/*
* The driver for the ForteMedia FM801 based soundcards
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
*
* Support FM only card by Andy Shevchenko <andy@smile.org.ua>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/initval.h>
#include <asm/io.h>
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
#include <sound/tea575x-tuner.h>
#endif
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("ForteMedia FM801");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
"{Genius,SoundMaker Live 5.1}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
/*
* Enable TEA575x tuner
* 1 = MediaForte 256-PCS
* 2 = MediaForte 256-PCP
* 3 = MediaForte 64-PCR
* 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
* High 16-bits are video (radio) device number + 1
*/
static int tea575x_tuner[SNDRV_CARDS];
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
module_param_array(tea575x_tuner, int, NULL, 0444);
MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only).");
#define TUNER_DISABLED (1<<3)
#define TUNER_ONLY (1<<4)
#define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF)
/*
* Direct registers
*/
#define FM801_REG(chip, reg) (chip->port + FM801_##reg)
#define FM801_PCM_VOL 0x00 /* PCM Output Volume */
#define FM801_FM_VOL 0x02 /* FM Output Volume */
#define FM801_I2S_VOL 0x04 /* I2S Volume */
#define FM801_REC_SRC 0x06 /* Record Source */
#define FM801_PLY_CTRL 0x08 /* Playback Control */
#define FM801_PLY_COUNT 0x0a /* Playback Count */
#define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
#define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
#define FM801_CAP_CTRL 0x14 /* Capture Control */
#define FM801_CAP_COUNT 0x16 /* Capture Count */
#define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
#define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
#define FM801_CODEC_CTRL 0x22 /* Codec Control */
#define FM801_I2S_MODE 0x24 /* I2S Mode Control */
#define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
#define FM801_I2C_CTRL 0x29 /* I2C Control */
#define FM801_AC97_CMD 0x2a /* AC'97 Command */
#define FM801_AC97_DATA 0x2c /* AC'97 Data */
#define FM801_MPU401_DATA 0x30 /* MPU401 Data */
#define FM801_MPU401_CMD 0x31 /* MPU401 Command */
#define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
#define FM801_GEN_CTRL 0x54 /* General Control */
#define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
#define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
#define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
#define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
#define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
#define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
#define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
/* codec access */
#define FM801_AC97_READ (1<<7) /* read=1, write=0 */
#define FM801_AC97_VALID (1<<8) /* port valid=1 */
#define FM801_AC97_BUSY (1<<9) /* busy=1 */
#define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
/* playback and record control register bits */
#define FM801_BUF1_LAST (1<<1)
#define FM801_BUF2_LAST (1<<2)
#define FM801_START (1<<5)
#define FM801_PAUSE (1<<6)
#define FM801_IMMED_STOP (1<<7)
#define FM801_RATE_SHIFT 8
#define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
#define FM801_CHANNELS_4 (1<<12) /* playback only */
#define FM801_CHANNELS_6 (2<<12) /* playback only */
#define FM801_CHANNELS_6MS (3<<12) /* playback only */
#define FM801_CHANNELS_MASK (3<<12)
#define FM801_16BIT (1<<14)
#define FM801_STEREO (1<<15)
/* IRQ status bits */
#define FM801_IRQ_PLAYBACK (1<<8)
#define FM801_IRQ_CAPTURE (1<<9)
#define FM801_IRQ_VOLUME (1<<14)
#define FM801_IRQ_MPU (1<<15)
/* GPIO control register */
#define FM801_GPIO_GP0 (1<<0) /* read/write */
#define FM801_GPIO_GP1 (1<<1)
#define FM801_GPIO_GP2 (1<<2)
#define FM801_GPIO_GP3 (1<<3)
#define FM801_GPIO_GP(x) (1<<(0+(x)))
#define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
#define FM801_GPIO_GD1 (1<<9)
#define FM801_GPIO_GD2 (1<<10)
#define FM801_GPIO_GD3 (1<<11)
#define FM801_GPIO_GD(x) (1<<(8+(x)))
#define FM801_GPIO_GS0 (1<<12) /* function select: */
#define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
#define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
#define FM801_GPIO_GS3 (1<<15)
#define FM801_GPIO_GS(x) (1<<(12+(x)))
/*
*/
struct fm801 {
int irq;
unsigned long port; /* I/O port number */
unsigned int multichannel: 1, /* multichannel support */
secondary: 1; /* secondary codec */
unsigned char secondary_addr; /* address of the secondary codec */
