME_HOST; rc = kvmppc_rtas_hcall(vcpu); if (rc == -ENOENT) return RESUME_HOST; else if (rc == 0) break; /* Send the error out to userspace via KVM_RUN */ return rc; case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: case H_IPOLL: case H_XIRR_X: if (kvmppc_xics_enabled(vcpu)) { ret = kvmppc_xics_hcall(vcpu, req); break; } /* fallthrough */ default: return RESUME_HOST; } kvmppc_set_gpr(vcpu, 3, ret); vcpu->arch.hcall_needed = 0; return RESUME_GUEST; } static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, struct task_struct *tsk) { int r = RESUME_HOST; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PERFMON: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: /* * Deliver a machine check interrupt to the guest. * We have to do this, even if the host has handled the * machine check, because machine checks use SRR0/1 and * the interrupt might have trashed guest state in them. */ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_MACHINE_CHECK); r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: { ulong flags; /* * Normally program interrupts are delivered directly * to the guest by the hardware, but we can get here * as a result of a hypervisor emulation interrupt * (e40) getting turned into a 700 by BML RTAS. */ flags = vcpu->arch.shregs.msr & 0x1f0000ull; kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } case BOOK3S_INTERRUPT_SYSCALL: { /* hcall - punt to userspace */ int i; if (vcpu->arch.shregs.msr & MSR_PR) { /* sc 1 from userspace - reflect to guest syscall */ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); r = RESUME_GUEST; break; } run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); for (i = 0; i < 9; ++i) run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. Any other HDSI/HISI interrupts * have been handled already. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: r = RESUME_PAGE_FAULT; break; case BOOK3S_INTERRUPT_H_INST_STORAGE: vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); vcpu->arch.fault_dsisr = 0; r = RESUME_PAGE_FAULT; break; /* * This occurs if the guest executes an illegal instruction. * We just generate a program interrupt to the guest, since * we don't emulate any guest instructions at this stage. */ case BOOK3S_INTERRUPT_H_EMUL_ASSIST: kvmppc_core_queue_program(vcpu, 0x80000); r = RESUME_GUEST; break; default: kvmppc_dump_regs(vcpu); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); r = RESUME_HOST; BUG(); break; } return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i; sregs->pvr = vcpu->arch.pvr; memset(sregs, 0, sizeof(struct kvm_sregs)); for (i = 0; i < vcpu->arch.slb_max; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i, j; kvmppc_set_pvr(vcpu, sregs->pvr); j = 0; for (i = 0; i < vcpu->arch.slb_nr; i++) { if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; ++j; } } vcpu->arch.slb_max = j; return 0; } int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_HIOR: *val = get_reg_val(id, 0); break; case KVM_REG_PPC_DABR: *val = get_reg_val(id, vcpu->arch.dabr); break; case KVM_REG_PPC_DSCR: *val = get_reg_val(id, vcpu->arch.dscr); break; case KVM_REG_PPC_PURR: *val = get_reg_val(id, vcpu->arch.purr); break; case KVM_REG_PPC_SPURR: *val = get_reg_val(id, vcpu->arch.spurr); break; case KVM_REG_PPC_AMR: *val = get_reg_val(id, vcpu->arch.amr); break; case KVM_REG_PPC_UAMOR: *val = get_reg_val(id, vcpu->arch.uamor); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: i = id - KVM_REG_PPC_MMCR0; *val = get_reg_val(id, vcpu->arch.mmcr[i]); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; *val = get_reg_val(id, vcpu->arch.pmc[i]); break; #ifdef CONFIG_VSX case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: if (cpu_has_feature(CPU_FTR_VSX)) { /* VSX => FP reg i is stored in arch.vsr[2*i] */ long int i = id - KVM_REG_PPC_FPR0; *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); } else { /* let generic code handle it */ r = -EINVAL; } break; case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: if (cpu_has_feature(CPU_FTR_VSX)) { long int i = id - KVM_REG_PPC_VSR0; val->vsxval[0] = vcpu->arch.vsr[2 * i]; val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; } else { r = -ENXIO; } break; #endif /* CONFIG_VSX */ case KVM_REG_PPC_VPA_ADDR: spin_lock(&vcpu->arch.vpa_update_lock); *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_SLB: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; val->vpaval.length = vcpu->arch.slb_shadow.