Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | /* * fs/mpage.c * * Copyright (C) 2002, Linus Torvalds. * * Contains functions related to preparing and submitting BIOs which contain * multiple pagecache pages. * * 15May2002 Andrew Morton * Initial version * 27Jun2002 axboe@suse.de * use bio_add_page() to build bio's just the right size */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/kdev_t.h> #include <linux/gfp.h> #include <linux/bio.h> #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/blkdev.h> #include <linux/highmem.h> #include <linux/prefetch.h> #include <linux/mpage.h> #include <linux/writeback.h> #include <linux/backing-dev.h> #include <linux/pagevec.h> #include <linux/cleancache.h> /* * I/O completion handler for multipage BIOs. * * The mpage code never puts partial pages into a BIO (except for end-of-file). * If a page does not map to a contiguous run of blocks then it simply falls * back to block_read_full_page(). * * Why is this? If a page's completion depends on a number of different BIOs * which can complete in any order (or at the same time) then determining the * status of that page is hard. See end_buffer_async_read() for the details. * There is no point in duplicating all that complexity. */ static void mpage_end_io(struct bio *bio, int err) { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; do { struct page *page = bvec->bv_page; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (bio_data_dir(bio) == READ) { if (uptodate) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } else { /* bio_data_dir(bio) == WRITE */ if (!uptodate) { SetPageError(page); if (page->mapping) set_bit(AS_EIO, &page->mapping->flags); } end_page_writeback(page); } } while (bvec >= bio->bi_io_vec); bio_put(bio); } static struct bio *mpage_bio_submit(int rw, struct bio *bio) { bio->bi_end_io = mpage_end_io; submit_bio(rw, bio); return NULL; } static struct bio * mpage_alloc(struct block_device *bdev, sector_t first_sector, int nr_vecs, gfp_t gfp_flags) { struct bio *bio; bio = bio_alloc(gfp_flags, nr_vecs); if (bio == NULL && (current->flags & PF_MEMALLOC)) { while (!bio && (nr_vecs /= 2)) bio = bio_alloc(gfp_flags, nr_vecs); } if (bio) { bio->bi_bdev = bdev; bio->bi_sector = first_sector; } return bio; } /* * support function for mpage_readpages. The fs supplied get_block might * return an up to date buffer. This is used to map that buffer into * the page, which allows readpage to avoid triggering a duplicate call * to get_block. * * The idea is to avoid adding buffers to pages that don't already have * them. So when the buffer is up to date and the page size == block size, * this marks the page up to date instead of adding new buffers. */ static void map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) { struct inode *inode = page->mapping->host; struct buffer_head *page_bh, *head; int block = 0; if (!page_has_buffers(page)) { /* * don't make any buffers if there is only one buffer on * the page and the page just needs to be set up to date */ if (inode->i_blkbits == PAGE_CACHE_SHIFT && buffer_uptodate(bh)) { SetPageUptodate(page); return; } create_empty_buffers(page, 1 << inode->i_blkbits, 0); } head = page_buffers(page); page_bh = head; do { if (block == page_block) { page_bh->b_state = bh->b_state; page_bh->b_bdev = bh->b_bdev; page_bh->b_blocknr = bh->b_blocknr; break; } page_bh = page_bh->b_this_page; block++; } while (page_bh != head); } /* * This is the worker routine which does all the work of mapping the disk * blocks and constructs largest possible bios, submits them for IO if the * blocks are not contiguous on the disk. * * We pass a buffer_head back and forth and use its buffer_mapped() flag to * represent the validity of its disk mapping and to decide when to do the next * get_block() call. */ static struct bio * do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, sector_t *last_block_in_bio, struct buffer_head *map_bh, unsigned long *first_logical_block, get_block_t get_block) { struct inode *inode = page->mapping->host; const unsigned blkbits = inode->i_blkbits; const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; const unsigned blocksize = 1 << blkbits; sector_t block_in_file; sector_t last_block; sector_t last_block_in_file; sector_t blocks[MAX_BUF_PER_PAGE]; unsigned page_block; unsigned first_hole = blocks_per_page; struct block_device *bdev = NULL; int length; int fully_mapped = 1; unsigned nblocks; unsigned relative_block; if (page_has_buffers(page)) goto confused; block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); last_block = block_in_file + nr_pages * blocks_per_page; last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; if (last_block > last_block_in_file) last_block = last_block_in_file; page_block = 0; /* * Map blocks using the result from the previous get_blocks call first. */ nblocks = map_bh->b_size >> blkbits; if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && block_in_file < (*first_logical_block + nblocks)) { unsigned map_offset = block_in_file - *first_logical_block; unsigned last = nblocks - map_offset; for (relative_block = 0; ; relative_block++) { if (relative_block == last) { clear_buffer_mapped(map_bh); break; } if (page_block == blocks_per_page) break; blocks[page_block] = map_bh->b_blocknr + map_offset + relative_block; page_block++; block_in_file++; } bdev = map_bh->b_bdev; } /* * Then do more get_blocks calls until we are done with this page. */ map_bh->b_page = page; while (page_block < blocks_per_page) { map_bh->b_state = 0; map_bh->b_size = 0; if (block_in_file < last_block) { map_bh->b_size = (last_block-block_in_file) << blkbits; if (get_block(inode, block_in_file, map_bh, 0)) goto confused; *first_logical_block = block_in_file; } if (!buffer_mapped(map_bh)) { fully_mapped = 0; if (first_hole == blocks_per_page) first_hole = page_block; page_block++; block_in_file++; continue; } /* some filesystems will copy data into the page during * the get_block call, in which case we don't want to * read it again. map_buffer_to_page copies the data * we just collected from get_block into the page's buffers * so readpage doesn't have to repeat the get_block call */ if (buffer_uptodate(map_bh)) { map_buffer_to_page(page, map_bh, page_block); goto confused; } if (first_hole != blocks_per_page) goto confused; /* hole -> non-hole */ /* Contiguous blocks? */ if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) goto confused; nblocks = map_bh->b_size >> blkbits; for (relative_block = 0; ; relative_block++) { if (relative_block == nblocks) { clear_buffer_mapped(map_bh); break; } else if (page_block == blocks_per_page) break; blocks[page_block] = map_bh->b_blocknr+relative_block; page_block++; block_in_file++; } bdev = map_bh->b_bdev; } if (first_hole != blocks_per_page) { zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); if (first_hole == 0) { SetPageUptodate(page); unlock_page(page); goto out; } } else if (fully_mapped) { SetPageMappedToDisk(page); } if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && cleancache_get_page(page) == 0) { SetPageUptodate(page); goto confused; } /* * This page will go to BIO. Do we need to send this BIO off first? */ if (bio && (*last_block_in_bio != blocks[0] - 1)) bio = mpage_bio_submit(READ, bio); alloc_new: if (bio == NULL) { bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), min_t(int, nr_pages, bio_get_nr_vecs(bdev)), GFP_KERNEL); if (bio == NULL) goto confused; } length = first_hole << blkbits; if (bio_add_page(bio, page, length, 0) < length) { bio = mpage_bio_submit(READ, bio); goto alloc_new; } relative_block = block_in_file - *first_logical_block; nblocks = map_bh->b_size >> blkbits; if ((buffer_boundary(map_bh) && relative_block == nblocks) || (first_hole != blocks_per_page)) bio = mpage_bio_submit(READ, bio); else *last_block_in_bio = blocks[blocks_per_page - 1]; out: return bio; confused: if (bio) bio = mpage_bio_submit(READ, bio); if (!PageUptodate(page)) block_read_full_page(page, get_block); else unlock_page(page); goto out; } /** * mpage_readpages - populate an address space with some pages & start reads against them * @mapping: the address_space * @pages: The address of a list_head which contains the target pages. These * pages have their ->index populated and are otherwise uninitialised. * The page at @pages->prev has the lowest file offset, and reads should be * issued in @pages->prev to @pages->next order. * @nr_pages: The number of pages at *@pages * @get_block: The filesystem's block mapper function. * * This function walks the pages and the blocks within each page, building and * emitting large BIOs. * * If anything unusual happens, such as: * * - encountering a page which has buffers * - encountering a page which has a non-hole after a hole * - encountering a page with non-contiguous blocks * * then this code just gives up and calls the buffer_head-based read function. * It does handle a page which has holes at the end - that is a common case: * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. * * BH_Boundary explanation: * * There is a problem. The mpage read code assembles several pages, gets all * their disk mappings, and then submits them all. That's fine, but obtaining * the disk mappings may require I/O. Reads of indirect blocks, for example. * * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be * submitted in the following