Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
/*
 * File Name:
 *   skfddi.c
 *
 * Copyright Information:
 *   Copyright SysKonnect 1998,1999.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * The information in this file is provided "AS IS" without warranty.
 *
 * Abstract:
 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
 *   familie.
 *
 * Maintainers:
 *   CG    Christoph Goos (cgoos@syskonnect.de)
 *
 * Contributors:
 *   DM    David S. Miller
 *
 * Address all question to:
 *   linux@syskonnect.de
 *
 * The technical manual for the adapters is available from SysKonnect's
 * web pages: www.syskonnect.com
 * Goto "Support" and search Knowledge Base for "manual".
 *
 * Driver Architecture:
 *   The driver architecture is based on the DEC FDDI driver by
 *   Lawrence V. Stefani and several ethernet drivers.
 *   I also used an existing Windows NT miniport driver.
 *   All hardware dependent fuctions are handled by the SysKonnect
 *   Hardware Module.
 *   The only headerfiles that are directly related to this source
 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
 *   The others belong to the SysKonnect FDDI Hardware Module and
 *   should better not be changed.
 *
 * Modification History:
 *              Date            Name    Description
 *              02-Mar-98       CG	Created.
 *
 *		10-Mar-99	CG	Support for 2.2.x added.
 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
 *		12-Nov-99	CG	Source code release
 *		22-Nov-99	CG	Included in kernel source.
 *		07-May-00	DM	64 bit fixes, new dma interface
 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
 *					  Daniele Bellucci <bellucda@tiscali.it>
 *		03-Dec-03	SH	Convert to PCI device model
 *
 * Compilation options (-Dxxx):
 *              DRIVERDEBUG     print lots of messages to log file
 *              DUMPPACKETS     print received/transmitted packets to logfile
 * 
 * Tested cpu architectures:
 *	- i386
 *	- sparc64
 */

/* Version information string - should be updated prior to */
/* each new release!!! */
#define VERSION		"2.07"

static const char *boot_msg = 
	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";

/* Include files */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/fddidevice.h>
#include <linux/skbuff.h>

#include <asm/byteorder.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/uaccess.h>

#include	"h/types.h"
#undef ADDR			// undo Linux definition
#include	"h/skfbi.h"
#include	"h/fddi.h"
#include	"h/smc.h"
#include	"h/smtstate.h"


// Define module-wide (static) routines
static int skfp_driver_init(struct net_device *dev);
static int skfp_open(struct net_device *dev);
static int skfp_close(struct net_device *dev);
static irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
static void skfp_ctl_set_multicast_list(struct net_device *dev);
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
static void send_queued_packets(struct s_smc *smc);
static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
static void ResetAdapter(struct s_smc *smc);


// Functions needed by the hardware module
void *mac_drv_get_space(struct s_smc *smc, u_int size);
void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
		  int flag);
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
void llc_restart_tx(struct s_smc *smc);
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
			 int frag_count, int len);
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
			 int frag_count);
void mac_drv_fill_rxd(struct s_smc *smc);
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
		       int frag_count);
int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
		    int la_len);
void smt_timer_poll(struct s_smc *smc);
void ring_status_indication(struct s_smc *smc, u_long status);
unsigned long smt_get_time(void);
void smt_stat_counter(struct s_smc *smc, int stat);
void cfm_state_change(struct s_smc *smc, int c_state);
void ecm_state_change(struct s_smc *smc, int e_state);
void pcm_state_change(struct s_smc *smc, int plc, int p_state);
void rmt_state_change(struct s_smc *smc, int r_state);
void drv_reset_indication(struct s_smc *smc);
void dump_data(unsigned char *Data, int length);


// External functions from the hardware module
extern u_int mac_drv_check_space();
extern void read_address(struct s_smc *smc, u_char * mac_addr);
extern void card_stop(struct s_smc *smc);
extern int mac_drv_init(struct s_smc *smc);
extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
			int len, int frame_status);
extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
		       int frame_len, int frame_status);
extern int init_smt(struct s_smc *smc, u_char * mac_addr);
extern void fddi_isr(struct s_smc *smc);
extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
			int len, int frame_status);
extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
extern void mac_drv_clear_tx_queue(struct s_smc *smc);
extern void mac_drv_clear_rx_queue(struct s_smc *smc);
extern void mac_clear_multicast(struct s_smc *smc);
extern void enable_tx_irq(struct s_smc *smc, u_short queue);
extern void mac_drv_clear_txd(struct s_smc *smc);

static struct pci_device_id skfddi_pci_tbl[] = {
	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
	{ }			/* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");