unsigned int tea575x_tuner; /* tuner access method & flags */
unsigned short ply_ctrl; /* playback control */
unsigned short cap_ctrl; /* capture control */
unsigned long ply_buffer;
unsigned int ply_buf;
unsigned int ply_count;
unsigned int ply_size;
unsigned int ply_pos;
unsigned long cap_buffer;
unsigned int cap_buf;
unsigned int cap_count;
unsigned int cap_size;
unsigned int cap_pos;
struct snd_ac97_bus *ac97_bus;
struct snd_ac97 *ac97;
struct snd_ac97 *ac97_sec;
struct pci_dev *pci;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_rawmidi *rmidi;
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
unsigned int p_dma_size;
unsigned int c_dma_size;
spinlock_t reg_lock;
struct snd_info_entry *proc_entry;
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
struct snd_tea575x tea;
#endif
#ifdef CONFIG_PM
u16 saved_regs[0x20];
#endif
};
static DEFINE_PCI_DEVICE_TABLE(snd_fm801_ids) = {
{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
/*
* common I/O routines
*/
static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned long flags;
unsigned short old, new;
spin_lock_irqsave(&chip->reg_lock, flags);
old = inw(chip->port + reg);
new = (old & ~mask) | value;
change = old != new;
if (change)
outw(new, chip->port + reg);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return change;
}
static void snd_fm801_codec_write(struct snd_ac97 *ac97,
unsigned short reg,
unsigned short val)
{
struct fm801 *chip = ac97->private_data;
int idx;
/*
* Wait until the codec interface is not ready..
*/
for (idx = 0; idx < 100; idx++) {
if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
goto ok1;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
return;
ok1:
/* write data and address */
outw(val, FM801_REG(chip, AC97_DATA));
outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
/*
* Wait until the write command is not completed..
*/
for (idx = 0; idx < 1000; idx++) {
if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
return;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
}
static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
struct fm801 *chip = ac97->private_data;
int idx;
/*
* Wait until the codec interface is not ready..
*/
for (idx = 0; idx < 100; idx++) {
if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
goto ok1;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
return 0;
ok1:
/* read command */
outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
FM801_REG(chip, AC97_CMD));
for (idx = 0; idx < 100; idx++) {
if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
goto ok2;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
return 0;
ok2:
for (idx = 0; idx < 1000; idx++) {
if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
goto ok3;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
return 0;
ok3:
return inw(FM801_REG(chip, AC97_DATA));
}
static unsigned int rates[] = {
5500, 8000, 9600, 11025,
16000, 19200, 22050, 32000,
38400, 44100, 48000
};
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
.count = ARRAY_SIZE(rates),
.list = rates,
.mask = 0,
};
static unsigned int channels[] = {
2, 4, 6
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
.count = ARRAY_SIZE(channels),
.list = channels,
.mask = 0,
};
/*
* Sample rate routines
*/
static unsigned short snd_fm801_rate_bits(unsigned int rate)
{
unsigned int idx;
for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
if (rates[idx] == rate)
return idx;
snd_BUG();
return ARRAY_SIZE(rates) - 1;
}
/*
* PCM part
*/
static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
chip->ply_ctrl &= ~(FM801_BUF1_LAST |
FM801_BUF2_LAST |
FM801_PAUSE);
chip->ply_ctrl |= FM801_START |
FM801_IMMED_STOP;
break;
case SNDRV_PCM_TRIGGER_STOP:
chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->ply_ctrl |= FM801_PAUSE;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
chip->ply_ctrl &= ~FM801_PAUSE;
break;
default:
spin_unlock(&chip->reg_lock);
snd_BUG();
return -EINVAL;
}
outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
chip->cap_ctrl &= ~(FM801_BUF1_LAST |
FM801_BUF2_LAST |
FM801_PAUSE);
chip->cap_ctrl |= FM801_START |
FM801_IMMED_STOP;
break;
case SNDRV_PCM_TRIGGER_STOP:
chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->cap_ctrl |= FM801_PAUSE;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
chip->cap_ctrl &= ~FM801_PAUSE;
break;
default:
spin_unlock(&chip->reg_lock);
snd_BUG();
return -EINVAL;
}
outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
chip->ply_count = snd_pcm_lib_period_bytes(substream);
spin_lock_irq(&chip->reg_lock);
chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
FM801_STEREO | FM801_RATE_MASK |
FM801_CHANNELS_MASK);
if (snd_pcm_format_width(runtime->format) == 16)
chip->ply_ctrl |= FM801_16BIT;
if (runtime->channels > 1) {
chip->ply_ctrl |= FM801_STEREO;
if (runtime->channels == 4)
chip->ply_ctrl |= FM801_CHANNELS_4;
else if (runtime->channels == 6)
chip->ply_ctrl |= FM801_CHANNELS_6;
}
chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
chip->ply_buf = 0;
outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
chip->ply_buffer = runtime->dma_addr;
chip->ply_pos = 0;
outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
chip->cap_count = snd_pcm_lib_period_bytes(substream);
spin_lock_irq(&chip->reg_lock);
chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
FM801_STEREO | FM801_RATE_MASK);
if (snd_pcm_format_width(runtime->format) == 16)
chip->cap_ctrl |= FM801_16BIT;
if (runtime->channels > 1)
chip->cap_ctrl |= FM801_STEREO;
chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
chip->cap_buf = 0;
outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
chip->cap_buffer = runtime->dma_addr;
chip->cap_pos = 0;
outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(chip->ply_ctrl & FM801_START))
return 0;
spin_lock(&chip->reg_lock);
ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
ptr += chip->ply_count;
ptr %= chip->ply_size;
}
spin_unlock(&chip->reg_lock);
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(chip->cap_ctrl & FM801_START))
return 0;
spin_lock(&chip->reg_lock);
ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
ptr += chip->cap_count;
ptr %= chip->cap_size;
}
spin_unlock(&chip->reg_lock);
return bytes_to_frames(substream->runtime, ptr);
}
static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
{
struct fm801 *chip = dev_id;
unsigned short status;
unsigned int tmp;
status = inw(FM801_REG(chip, IRQ_STATUS));
status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
if (! status)
return IRQ_NONE;
/* ack first */
outw(status, FM801_REG(chip, IRQ_STATUS));
if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
spin_lock(&chip->reg_lock);
chip->ply_buf++;
chip->ply_pos += chip->ply_count;
chip->ply_pos %= chip->ply_size;
tmp = chip->ply_pos + chip->ply_count;
tmp %= chip->ply_size;
outl(chip->ply_buffer + tmp,
(chip->ply_buf & 1) ?
FM801_REG(chip, PLY_BUF1) :
FM801_REG(chip, PLY_BUF2));
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(chip->playback_substream);
}
if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
spin_lock(&chip->reg_lock);
chip->cap_buf++;
chip->cap_pos += chip->cap_count;
chip->cap_pos %= chip->cap_size;
tmp = chip->cap_pos + chip->cap_count;
tmp %= chip->cap_size;
outl(chip->cap_buffer + tmp,
(chip->cap_buf & 1) ?
FM801_REG(chip, CAP_BUF1) :
FM801_REG(chip, CAP_BUF2));
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(chip->capture_substream);
}
if (chip->rmidi && (status & FM801_IRQ_MPU))
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
if (status & FM801_IRQ_VOLUME)
;/* TODO */
return IRQ_HANDLED;
}
static struct snd_pcm_hardware snd_fm801_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_fm801_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
chip->playback_substream = substream;
runtime->hw = snd_fm801_playback;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&hw_constraints_rates);
if (chip->multichannel) {
runtime->hw.channels_max = 6;
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS,
&hw_constraints_channels);
}
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
chip->capture_substream = substream;
runtime->hw = snd_fm801_capture;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&hw_constraints_rates);
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
chip->playback_substream = NULL;
return 0;
}
static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
{
struct fm801 *chip = snd_pcm_substream_chip(substream);
chip->capture_substream = NULL;
return 0;
}
static struct snd_pcm_ops snd_fm801_playback_ops = {
.open = snd_fm801_playback_open,
.close = snd_fm801_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_fm801_hw_params,
.hw_free = snd_fm801_hw_free,
.prepare = snd_fm801_playback_prepare,
.trigger = snd_fm801_playback_trigger,
.pointer = snd_fm801_playback_pointer,
};
static struct snd_pcm_ops snd_fm801_capture_ops = {
.open = snd_fm801_capture_open,
.close = snd_fm801_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_fm801_hw_params,
.hw_free = snd_fm801_hw_free,
.prepare = snd_fm801_capture_prepare,
.trigger = snd_fm801_capture_trigger,