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_DTL: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.dtl.next_gpa; val->vpaval.length = vcpu->arch.dtl.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; default: r = -EINVAL; break; } return r; } int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; unsigned long addr, len; switch (id) { case KVM_REG_PPC_HIOR: /* Only allow this to be set to zero */ if (set_reg_val(id, *val)) r = -EINVAL; break; case KVM_REG_PPC_DABR: vcpu->arch.dabr = set_reg_val(id, *val); break; case KVM_REG_PPC_DSCR: vcpu->arch.dscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PURR: vcpu->arch.purr = set_reg_val(id, *val); break; case KVM_REG_PPC_SPURR: vcpu->arch.spurr = set_reg_val(id, *val); break; case KVM_REG_PPC_AMR: vcpu->arch.amr = set_reg_val(id, *val); break; case KVM_REG_PPC_UAMOR: vcpu->arch.uamor = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: i = id - KVM_REG_PPC_MMCR0; vcpu->arch.mmcr[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; vcpu->arch.pmc[i] = set_reg_val(id, *val); break; #ifdef CONFIG_VSX case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: if (cpu_has_feature(CPU_FTR_VSX)) { /* VSX => FP reg i is stored in arch.vsr[2*i] */ long int i = id - KVM_REG_PPC_FPR0; vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); } else { /* let generic code handle it */ r = -EINVAL; } break; case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: if (cpu_has_feature(CPU_FTR_VSX)) { long int i = id - KVM_REG_PPC_VSR0; vcpu->arch.vsr[2 * i] = val->vsxval[0]; vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; } else { r = -ENXIO; } break; #endif /* CONFIG_VSX */ case KVM_REG_PPC_VPA_ADDR: addr = set_reg_val(id, *val); r = -EINVAL; if (!addr && (vcpu->arch.slb_shadow.next_gpa || vcpu->arch.dtl.next_gpa)) break; r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); break; case KVM_REG_PPC_VPA_SLB: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && !vcpu->arch.vpa.next_gpa) break; r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); break; case KVM_REG_PPC_VPA_DTL: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && (len < sizeof(struct dtl_entry) || !vcpu->arch.vpa.next_gpa)) break; len -= len % sizeof(struct dtl_entry); r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); break; default: r = -EINVAL; break; } return r; } int kvmppc_core_check_processor_compat(void) { if (cpu_has_feature(CPU_FTR_HVMODE)) return 0; return -EIO; } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; int err = -EINVAL; int core; struct kvmppc_vcore *vcore; core = id / threads_per_core; if (core >= KVM_MAX_VCORES) goto out; err = -ENOMEM; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) goto out; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; vcpu->arch.shared = &vcpu->arch.shregs; vcpu->arch.mmcr[0] = MMCR0_FC; vcpu->arch.ctrl = CTRL_RUNLATCH; /* default to host PVR, since we can't spoof it */ vcpu->arch.pvr = mfspr(SPRN_PVR); kvmppc_set_pvr(vcpu, vcpu->arch.pvr); spin_lock_init(&vcpu->arch.vpa_update_lock); spin_lock_init(&vcpu->arch.tbacct_lock); vcpu->arch.busy_preempt = TB_NIL; kvmppc_mmu_book3s_hv_init(vcpu); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; init_waitqueue_head(&vcpu->arch.cpu_run); mutex_lock(&kvm->lock); vcore = kvm->arch.vcores[core]; if (!vcore) { vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); if (vcore) { INIT_LIST_HEAD(&vcore->runnable_threads); spin_lock_init(&vcore->lock); init_waitqueue_head(&vcore->wq); vcore->preempt_tb = TB_NIL; } kvm->arch.vcores[core] = vcore; kvm->arch.online_vcores++; } mutex_unlock(&kvm->lock); if (!vcore) goto free_vcpu; spin_lock(&vcore->lock); ++vcore->num_threads; spin_unlock(&vcore->lock); vcpu->arch.vcore = vcore; vcpu->arch.cpu_type = KVM_CPU_3S_64; kvmppc_sanity_check(vcpu); return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) { if (vpa->pinned_addr) kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, vpa->dirty); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.vpa_update_lock); unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); spin_unlock(&vcpu->arch.vpa_update_lock); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } static void