Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | #include <linux/kernel.h> #include <linux/mmzone.h> #include <linux/nodemask.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <asm/atomic.h> #include <asm/sn/types.h> #include <asm/sn/addrs.h> #include <asm/sn/nmi.h> #include <asm/sn/arch.h> #include <asm/sn/sn0/hub.h> #if 0 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) #else #define NODE_NUM_CPUS(n) CPUS_PER_NODE #endif #define CNODEID_NONE (cnodeid_t)-1 typedef unsigned long machreg_t; static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED; /* * Lets see what else we need to do here. Set up sp, gp? */ void nmi_dump(void) { void cont_nmi_dump(void); cont_nmi_dump(); } void install_cpu_nmi_handler(int slice) { nmi_t *nmi_addr; nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); if (nmi_addr->call_addr) return; nmi_addr->magic = NMI_MAGIC; nmi_addr->call_addr = (void *)nmi_dump; nmi_addr->call_addr_c = (void *)(~((unsigned long)(nmi_addr->call_addr))); nmi_addr->call_parm = 0; } /* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */ void nmi_cpu_eframe_save(nasid_t nasid, int slice) { struct reg_struct *nr; int i; /* Get the pointer to the current cpu's register set. */ nr = (struct reg_struct *) (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + slice * IP27_NMI_KREGS_CPU_SIZE); printk("NMI nasid %d: slice %d\n", nasid, slice); /* * Saved main processor registers */ for (i = 0; i < 32; ) { if ((i % 4) == 0) printk("$%2d :", i); printk(" %016lx", nr->gpr[i]); i++; if ((i % 4) == 0) printk("\n"); } printk("Hi : (value lost)\n"); printk("Lo : (value lost)\n"); /* * Saved cp0 registers */ printk("epc : %016lx %pS\n", nr->epc, (void *) nr->epc); printk("%s\n", print_tainted()); printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc); printk("ra : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]); printk("Status: %08lx ", nr->sr); if (nr->sr & ST0_KX) printk("KX "); if (nr->sr & ST0_SX) printk("SX "); if (nr->sr & ST0_UX) printk("UX "); switch (nr->sr & ST0_KSU) { case KSU_USER: printk("USER "); break; case KSU_SUPERVISOR: printk("SUPERVISOR "); break; case KSU_KERNEL: printk("KERNEL "); break; default: printk("BAD_MODE "); break; } if (nr->sr & ST0_ERL) printk("ERL "); if (nr->sr & ST0_EXL) printk("EXL "); if (nr->sr & ST0_IE) printk("IE "); printk("\n"); printk("Cause : %08lx\n", nr->cause); printk("PrId : %08x\n", read_c0_prid()); printk("BadVA : %016lx\n", nr->badva); printk("CErr : %016lx\n", nr->cache_err); printk("NMI_SR: %016lx\n", nr->nmi_sr); printk("\n"); } void nmi_dump_hub_irq(nasid_t nasid, int slice) { hubreg_t mask0, mask1, pend0, pend1; if (slice == 0) { /* Slice A */ mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); } else { /* Slice B */ mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); } pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1); printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1); printk("\n\n"); } /* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */ void nmi_node_eframe_save(cnodeid_t cnode) { nasid_t nasid; int slice; /* Make sure that we have a valid node */ if (cnode == CNODEID_NONE) return; nasid = COMPACT_TO_NASID_NODEID(cnode); if (nasid == INVALID_NASID) return; /* Save the registers into eframe for each cpu */ for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { nmi_cpu_eframe_save(nasid, slice); nmi_dump_hub_irq(nasid, slice); } } /* * Save the nmi cpu registers for all cpus in the system. */ void nmi_eframes_save(void) { cnodeid_t cnode; for_each_online_node(cnode) nmi_node_eframe_save(cnode); } void cont_nmi_dump(void) { #ifndef REAL_NMI_SIGNAL static atomic_t nmied_cpus = ATOMIC_INIT(0); atomic_inc(&nmied_cpus); #endif /* * Only allow 1 cpu to proceed */ arch_spin_lock(&nmi_lock); #ifdef REAL_NMI_SIGNAL /* * Wait up to 15 seconds for the other cpus to respond to the NMI. * If a cpu has not responded after 10 sec, send it 1 additional NMI. * This is for 2 reasons: * - sometimes a MMSC fail to NMI all cpus. * - on 512p SN0 system, the MMSC will only send NMIs to * half the cpus. Unfortunately, we don't know which cpus may be * NMIed - it depends on how the site chooses to configure. * * Note: it has been measure that it takes the MMSC up to 2.3 secs to * send NMIs to all cpus on a 256p system. */ for (i=0; i < 1500; i++) { for_each_online_node(node) if (NODEPDA(node)->dump_count == 0) break; if (node == MAX_NUMNODES) break; if (i == 1000) { for_each_online_node(node) if (NODEPDA(node)->dump_count == 0) { cpu = cpumask_first(cpumask_of_node(node)); for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { CPUMASK_SETB(nmied_cpus, cpu); /* * cputonasid, cputoslice * needs kernel cpuid */ SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); } } } udelay(10000); } #else while (atomic_read(&nmied_cpus) != num_online_cpus()); #endif /* * Save the nmi cpu registers for all cpu in the eframe format. */ nmi_eframes_save(); LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); } |