.pointer = snd_fm801_capture_pointer,
};
static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
pcm->private_data = chip;
pcm->info_flags = 0;
strcpy(pcm->name, "FM801");
chip->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci),
chip->multichannel ? 128*1024 : 64*1024, 128*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
/*
* TEA5757 radio
*/
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
/* GPIO to TEA575x maps */
struct snd_fm801_tea575x_gpio {
u8 data, clk, wren, most;
char *name;
};
static struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = {
{ .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" },
{ .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" },
{ .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" },
};
static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
reg &= ~(FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.clk) |
FM801_GPIO_GP(gpio.wren));
reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0;
reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0;
/* WRITE_ENABLE is inverted */
reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren);
outw(reg, FM801_REG(chip, GPIO_CTRL));
}
static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
return (reg & FM801_GPIO_GP(gpio.data)) ? TEA575X_DATA : 0 |
(reg & FM801_GPIO_GP(gpio.most)) ? TEA575X_MOST : 0;
}
static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output)
{
struct fm801 *chip = tea->private_data;
unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
/* use GPIO lines and set write enable bit */
reg |= FM801_GPIO_GS(gpio.data) |
FM801_GPIO_GS(gpio.wren) |
FM801_GPIO_GS(gpio.clk) |
FM801_GPIO_GS(gpio.most);
if (output) {
/* all of lines are in the write direction */
/* clear data and clock lines */
reg &= ~(FM801_GPIO_GD(gpio.data) |
FM801_GPIO_GD(gpio.wren) |
FM801_GPIO_GD(gpio.clk) |
FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.clk) |
FM801_GPIO_GP(gpio.wren));
} else {
/* use GPIO lines, set data direction to input */
reg |= FM801_GPIO_GD(gpio.data) |
FM801_GPIO_GD(gpio.most) |
FM801_GPIO_GP(gpio.data) |
FM801_GPIO_GP(gpio.most) |
FM801_GPIO_GP(gpio.wren);
/* all of lines are in the write direction, except data */
/* clear data, write enable and clock lines */
reg &= ~(FM801_GPIO_GD(gpio.wren) |
FM801_GPIO_GD(gpio.clk) |
FM801_GPIO_GP(gpio.clk));
}
outw(reg, FM801_REG(chip, GPIO_CTRL));
}
static struct snd_tea575x_ops snd_fm801_tea_ops = {
.set_pins = snd_fm801_tea575x_set_pins,
.get_pins = snd_fm801_tea575x_get_pins,
.set_direction = snd_fm801_tea575x_set_direction,
};
#endif
/*
* Mixer routines
*/
#define FM801_SINGLE(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
.get = snd_fm801_get_single, .put = snd_fm801_put_single, \
.private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short val;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
}
#define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
.get = snd_fm801_get_double, .put = snd_fm801_put_double, \
.private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
#define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.name = xname, .info = snd_fm801_info_double, \
.get = snd_fm801_get_double, .put = snd_fm801_put_double, \
.private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
.tlv = { .p = (xtlv) } }
static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift_left = (kcontrol->private_value >> 8) & 0x0f;
int shift_right = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
spin_lock_irq(&chip->reg_lock);
ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
spin_unlock_irq(&chip->reg_lock);
if (invert) {
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
}
return 0;
}
static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift_left = (kcontrol->private_value >> 8) & 0x0f;
int shift_right = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short val1, val2;
val1 = ucontrol->value.integer.value[0] & mask;
val2 = ucontrol->value.integer.value[1] & mask;
if (invert) {
val1 = mask - val1;
val2 = mask - val2;
}
return snd_fm801_update_bits(chip, reg,
(mask << shift_left) | (mask << shift_right),
(val1 << shift_left ) | (val2 << shift_right));
}
static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[5] = {
"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 5;
if (uinfo->value.enumerated.item > 4)
uinfo->value.enumerated.item = 4;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
unsigned short val;
val = inw(FM801_REG(chip, REC_SRC)) & 7;
if (val > 4)
val = 4;
ucontrol->value.enumerated.item[0] = val;
return 0;
}