kvmppc_set_timer(struct kvm_vcpu *vcpu) { unsigned long dec_nsec, now; now = get_tb(); if (now > vcpu->arch.dec_expires) { /* decrementer has already gone negative */ kvmppc_core_queue_dec(vcpu); kvmppc_core_prepare_to_enter(vcpu); return; } dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC / tb_ticks_per_sec; hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), HRTIMER_MODE_REL); vcpu->arch.timer_running = 1; } static void kvmppc_end_cede(struct kvm_vcpu *vcpu) { vcpu->arch.ceded = 0; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } } extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu) { u64 now; if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) return; spin_lock(&vcpu->arch.tbacct_lock); now = mftb(); vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - vcpu->arch.stolen_logged; vcpu->arch.busy_preempt = now; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; spin_unlock(&vcpu->arch.tbacct_lock); --vc->n_runnable; list_del(&vcpu->arch.run_list); } static int kvmppc_grab_hwthread(int cpu) { struct paca_struct *tpaca; long timeout = 1000; tpaca = &paca[cpu]; /* Ensure the thread won't go into the kernel if it wakes */ tpaca->kvm_hstate.hwthread_req = 1; tpaca->kvm_hstate.kvm_vcpu = NULL; /* * If the thread is already executing in the kernel (e.g. handling * a stray interrupt), wait for it to get back to nap mode. * The smp_mb() is to ensure that our setting of hwthread_req * is visible before we look at hwthread_state, so if this * races with the code at system_reset_pSeries and the thread * misses our setting of hwthread_req, we are sure to see its * setting of hwthread_state, and vice versa. */ smp_mb(); while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { if (--timeout <= 0) { pr_err("KVM: couldn't grab cpu %d\n", cpu); return -EBUSY; } udelay(1); } return 0; } static void kvmppc_release_hwthread(int cpu) { struct paca_struct *tpaca; tpaca = &paca[cpu]; tpaca->kvm_hstate.hwthread_req = 0; tpaca->kvm_hstate.kvm_vcpu = NULL; } static void kvmppc_start_thread(struct kvm_vcpu *vcpu) { int cpu; struct paca_struct *tpaca; struct kvmppc_vcore *vc = vcpu->arch.vcore; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } cpu = vc->pcpu + vcpu->arch.ptid; tpaca = &paca[cpu]; tpaca->kvm_hstate.kvm_vcpu = vcpu; tpaca->kvm_hstate.kvm_vcore = vc; tpaca->kvm_hstate.napping = 0; vcpu->cpu = vc->pcpu; smp_wmb(); #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) if (vcpu->arch.ptid) { #ifdef CONFIG_KVM_XICS xics_wake_cpu(cpu); #endif ++vc->n_woken; } #endif } static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) { int i; HMT_low(); i = 0; while (vc->nap_count < vc->n_woken) { if (++i >= 1000000) { pr_err("kvmppc_wait_for_nap timeout %d %d\n", vc->nap_count, vc->n_woken); break; } cpu_relax(); } HMT_medium(); } /* * Check that we are on thread 0 and that any other threads in * this core are off-line. Then grab the threads so they can't * enter the kernel. */ static int on_primary_thread(void) { int cpu = smp_processor_id(); int thr = cpu_thread_in_core(cpu); if (thr) return 0; while (++thr < threads_per_core) if (cpu_online(cpu + thr)) return 0; /* Grab all hw threads so they can't go into the kernel */ for (thr = 1; thr < threads_per_core; ++thr) { if (kvmppc_grab_hwthread(cpu + thr)) { /* Couldn't grab one; let the others go */ do { kvmppc_release_hwthread(cpu + thr); } while (--thr > 0); return 0; } } return 1; } /* * Run a set of guest threads on a physical core. * Called with vc->lock held. */ static void kvmppc_run_core(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu, *vcpu0, *vnext; long ret; u64 now; int ptid, i, need_vpa_update; int srcu_idx; struct kvm_vcpu *vcpus_to_update[threads_per_core]; /* don't start if any threads have a signal pending */ need_vpa_update = 0; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { if (signal_pending(vcpu->arch.run_task)) return; if (vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending) vcpus_to_update[need_vpa_update++] = vcpu; } /* * Initialize *vc, in particular vc->vcore_state, so we can * drop the vcore lock if necessary. */ vc->n_woken = 0; vc->nap_count = 0; vc->entry_exit_count = 0; vc->vcore_state = VCORE_STARTING; vc->in_guest = 0; vc->napping_threads = 0; /* * Updating any of the vpas requires calling kvmppc_pin_guest_page, * which can't