// Define module-wide (static) variables

static int num_boards;	/* total number of adapters configured */

#ifdef DRIVERDEBUG
#define PRINTK(s, args...) printk(s, ## args)
#else
#define PRINTK(s, args...)
#endif				// DRIVERDEBUG

#define PRIV(dev) (&(((struct s_smc *)dev->priv)->os))

/*
 * =================
 * = skfp_init_one =
 * =================
 *   
 * Overview:
 *   Probes for supported FDDI PCI controllers
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   pdev - pointer to PCI device information
 *
 * Functional Description:
 *   This is now called by PCI driver registration process
 *   for each board found.
 *   
 * Return Codes:
 *   0           - This device (fddi0, fddi1, etc) configured successfully
 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 *                         present for this device name
 *
 *
 * Side Effects:
 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 *   initialized and the board resources are read and stored in
 *   the device structure.
 */
static int skfp_init_one(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct s_smc *smc;	/* board pointer */
	unsigned long port, len;
	int err;

	PRINTK(KERN_INFO "entering skfp_init_one\n");

	if (num_boards == 0) 
		printk("%s\n", boot_msg);

	err = pci_enable_device(pdev);
	if (err)
		goto err_out1;


#ifdef MEM_MAPPED_IO
	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
		err = -EIO;
		goto err_out1;
	}
	port = pci_resource_start(pdev, 0);
	len = pci_resource_len(pdev, 0);

	if (len < 0x4000) {
		printk(KERN_ERR "skfp: Invalid PCI region size: %lu\n", len);
		err = -EIO;
		goto err_out1;
	}
#else
	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
		printk(KERN_ERR "skfp: region is not PIO resource\n");
		err = -EIO;
		goto err_out1;
	}

	port = pci_resource_start(pdev, 1);
	len = pci_resource_len(pdev, 1);
	if (len < FP_IO_LEN) {
		printk(KERN_ERR "skfp: Invalid PCI region size: %d\n",
		       io_len);
		err = -EIO;
		goto err_out1;
	}
#endif
	err = pci_request_regions(pdev, "skfddi");
	if (err)
		goto err_out1;

	pci_set_master(pdev);

	dev = alloc_fddidev(sizeof(struct s_smc));
	if (!dev) {
		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
				"FDDI adapter will be disabled.\n");
		err = -ENOMEM;
		goto err_out2;
	}

#ifdef MEM_MAPPED_IO
	dev->base_addr = (unsigned long) ioremap(port, len);
	if (!dev->base_addr) {
		printk(KERN_ERR "skfp:  Unable to map MEMORY register, "
				"FDDI adapter will be disabled.\n");
		err = -EIO;
		goto err_out3;
	}
#else
	dev->base_addr = port;
#endif

	dev->irq = pdev->irq;
	dev->get_stats = &skfp_ctl_get_stats;
	dev->open = &skfp_open;
	dev->stop = &skfp_close;
	dev->hard_start_xmit = &skfp_send_pkt;
	dev->set_multicast_list = &skfp_ctl_set_multicast_list;
	dev->set_mac_address = &skfp_ctl_set_mac_address;
	dev->do_ioctl = &skfp_ioctl;
	dev->header_cache_update = NULL;	/* not supported */

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	/* Initialize board structure with bus-specific info */
	smc = (struct s_smc *) dev->priv;
	smc->os.dev = dev;
	smc->os.bus_type = SK_BUS_TYPE_PCI;
	smc->os.pdev = *pdev;
	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
	smc->os.dev = dev;
	smc->hw.slot = -1;
	smc->os.ResetRequested = FALSE;
	skb_queue_head_init(&smc->os.SendSkbQueue);

	err = skfp_driver_init(dev);
	if (err)
		goto err_out4;

	err = register_netdev(dev);
	if (err)
		goto err_out5;

	++num_boards;
	pci_set_drvdata(pdev, dev);