static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct fm801 *chip = snd_kcontrol_chip(kcontrol);
unsigned short val;
if ((val = ucontrol->value.enumerated.item[0]) > 4)
return -EINVAL;
return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
}
static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
#define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
db_scale_dsp),
FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Capture Source",
.info = snd_fm801_info_mux,
.get = snd_fm801_get_mux,
.put = snd_fm801_put_mux,
}
};
#define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
};
static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
struct fm801 *chip = bus->private_data;
chip->ac97_bus = NULL;
}
static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct fm801 *chip = ac97->private_data;
if (ac97->num == 0) {
chip->ac97 = NULL;
} else {
chip->ac97_sec = NULL;
}
}
static int __devinit snd_fm801_mixer(struct fm801 *chip)
{
struct snd_ac97_template ac97;
unsigned int i;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_fm801_codec_write,
.read = snd_fm801_codec_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
return err;
chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.private_free = snd_fm801_mixer_free_ac97;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
return err;
if (chip->secondary) {
ac97.num = 1;
ac97.addr = chip->secondary_addr;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
return err;
}
for (i = 0; i < FM801_CONTROLS; i++)
snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
if (chip->multichannel) {
for (i = 0; i < FM801_CONTROLS_MULTI; i++)
snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
}
return 0;
}
/*
* initialization routines
*/
static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
unsigned short reg, unsigned long waits)
{
unsigned long timeout = jiffies + waits;
outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
FM801_REG(chip, AC97_CMD));
udelay(5);
do {
if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
== FM801_AC97_VALID)
return 0;
schedule_timeout_uninterruptible(1);
} while (time_after(timeout, jiffies));
return -EIO;
}
static int snd_fm801_chip_init(struct fm801 *chip, int resume)
{
unsigned short cmdw;
if (chip->tea575x_tuner & TUNER_ONLY)
goto __ac97_ok;
/* codec cold reset + AC'97 warm reset */
outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
udelay(100);
outw(0, FM801_REG(chip, CODEC_CTRL));
if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0)
if (!resume) {
snd_printk(KERN_INFO "Primary AC'97 codec not found, "
"assume SF64-PCR (tuner-only)\n");
chip->tea575x_tuner = 3 | TUNER_ONLY;
goto __ac97_ok;
}
if (chip->multichannel) {
if (chip->secondary_addr) {
wait_for_codec(chip, chip->secondary_addr,
AC97_VENDOR_ID1, msecs_to_jiffies(50));
} else {
/* my card has the secondary codec */
/* at address #3, so the loop is inverted */
int i;
for (i = 3; i > 0; i--) {
if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
msecs_to_jiffies(50))) {
cmdw = inw(FM801_REG(chip, AC97_DATA));
if (cmdw != 0xffff && cmdw != 0) {
chip->secondary = 1;
chip->secondary_addr = i;
break;
}
}
}
}
/* the recovery phase, it seems that probing for non-existing codec might */
/* cause timeout problems */
wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
}
__ac97_ok:
/* init volume */
outw(0x0808, FM801_REG(chip, PCM_VOL));
outw(0x9f1f, FM801_REG(chip, FM_VOL));
outw(0x8808, FM801_REG(chip, I2S_VOL));
/* I2S control - I2S mode */
outw(0x0003, FM801_REG(chip, I2S_MODE));
/* interrupt setup */
cmdw = inw(FM801_REG(chip, IRQ_MASK));
if (chip->irq < 0)
cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
else
cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
outw(cmdw, FM801_REG(chip, IRQ_MASK));
/* interrupt clear */
outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
return 0;
}
static int snd_fm801_free(struct fm801 *chip)
{
unsigned short cmdw;
if (chip->irq < 0)
goto __end_hw;
/* interrupt setup - mask everything */
cmdw = inw(FM801_REG(chip, IRQ_MASK));
cmdw |= 0x00c3;
outw(cmdw, FM801_REG(chip, IRQ_MASK));
__end_hw:
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
if (!(chip->tea575x_tuner & TUNER_DISABLED))
snd_tea575x_exit(&chip->tea);
#endif
if (chip->irq >= 0)
free_irq(chip->irq, chip);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_fm801_dev_free(struct snd_device *device)
{
struct fm801 *chip = device->device_data;
return snd_fm801_free(chip);
}
static int __devinit snd_fm801_create(struct snd_card *card,
struct pci_dev * pci,