order: * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 * * because the indirect block has to be read to get the mappings of blocks * 13,14,15,16. Obviously, this impacts performance. * * So what we do it to allow the filesystem's get_block() function to set * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block * after this one will require I/O against a block which is probably close to * this one. So you should push what I/O you have currently accumulated. * * This all causes the disk requests to be issued in the correct order. */ int mpage_readpages(struct address_space *mapping, struct list_head *pages, unsigned nr_pages, get_block_t get_block) { struct bio *bio = NULL; unsigned page_idx; sector_t last_block_in_bio = 0; struct buffer_head map_bh; unsigned long first_logical_block = 0; struct blk_plug plug; blk_start_plug(&plug); map_bh.b_state = 0; map_bh.b_size = 0; for (page_idx = 0; page_idx < nr_pages; page_idx++) { struct page *page = list_entry(pages->prev, struct page, lru); prefetchw(&page->flags); list_del(&page->lru); if (!add_to_page_cache_lru(page, mapping, page->index, GFP_KERNEL)) { bio = do_mpage_readpage(bio, page, nr_pages - page_idx, &last_block_in_bio, &map_bh, &first_logical_block, get_block); } page_cache_release(page); } BUG_ON(!list_empty(pages)); if (bio) mpage_bio_submit(READ, bio); blk_finish_plug(&plug); return 0; } EXPORT_SYMBOL(mpage_readpages); /* * This isn't called much at all */ int mpage_readpage(struct page *page, get_block_t get_block) { struct bio *bio = NULL; sector_t last_block_in_bio = 0; struct buffer_head map_bh; unsigned long first_logical_block = 0; map_bh.b_state = 0; map_bh.b_size = 0; bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, &map_bh, &first_logical_block, get_block); if (bio) mpage_bio_submit(READ, bio); return 0; } EXPORT_SYMBOL(mpage_readpage); /* * Writing is not so simple. * * If the page has buffers then they will be used for obtaining the disk * mapping. We only support pages which are fully mapped-and-dirty, with a * special case for pages which are unmapped at the end: end-of-file. * * If the page has no buffers (preferred) then the page is mapped here. * * If all blocks are found to be contiguous then the page can go into the * BIO. Otherwise fall back to the mapping's writepage(). * * FIXME: This code wants an estimate of how many pages are still to be * written, so it can intelligently allocate a suitably-sized BIO. For now, * just allocate full-size (16-page) BIOs. */ struct mpage_data { struct bio *bio; sector_t last_block_in_bio; get_block_t *get_block; unsigned use_writepage; }; static int __mpage_writepage(struct page *page, struct writeback_control *wbc, void *data) { struct mpage_data *mpd = data; struct bio *bio = mpd->bio; struct address_space *mapping = page->mapping; struct inode *inode = page->mapping->host; const unsigned blkbits = inode->i_blkbits; unsigned long end_index; const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; sector_t last_block; sector_t block_in_file; sector_t blocks[MAX_BUF_PER_PAGE]; unsigned page_block; unsigned first_unmapped = blocks_per_page; struct block_device *bdev = NULL; int boundary = 0; sector_t boundary_block = 0; struct block_device *boundary_bdev = NULL; int length; struct buffer_head map_bh; loff_t i_size = i_size_read(inode); int ret = 0; if (page_has_buffers(page)) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; /* If they're all mapped and dirty, do it */ page_block = 0; do { BUG_ON(buffer_locked(bh)); if (!buffer_mapped(bh)) { /* * unmapped dirty buffers are created by * __set_page_dirty_buffers -> mmapped data */ if (buffer_dirty(bh)) goto confused; if (first_unmapped == blocks_per_page) first_unmapped = page_block; continue; } if (first_unmapped != blocks_per_page) goto confused; /* hole -> non-hole */ if (!buffer_dirty(bh) || !buffer_uptodate(bh)) goto confused; if (page_block) { if (bh->b_blocknr != blocks[page_block-1] + 1) goto confused; } blocks[page_block++] = bh->b_blocknr; boundary = buffer_boundary(bh); if (boundary) { boundary_block = bh->b_blocknr; boundary_bdev = bh->b_bdev; } bdev = bh->b_bdev; } while ((bh = bh->b_this_page) != head); if (first_unmapped) goto page_is_mapped; /* * Page has buffers, but they are all unmapped. The page was * created by pagein or read over a hole which was handled by * block_read_full_page(). If this address_space is also * using mpage_readpages then this can rarely happen. */ goto confused; } /* * The page has no buffers: map it to disk */ BUG_ON(!PageUptodate(page)); block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); last_block = (i_size - 1) >> blkbits; map_bh.b_page = page; for (page_block = 0; page_block < blocks_per_page; ) { map_bh.b_state = 0; map_bh.b_size = 1 << blkbits; if (mpd->get_block(inode, block_in_file, &map_bh, 1)) goto confused; if (buffer_new(&map_bh)) unmap_underlying_metadata(map_bh.b_bdev, map_bh.b_blocknr); if (buffer_boundary(&map_bh)) { boundary_block = map_bh.b_blocknr; boundary_bdev = map_bh.b_bdev; } if (page_block) { if (map_bh.b_blocknr != blocks[page_block-1] + 1) goto confused; } blocks[page_block++] = map_bh.b_blocknr; boundary = buffer_boundary(&map_bh); bdev = map_bh.b_bdev; if (block_in_file == last_block) break; block_in_file++; } BUG_ON(page_block == 0); first_unmapped = page_block; page_is_mapped: end_index = i_size >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { /* * The page straddles i_size. It must be zeroed out on each * and every writepage invocation because it may be mmapped. * "A file is mapped in multiples of the page size. For a file * that is not a multiple of the page size, the remaining memory * is zeroed when mapped, and writes to that region are not * written out to the file." */ unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); if (page->index > end_index || !offset) goto confused; zero_user_segment(page, offset, PAGE_CACHE_SIZE); } /* * This page will go to BIO. Do we need to send this BIO off first? */ if (bio && mpd->last_block_in_bio != blocks[0] - 1) bio = mpage_bio_submit(WRITE, bio); alloc_new: if (bio == NULL) { bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); if (bio == NULL) goto confused; } /* * Must try to add the page before marking the buffer clean or * the confused fail path above (OOM) will be very confused when * it finds all bh marked clean (i.e. it will not write anything) */ length = first_unmapped << blkbits; if (bio_add_page(bio, page, length, 0) < length) { bio = mpage_bio_submit(WRITE, bio); goto alloc_new; } /* * OK, we have our BIO, so we can now mark the buffers clean. Make * sure to only clean buffers which we know we'll be writing. */ if (page_has_buffers(page)) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; unsigned buffer_counter = 0; do { if (buffer_counter++ == first_unmapped) break; clear_buffer_dirty(bh); bh = bh->b_this_page; } while (bh != head); /* * we cannot drop the bh if the page is not uptodate * or a concurrent readpage would fail to serialize with the bh * and it would read from disk before we reach the platter. */ if (buffer_heads_over_limit && PageUptodate(page)) try_to_free_buffers(page); } BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); if (boundary || (first_unmapped != blocks_per_page)) { bio = mpage_bio_submit(WRITE, bio); if (boundary_block) { write_boundary_block(boundary_bdev, boundary_block, 1 << blkbits); } } else { mpd->last_block_in_bio = blocks[blocks_per_page - 1]; } goto out; confused: if (bio) bio = mpage_bio_submit(WRITE, bio); if (mpd->use_writepage) { ret = mapping->a_ops->writepage(page, wbc); } else { ret = -EAGAIN; goto out; } /* * The caller has a ref on the inode, so *mapping is stable */ mapping_set_error(mapping, ret); out: mpd->bio = bio; return ret; } /** * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * @get_block: the filesystem's block mapper function. * If this is NULL then use a_ops->writepage. Otherwise, go * direct-to-BIO. * * This is a library function, which implements the writepages() * address_space_operation. * * If a page is already under I/O, generic_writepages() skips it, even * if it's dirty. This is desirable behaviour for memory-cleaning writeback, * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() * and msync() need to guarantee that all the data which was dirty at the time * the call was made get new I/O started against them. If wbc->sync_mode is * WB_SYNC_ALL then we were called for data integrity and we must wait for * existing IO to complete. */ int mpage_writepages(struct address_space *mapping, struct writeback_control *wbc, get_block_t get_block) { struct blk_plug plug; int ret; blk_start_plug(&plug); if (!get_block) ret = generic_writepages(mapping, wbc); else { struct mpage_data mpd = { .bio = NULL, .last_block_in_bio = 0, .get_block = get_block, .use_writepage = 1, }; ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); if (mpd.bio) mpage_bio_submit(WRITE, mpd.bio); } blk_finish_plug(&plug); return ret; } EXPORT_SYMBOL(mpage_writepages); int mpage_writepage(struct page *page, get_block_t get_block, struct writeback_control *wbc) { struct mpage_data mpd = { .bio = NULL, .last_block_in_bio = 0, .get_block = get_block, .use_writepage = 0, }; int ret = __mpage_writepage(page, wbc, &mpd); if (mpd.bio) mpage_bio_submit(WRITE, mpd.bio); return ret; } EXPORT_SYMBOL(mpage_writepage); |