Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | /* * sched_clock for unstable cpu clocks * * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * Updates and enhancements: * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> * * Based on code by: * Ingo Molnar <mingo@redhat.com> * Guillaume Chazarain <guichaz@gmail.com> * * * What: * * cpu_clock(i) provides a fast (execution time) high resolution * clock with bounded drift between CPUs. The value of cpu_clock(i) * is monotonic for constant i. The timestamp returned is in nanoseconds. * * ######################### BIG FAT WARNING ########################## * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # * # go backwards !! # * #################################################################### * * There is no strict promise about the base, although it tends to start * at 0 on boot (but people really shouldn't rely on that). * * cpu_clock(i) -- can be used from any context, including NMI. * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI) * local_clock() -- is cpu_clock() on the current cpu. * * How: * * The implementation either uses sched_clock() when * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the * sched_clock() is assumed to provide these properties (mostly it means * the architecture provides a globally synchronized highres time source). * * Otherwise it tries to create a semi stable clock from a mixture of other * clocks, including: * * - GTOD (clock monotomic) * - sched_clock() * - explicit idle events * * We use GTOD as base and use sched_clock() deltas to improve resolution. The * deltas are filtered to provide monotonicity and keeping it within an * expected window. * * Furthermore, explicit sleep and wakeup hooks allow us to account for time * that is otherwise invisible (TSC gets stopped). * * * Notes: * * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things * like cpufreq interrupts that can change the base clock (TSC) multiplier * and cause funny jumps in time -- although the filtering provided by * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on * sched_clock(). */ #include <linux/spinlock.h> #include <linux/hardirq.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/ktime.h> #include <linux/sched.h> /* * Scheduler clock - returns current time in nanosec units. * This is default implementation. * Architectures and sub-architectures can override this. */ unsigned long long __attribute__((weak)) sched_clock(void) { return (unsigned long long)(jiffies - INITIAL_JIFFIES) * (NSEC_PER_SEC / HZ); } EXPORT_SYMBOL_GPL(sched_clock); __read_mostly int sched_clock_running; #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK __read_mostly int sched_clock_stable; struct sched_clock_data { u64 tick_raw; u64 tick_gtod; u64 clock; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); static inline struct sched_clock_data *this_scd(void) { return &__get_cpu_var(sched_clock_data); } static inline struct sched_clock_data *cpu_sdc(int cpu) { return &per_cpu(sched_clock_data, cpu); } void sched_clock_init(void) { u64 ktime_now = ktime_to_ns(ktime_get()); int cpu; for_each_possible_cpu(cpu) { struct sched_clock_data *scd = cpu_sdc(cpu); scd->tick_raw = 0; scd->tick_gtod = ktime_now; scd->clock = ktime_now; } sched_clock_running = 1; } /* * min, max except they take wrapping into account */ static inline u64 wrap_min(u64 x, u64 y) { return (s64)(x - y) < 0 ? x : y; } static inline u64 wrap_max(u64 x, u64 y) { return (s64)(x - y) > 0 ? x : y; } /* * update the percpu scd from the raw @now value * * - filter out backward motion * - use the GTOD tick value to create a window to filter crazy TSC values */ static u64 sched_clock_local(struct sched_clock_data *scd) { u64 now, clock, old_clock, min_clock, max_clock; s64 delta; again: now = sched_clock(); delta = now - scd->tick_raw; if (unlikely(delta < 0)) delta = 0; old_clock = scd->clock; /* * scd->clock = clamp(scd->tick_gtod + delta, * max(scd->tick_gtod, scd->clock), * scd->tick_gtod + TICK_NSEC); */ clock = scd->tick_gtod + delta; min_clock = wrap_max(scd->tick_gtod, old_clock); max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); clock = wrap_max(clock, min_clock); clock = wrap_min(clock, max_clock); if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) goto again; return clock; } static u64 sched_clock_remote(struct sched_clock_data *scd) { struct sched_clock_data *my_scd = this_scd(); u64 this_clock, remote_clock; u64 *ptr, old_val, val; sched_clock_local(my_scd); again: this_clock = my_scd->clock; remote_clock = scd->clock; /* * Use the opportunity that we have both locks * taken to couple the two clocks: we take the * larger time as the latest time for both * runqueues. (this creates monotonic movement) */ if (likely((s64)(remote_clock - this_clock) < 0)) { ptr = &scd->clock; old_val = remote_clock; val = this_clock; } else { /* * Should be rare, but possible: */ ptr = &my_scd->clock; old_val = this_clock; val = remote_clock; } if (cmpxchg64(ptr, old_val, val) != old_val) goto again; return val; } /* * Similar to cpu_clock(), but requires local IRQs to be disabled. * * See cpu_clock(). */ u64 sched_clock_cpu(int cpu) { struct sched_clock_data *scd; u64 clock; WARN_ON_ONCE(!irqs_disabled()); if (sched_clock_stable) return sched_clock(); if (unlikely(!sched_clock_running)) return 0ull; scd = cpu_sdc(cpu); if (cpu != smp_processor_id()) clock = sched_clock_remote(scd); else clock = sched_clock_local(scd); return clock; } void sched_clock_tick(void) { struct sched_clock_data *scd; u64 now, now_gtod; if (sched_clock_stable) return; if (unlikely(!sched_clock_running)) return; WARN_ON_ONCE(!irqs_disabled()); scd = this_scd(); now_gtod = ktime_to_ns(ktime_get()); now = sched_clock(); scd->tick_raw = now; scd->tick_gtod = now_gtod; sched_clock_local(scd); } /* * We are going deep-idle (irqs are disabled): */ void sched_clock_idle_sleep_event(void) { sched_clock_cpu(smp_processor_id()); } EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); /* * We just idled delta nanoseconds (called with irqs disabled): */ void sched_clock_idle_wakeup_event(u64 delta_ns) { if (timekeeping_suspended) return; sched_clock_tick(); touch_softlockup_watchdog(); } EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); /* * As outlined at the top, provides a fast, high resolution, nanosecond * time source that is monotonic per cpu argument and has bounded drift * between cpus. * * ######################### BIG FAT WARNING ########################## * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # * # go backwards !! # * #################################################################### */ u64 cpu_clock(int cpu) { u64 clock; unsigned long flags; local_irq_save(flags); clock = sched_clock_cpu(cpu); local_irq_restore(flags); return clock; } /* * Similar to cpu_clock() for the current cpu. Time will only be observed * to be monotonic if care is taken to only compare timestampt taken on the * same CPU. * * See cpu_clock(). */ u64 local_clock(void) { u64 clock; unsigned long flags; local_irq_save(flags); clock = sched_clock_cpu(smp_processor_id()); local_irq_restore(flags); return clock; } #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ void sched_clock_init(void) { sched_clock_running = 1; } u64 sched_clock_cpu(int cpu) { if (unlikely(!sched_clock_running)) return 0; return sched_clock(); } u64 cpu_clock(int cpu) { return sched_clock_cpu(cpu); } u64 local_clock(void) { return sched_clock_cpu(0); } #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ EXPORT_SYMBOL_GPL(cpu_clock); EXPORT_SYMBOL_GPL(local_clock); |