int tea575x_tuner,
struct fm801 ** rchip)
{
struct fm801 *chip;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_fm801_dev_free,
};
*rchip = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
spin_lock_init(&chip->reg_lock);
chip->card = card;
chip->pci = pci;
chip->irq = -1;
chip->tea575x_tuner = tea575x_tuner;
if ((err = pci_request_regions(pci, "FM801")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->port = pci_resource_start(pci, 0);
if ((tea575x_tuner & TUNER_ONLY) == 0) {
if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
"FM801", chip)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
snd_fm801_free(chip);
return -EBUSY;
}
chip->irq = pci->irq;
pci_set_master(pci);
}
if (pci->revision >= 0xb1) /* FM801-AU */
chip->multichannel = 1;
snd_fm801_chip_init(chip, 0);
/* init might set tuner access method */
tea575x_tuner = chip->tea575x_tuner;
if (chip->irq >= 0 && (tea575x_tuner & TUNER_ONLY)) {
pci_clear_master(pci);
free_irq(chip->irq, chip);
chip->irq = -1;
}
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_fm801_free(chip);
return err;
}
snd_card_set_dev(card, &pci->dev);
#ifdef CONFIG_SND_FM801_TEA575X_BOOL
chip->tea.private_data = chip;
chip->tea.ops = &snd_fm801_tea_ops;
sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
if ((tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
(tea575x_tuner & TUNER_TYPE_MASK) < 4) {
if (snd_tea575x_init(&chip->tea)) {
snd_printk(KERN_ERR "TEA575x radio not found\n");
return -ENODEV;
}
} else if ((tea575x_tuner & TUNER_TYPE_MASK) == 0) {
/* autodetect tuner connection */
for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) {
chip->tea575x_tuner = tea575x_tuner;
if (!snd_tea575x_init(&chip->tea)) {
snd_printk(KERN_INFO "detected TEA575x radio type %s\n",
snd_fm801_tea575x_gpios[tea575x_tuner - 1].name);
break;
}
}
if (tea575x_tuner == 4) {
snd_printk(KERN_ERR "TEA575x radio not found\n");
chip->tea575x_tuner = TUNER_DISABLED;
}
}
if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
strlcpy(chip->tea.card,
snd_fm801_tea575x_gpios[(tea575x_tuner &
TUNER_TYPE_MASK) - 1].name,
sizeof(chip->tea.card));
}
#endif
*rchip = chip;
return 0;
}
static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct fm801 *chip;
struct snd_opl3 *opl3;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0)
return err;
if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
snd_card_free(card);
return err;
}
card->private_data = chip;
strcpy(card->driver, "FM801");
strcpy(card->shortname, "ForteMedia FM801-");
strcat(card->shortname, chip->multichannel ? "AU" : "AS");
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, chip->port, chip->irq);
if (chip->tea575x_tuner & TUNER_ONLY)
goto __fm801_tuner_only;
if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_fm801_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
FM801_REG(chip, MPU401_DATA),
MPU401_INFO_INTEGRATED,
chip->irq, 0, &chip->rmidi)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
FM801_REG(chip, OPL3_BANK1),
OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
__fm801_tuner_only:
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
#ifdef CONFIG_PM
static unsigned char saved_regs[] = {
FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
};
static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct fm801 *chip = card->private_data;
int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_ac97_suspend(chip->ac97);
snd_ac97_suspend(chip->ac97_sec);
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
/* FIXME: tea575x suspend */
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
return 0;
}
static int snd_fm801_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct fm801 *chip = card->private_data;
int i;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR "fm801: pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
snd_fm801_chip_init(chip, 1);
snd_ac97_resume(chip->ac97);
snd_ac97_resume(chip->ac97_sec);
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
outw(chip->saved_regs[i], chip->port + saved_regs[i]);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif
static struct pci_driver driver = {
.name = "FM801",
.id_table = snd_fm801_ids,
.probe = snd_card_fm801_probe,
.remove = __devexit_p(snd_card_fm801_remove),
#ifdef CONFIG_PM
.suspend = snd_fm801_suspend,
.resume = snd_fm801_resume,
#endif
};
static int __init alsa_card_fm801_init(void)
{
return pci_register_driver(&driver);
}
static void __exit alsa_card_fm801_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_fm801_init)
module_exit(alsa_card_fm801_exit)