	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
	    (pdev->subsystem_device & 0xff00) == 0x5800) 
		printk("%s: SysKonnect FDDI PCI adapter"
		       " found (SK-%04X)\n", dev->name,	
		       pdev->subsystem_device);
	else
		printk("%s: FDDI PCI adapter found\n", dev->name);

	return 0;
err_out5:
	if (smc->os.SharedMemAddr) 
		pci_free_consistent(pdev, smc->os.SharedMemSize,
				    smc->os.SharedMemAddr, 
				    smc->os.SharedMemDMA);
	pci_free_consistent(pdev, MAX_FRAME_SIZE,
			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
err_out4:
#ifdef MEM_MAPPED_IO
	iounmap((void *) dev->base_addr);
#endif
err_out3:
	free_netdev(dev);
err_out2:
	pci_release_regions(pdev);
err_out1:
	return err;
}

/*
 * Called for each adapter board from pci_unregister_driver
 */
static void __devexit skfp_remove_one(struct pci_dev *pdev)
{
	struct net_device *p = pci_get_drvdata(pdev);
	struct s_smc *lp = p->priv;

	unregister_netdev(p);

	if (lp->os.SharedMemAddr) {
		pci_free_consistent(&lp->os.pdev,
				    lp->os.SharedMemSize,
				    lp->os.SharedMemAddr,
				    lp->os.SharedMemDMA);
		lp->os.SharedMemAddr = NULL;
	}
	if (lp->os.LocalRxBuffer) {
		pci_free_consistent(&lp->os.pdev,
				    MAX_FRAME_SIZE,
				    lp->os.LocalRxBuffer,
				    lp->os.LocalRxBufferDMA);
		lp->os.LocalRxBuffer = NULL;
	}
#ifdef MEM_MAPPED_IO
	iounmap((void *) p->base_addr);
#endif
	pci_release_regions(pdev);
	free_netdev(p);

	pci_set_drvdata(pdev, NULL);
}

/*
 * ====================
 * = skfp_driver_init =
 * ====================
 *   
 * Overview:
 *   Initializes remaining adapter board structure information
 *   and makes sure adapter is in a safe state prior to skfp_open().
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function allocates additional resources such as the host memory
 *   blocks needed by the adapter.
 *   The adapter is also reset. The OS must call skfp_open() to open 
 *   the adapter and bring it on-line.
 *
 * Return Codes:
 *    0 - initialization succeeded
 *   -1 - initialization failed
 */
static  int skfp_driver_init(struct net_device *dev)
{
	struct s_smc *smc = (struct s_smc *) dev->priv;
	skfddi_priv *bp = PRIV(dev);
	int err = -EIO;

	PRINTK(KERN_INFO "entering skfp_driver_init\n");

	// set the io address in private structures
	bp->base_addr = dev->base_addr;
	smc->hw.iop = dev->base_addr;

	// Get the interrupt level from the PCI Configuration Table
	smc->hw.irq = dev->irq;

	spin_lock_init(&bp->DriverLock);
	
	// Allocate invalid frame
	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
	if (!bp->LocalRxBuffer) {
		printk("could not allocate mem for ");
		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
		goto fail;
	}

	// Determine the required size of the 'shared' memory area.
	bp->SharedMemSize = mac_drv_check_space();
	PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
	if (bp->SharedMemSize > 0) {
		bp->SharedMemSize += 16;	// for descriptor alignment

		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
							 bp->SharedMemSize,
							 &bp->SharedMemDMA);
		if (!bp->SharedMemSize) {
			printk("could not allocate mem for ");
			printk("hardware module: %ld byte\n",
			       bp->SharedMemSize);
			goto fail;
		}
		bp->SharedMemHeap = 0;	// Nothing used yet.

	} else {
		bp->SharedMemAddr = NULL;
		bp->SharedMemHeap = 0;
	}			// SharedMemSize > 0

	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);

	card_stop(smc);		// Reset adapter.