be called with any spinlocks held. */ if (need_vpa_update) { spin_unlock(&vc->lock); for (i = 0; i < need_vpa_update; ++i) kvmppc_update_vpas(vcpus_to_update[i]); spin_lock(&vc->lock); } /* * Assign physical thread IDs, first to non-ceded vcpus * and then to ceded ones. */ ptid = 0; vcpu0 = NULL; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { if (!vcpu->arch.ceded) { if (!ptid) vcpu0 = vcpu; vcpu->arch.ptid = ptid++; } } if (!vcpu0) goto out; /* nothing to run; should never happen */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) if (vcpu->arch.ceded) vcpu->arch.ptid = ptid++; /* * Make sure we are running on thread 0, and that * secondary threads are offline. */ if (threads_per_core > 1 && !on_primary_thread()) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->arch.ret = -EBUSY; goto out; } vc->pcpu = smp_processor_id(); list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { kvmppc_start_thread(vcpu); kvmppc_create_dtl_entry(vcpu, vc); } vc->vcore_state = VCORE_RUNNING; preempt_disable(); spin_unlock(&vc->lock); kvm_guest_enter(); srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); __kvmppc_vcore_entry(NULL, vcpu0); spin_lock(&vc->lock); /* disable sending of IPIs on virtual external irqs */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->cpu = -1; /* wait for secondary threads to finish writing their state to memory */ if (vc->nap_count < vc->n_woken) kvmppc_wait_for_nap(vc); for (i = 0; i < threads_per_core; ++i) kvmppc_release_hwthread(vc->pcpu + i); /* prevent other vcpu threads from doing kvmppc_start_thread() now */ vc->vcore_state = VCORE_EXITING; spin_unlock(&vc->lock); srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); /* make sure updates to secondary vcpu structs are visible now */ smp_mb(); kvm_guest_exit(); preempt_enable(); kvm_resched(vcpu); spin_lock(&vc->lock); now = get_tb(); list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { /* cancel pending dec exception if dec is positive */ if (now < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu)) kvmppc_core_dequeue_dec(vcpu); ret = RESUME_GUEST; if (vcpu->arch.trap) ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, vcpu->arch.run_task); vcpu->arch.ret = ret; vcpu->arch.trap = 0; if (vcpu->arch.ceded) { if (ret != RESUME_GUEST) kvmppc_end_cede(vcpu); else kvmppc_set_timer(vcpu); } } out: vc->vcore_state = VCORE_INACTIVE; list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, arch.run_list) { if (vcpu->arch.ret != RESUME_GUEST) { kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } } } /* * Wait for some other vcpu thread to execute us, and * wake us up when we need to handle something in the host. */ static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) { DEFINE_WAIT(wait); prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) schedule(); finish_wait(&vcpu->arch.cpu_run, &wait); } /* * All the vcpus in this vcore are idle, so wait for a decrementer * or external interrupt to one of the vcpus. vc->lock is held. */ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) { DEFINE_WAIT(wait); prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); vc->vcore_state = VCORE_SLEEPING; spin_unlock(&vc->lock); schedule(); finish_wait(&vc->wq, &wait); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; } static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int n_ceded; struct kvmppc_vcore *vc; struct kvm_vcpu *v, *vn; kvm_run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; kvmppc_update_vpas(vcpu); /* * Synchronize with other threads in this virtual core */ vc = vcpu->arch.vcore; spin_lock(&vc->lock); vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.kvm_run = kvm_run; vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; vcpu->arch.busy_preempt = TB_NIL; list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); ++vc->n_runnable; /* * This happens the first time this is called for a vcpu. * If the vcore is already running, we may be able to start * this thread straight away and have it join in. */ if (!signal_pending(current)) { if (vc->vcore_state == VCORE_RUNNING && VCORE_EXIT_COUNT(vc) == 0) { vcpu->arch.ptid = vc->n_runnable - 1; kvmppc_create_dtl_entry(vcpu, vc); kvmppc_start_thread(vcpu); } else if (vc->vcore_state == VCORE_SLEEPING) { wake_up(&vc->wq); } } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && !signal_pending(current)) { if (vc->vcore_state != VCORE_INACTIVE) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); spin_lock(&vc->lock); continue; } list_for_each_entry_safe(v, vn, &vc->runnable_threads, arch.run_list) { kvmppc_core_prepare_to_enter(v); if (signal_pending(v->arch.run_task)) { kvmppc_remove_runnable(vc, v); v->stat.signal_exits++; v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; v->arch.ret = -EINTR; wake_up(&v->arch.cpu_run); } } if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) break; vc->runner = vcpu; n_ceded = 0; list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { if (!v->arch.pending_exceptions) n_ceded += v->arch.ceded; else v->arch.ceded = 0; } if (n_ceded == vc->n_runnable) kvmppc_vcore_blocked(vc); else kvmppc_run_core(vc); vc->runner = NULL; } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && (vc->vcore_state == VCORE_RUNNING || vc->vcore_state == VCORE_EXITING)) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); spin_lock(&vc->lock); } if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { kvmppc_remove_runnable(vc, vcpu); vcpu->stat.signal_exits++; kvm_run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; } if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { /* Wake up some vcpu to run the core */ v = list_first_entry(&vc->runnable_threads, struct kvm_vcpu, arch.run_list); wake_up(&v->arch.cpu_run); } spin_unlock(&vc->lock); return vcpu->arch.ret; } int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) { int r; int srcu_idx; if (!vcpu->arch.sane) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } kvmppc_core_prepare_to_enter(vcpu); /* No need to go into the guest when all we'll do is come back out */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; return -EINTR; } atomic_inc(&vcpu->kvm->arch.vcpus_running); /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ smp_mb(); /* On the first time here, set up HTAB and VRMA or RMA */ if (!vcpu->kvm->arch.rma_setup_done) { r = kvmppc_hv_setup_htab_rma(vcpu); if (r) goto out; } flush_fp_to_thread(current); flush_altivec_to_thread(current); flush_vsx_to_thread(current); vcpu->arch.wqp = &vcpu->arch.vcore->wq; vcpu->arch.pgdir = current->mm->pgd; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; do { r = kvmppc_run_vcpu(run, vcpu); if (run->exit_reason == KVM_EXIT_PAPR_HCALL && !(vcpu->arch.shregs.msr & MSR_PR)) { r = kvmppc_pseries_do_hcall(vcpu); kvmppc_core_prepare_to_enter(vcpu); } else if (r == RESUME_PAGE_FAULT) { srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmppc_book3s_hv_page_fault(run, vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); } } while (r == RESUME_GUEST); out: vcpu->arch.state = KVMPPC_VCPU_NOTREADY; atomic_dec(&vcpu->kvm->arch.vcpus_running); return r; } /* Work out RMLS (real mode limit selector) field value for a given RMA size. Assumes POWER7 or PPC970. */ static inline int lpcr_rmls(unsigned long rma_size) { switch (rma_size) { case 32ul << 20: /* 32 MB */ if (cpu_has_feature(CPU_FTR_ARCH_206)) return 8; /* only supported on POWER7 */ return -1; case 64ul << 20: /* 64 MB */ return 3; case 128ul << 20: /* 128 MB */ return 7; case 256ul << 20: /* 256 MB */ return 4; case 1ul << 30: /* 1 GB */ return 2; case 16ul << 30: /* 16 GB */ return 1; case 256ul << 30: /* 256 GB */ return 0; default: return -1; } } static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct kvmppc_linear_info *ri = vma->vm_file->private_data; struct page *page; if (vmf->pgoff >= ri->npages) return VM_FAULT_SIGBUS; page = pfn_to_page(ri->base_pfn + vmf->pgoff); get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct kvm_rma_vm_ops = { .fault = kvm_rma_fault, }; static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; vma->vm_ops = &kvm_rma_vm_ops; return 0; } static int kvm_rma_release(struct inode *inode, struct file *filp) { struct kvmppc_linear_info *ri = filp->private_data; kvm_release_rma(ri); return 0; } static const struct file_operations kvm_rma_fops = { .mmap = kvm_rma_mmap, .release = kvm_rma_release, }; long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) { struct kvmppc_linear_info *ri; long fd; ri = kvm_alloc_rma(); if (!ri) return -ENOMEM; fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); if (fd < 0) kvm_release_rma(ri); ret->rma_size = ri->npages << PAGE_SHIFT; return fd; } static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, int linux_psize) { struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; if (!def->shift) return; (*sps)->page_shift = def->shift; (*sps)->slb_enc = def->sllp; (*sps)->enc[0].page_shift = def->shift; /* * Only return base page encoding. We don't want to return * all the supporting pte_enc, because our H_ENTER doesn't * support MPSS yet. Once they do, we can start passing all * support pte_enc here */ (*sps)->enc[0].pte_enc = def->penc[linux_psize]; (*sps)++; } int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { struct kvm_ppc_one_seg_page_size *sps; info->flags = KVM_PPC_PAGE_SIZES_REAL; if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) info->flags |= KVM_PPC_1T_SEGMENTS; info->slb_size = mmu_slb_size; /* We only support these sizes for now, and no muti-size segments */ sps = &info->sps[0]; kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_USER_MEM_SLOTS) goto out; memslot = id_to_memslot(kvm->memslots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); if (r) goto out; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void unpin_slot(struct kvm_memory_slot *memslot) { unsigned long *physp; unsigned long j, npages, pfn; struct page *page; physp = memslot->arch.slot_phys; npages = memslot->npages; if (!physp) return; for (j = 0; j < npages; j++) { if (!(physp[j] & KVMPPC_GOT_PAGE)) continue; pfn = physp[j] >> PAGE_SHIFT; page = pfn_to_page(pfn); SetPageDirty(page); put_page(page); } } void kvmppc_core_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { if (!dont || free->arch.rmap != dont->arch.rmap) { vfree(free->arch.rmap); free->arch.rmap = NULL; } if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { unpin_slot(free); vfree(free->arch.slot_phys); free->arch.slot_phys = NULL; } } int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); if (!slot->arch.rmap) return -ENOMEM; slot->arch.slot_phys = NULL; return 0; } int kvmppc_core_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_userspace_memory_region *mem) { unsigned long *phys; /* Allocate a slot_phys array if needed */ phys = memslot->arch.slot_phys; if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { phys = vzalloc(memslot->npages * sizeof(unsigned long)); if (!phys) return -ENOMEM; memslot->arch.slot_phys = phys; } return 0; } void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old) { unsigned long npages = mem->memory_size >> PAGE_SHIFT; struct kvm_memory_slot *memslot; if (npages && old->npages) { /* * If modifying a memslot, reset all the rmap dirty bits. * If this is a new memslot, we don't need to do anything * since the rmap array starts out as all zeroes, * i.e. no pages are dirty. */ memslot = id_to_memslot(kvm->memslots, mem->slot); kvmppc_hv_get_dirty_log(kvm, memslot, NULL); } } static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) { int err = 0; struct kvm *kvm = vcpu->kvm; struct kvmppc_linear_info *ri = NULL; unsigned long hva; struct kvm_memory_slot *memslot; struct vm_area_struct *vma; unsigned long lpcr, senc; unsigned long psize, porder; unsigned long rma_size; unsigned long rmls; unsigned long *physp; unsigned long i, npages; int srcu_idx; mutex_lock(&kvm->lock); if (kvm->arch.rma_setup_done) goto out; /* another vcpu beat us to it */ /* Allocate hashed page table (if not done already) and reset it */ if (!kvm->arch.hpt_virt) { err = kvmppc_alloc_hpt(kvm, NULL); if (err) { pr_err("KVM: Couldn't alloc HPT\n"); goto out; } } /* Look up the memslot for guest physical address 0 */ srcu_idx = srcu_read_lock(&kvm->srcu); memslot = gfn_to_memslot(kvm, 0); /* We must have some memory at 0 by now */ err = -EINVAL; if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) goto out_srcu; /* Look up the VMA for the start of this memory slot */ hva = memslot->userspace_addr; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) goto up_out; psize = vma_kernel_pagesize(vma); porder = __ilog2(psize); /* Is this one of our preallocated RMAs? */ if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && hva == vma->vm_start) ri = vma->vm_file->private_data; up_read(¤t->mm->mmap_sem); if (!ri) { /* On POWER7, use VRMA; on PPC970, give up */ err = -EPERM; if (cpu_has_feature(CPU_FTR_ARCH_201)) { pr_err("KVM: CPU requires an RMO\n"); goto out_srcu; } /* We can handle 4k, 64k or 16M pages in the VRMA */ err = -EINVAL; if (!(psize == 0x1000 || psize == 0x10000 || psize == 0x1000000)) goto out_srcu; /* Update VRMASD field in the LPCR */ senc = slb_pgsize_encoding(psize); kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; lpcr |= senc << (LPCR_VRMASD_SH - 4); kvm->arch.lpcr = lpcr; /* Create HPTEs in the hash page table for the VRMA */ kvmppc_map_vrma(vcpu, memslot, porder); } else { /* Set up to use an RMO region */ rma_size = ri->npages; if (rma_size > memslot->npages) rma_size = memslot->npages; rma_size <<= PAGE_SHIFT; rmls = lpcr_rmls(rma_size); err = -EINVAL; if (rmls < 0) { pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); goto out_srcu; } atomic_inc(&ri->use_count); kvm->arch.rma = ri; /* Update LPCR and RMOR */ lpcr = kvm->arch.lpcr; if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; insert RMLS value (split field) in HID4 */ lpcr &= ~((1ul << HID4_RMLS0_SH) | (3ul << HID4_RMLS2_SH)); lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | ((rmls & 3) << HID4_RMLS2_SH); /* RMOR is also in HID4 */ lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) << HID4_RMOR_SH; } else { /* POWER7 */ lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); lpcr |= rmls << LPCR_RMLS_SH; kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; } kvm->arch.lpcr = lpcr; pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); /* Initialize phys addrs of pages in RMO */ npages = ri->npages; porder = __ilog2(npages); physp = memslot->arch.slot_phys; if (physp) { if (npages > memslot->npages) npages = memslot->npages; spin_lock(&kvm->arch.slot_phys_lock); for (i = 0; i < npages; ++i) physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder; spin_unlock(&kvm->arch.slot_phys_lock); } } /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ smp_wmb(); kvm->arch.rma_setup_done = 1; err = 0; out_srcu: srcu_read_unlock(&kvm->srcu, srcu_idx); out: mutex_unlock(&kvm->lock); return err; up_out: up_read(¤t->mm->mmap_sem); goto out; } int kvmppc_core_init_vm(struct kvm *kvm) { unsigned long lpcr, lpid; /* Allocate the guest's logical partition ID */ lpid = kvmppc_alloc_lpid(); if (lpid < 0) return -ENOMEM; kvm->arch.lpid = lpid; /* * Since we don't flush the TLB when tearing down a VM, * and this lpid might have previously been used, * make sure we flush on each core before running the new VM. */ cpumask_setall(&kvm->arch.need_tlb_flush); INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); INIT_LIST_HEAD(&kvm->arch.rtas_tokens); kvm->arch.rma = NULL; kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; HID4 is effectively the LPCR */ kvm->arch.host_lpid = 0; kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | ((lpid & 0xf) << HID4_LPID5_SH); } else { /* POWER7; init LPCR for virtual RMA mode */ kvm->arch.host_lpid = mfspr(SPRN_LPID); kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); lpcr &= LPCR_PECE | LPCR_LPES; lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | LPCR_VPM0 | LPCR_VPM1; kvm->arch.vrma_slb_v = SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); } kvm->arch.lpcr = lpcr; kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); spin_lock_init(&kvm->arch.slot_phys_lock); /* * Don't allow secondary CPU threads to come online * while any KVM VMs exist. */ inhibit_secondary_onlining(); return 0; } void kvmppc_core_destroy_vm(struct kvm *kvm) { uninhibit_secondary_onlining(); if (kvm->arch.rma) { kvm_release_rma(kvm->arch.rma); kvm->arch.rma = NULL; } kvmppc_rtas_tokens_free(kvm); kvmppc_free_hpt(kvm); WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); } /* These are stubs for now */ void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) { } /* We don't need to emulate any privileged instructions or dcbz */ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { return EMULATE_FAIL; } int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) { return EMULATE_FAIL; } int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) { return EMULATE_FAIL; } static int kvmppc_book3s_hv_init(void) { int r; r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); if (r) return r; r = kvmppc_mmu_hv_init(); return r; } static void kvmppc_book3s_hv_exit(void) { kvm_exit(); } module_init(kvmppc_book3s_hv_init); module_exit(kvmppc_book3s_hv_exit); |