	PRINTK(KERN_INFO "mac_drv_init()..\n");
	if (mac_drv_init(smc) != 0) {
		PRINTK(KERN_INFO "mac_drv_init() failed.\n");
		goto fail;
	}
	read_address(smc, NULL);
	PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
	       smc->hw.fddi_canon_addr.a[0],
	       smc->hw.fddi_canon_addr.a[1],
	       smc->hw.fddi_canon_addr.a[2],
	       smc->hw.fddi_canon_addr.a[3],
	       smc->hw.fddi_canon_addr.a[4],
	       smc->hw.fddi_canon_addr.a[5]);
	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);

	smt_reset_defaults(smc, 0);

	return (0);

fail:
	if (bp->SharedMemAddr) {
		pci_free_consistent(&bp->pdev,
				    bp->SharedMemSize,
				    bp->SharedMemAddr,
				    bp->SharedMemDMA);
		bp->SharedMemAddr = NULL;
	}
	if (bp->LocalRxBuffer) {
		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
		bp->LocalRxBuffer = NULL;
	}
	return err;
}				// skfp_driver_init


/*
 * =============
 * = skfp_open =
 * =============
 *   
 * Overview:
 *   Opens the adapter
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function brings the adapter to an operational state.
 *
 * Return Codes:
 *   0           - Adapter was successfully opened
 *   -EAGAIN - Could not register IRQ
 */
static int skfp_open(struct net_device *dev)
{
	struct s_smc *smc = (struct s_smc *) dev->priv;
	int err;

	PRINTK(KERN_INFO "entering skfp_open\n");
	/* Register IRQ - support shared interrupts by passing device ptr */
	err = request_irq(dev->irq, (void *) skfp_interrupt, SA_SHIRQ,
			  dev->name, dev);
	if (err)
		return err;

	/*
	 * Set current address to factory MAC address
	 *
	 * Note: We've already done this step in skfp_driver_init.
	 *       However, it's possible that a user has set a node
	 *               address override, then closed and reopened the
	 *               adapter.  Unless we reset the device address field
	 *               now, we'll continue to use the existing modified
	 *               address.
	 */
	read_address(smc, NULL);
	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);

	init_smt(smc, NULL);
	smt_online(smc, 1);
	STI_FBI();

	/* Clear local multicast address tables */
	mac_clear_multicast(smc);

	/* Disable promiscuous filter settings */
	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);

	netif_start_queue(dev);
	return (0);
}				// skfp_open


/*
 * ==============
 * = skfp_close =
 * ==============
 *   
 * Overview:
 *   Closes the device/module.
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This routine closes the adapter and brings it to a safe state.
 *   The interrupt service routine is deregistered with the OS.
 *   The adapter can be opened again with another call to skfp_open().
 *
 * Return Codes:
 *   Always return 0.
 *
 * Assumptions:
 *   No further requests for this adapter are made after this routine is
 *   called.  skfp_open() can be called to reset and reinitialize the
 *   adapter.
 */
static int skfp_close(struct net_device *dev)
{
	struct s_smc *smc = (struct s_smc *) dev->priv;
	skfddi_priv *bp = PRIV(dev);

	CLI_FBI();
	smt_reset_defaults(smc, 1);
	card_stop(smc);
	mac_drv_clear_tx_queue(smc);
	mac_drv_clear_rx_queue(smc);

	netif_stop_queue(dev);
	/* Deregister (free) IRQ */
	free_irq(dev->irq, dev);

	skb_queue_purge(&bp->SendSkbQueue);
	bp->QueueSkb = MAX_TX_QUEUE_LEN;

	return (0);
}				// skfp_close


/*
 * ==================
 * = skfp_interrupt =
 * ==================
 *   
 * Overview:
 *   Interrupt processing routine
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   irq        - interrupt vector
 *   dev_id     - pointer to device information
 *       regs   - pointer to registers structure
 *
 * Functional Description:
 *   This routine calls the interrupt processing routine for this adapter.  It
 *   disables and reenables adapter interrupts, as appropriate.  We can support
 *   shared interrupts since the incoming dev_id pointer provides our device
 *   structure context. All the real work is done in the hardware module.
 *
 * Return Codes:
 *   None
 *
 * Assumptions:
 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 *   on Intel-based systems) is done by the operating system outside this
 *   routine.
 *
 *       System interrupts are enabled through this call.
 *
 * Side Effects:
 *   Interrupts are disabled, then reenabled at the adapter.
 */

irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;
	struct s_smc *smc;	/* private board structure pointer */
	skfddi_priv *bp = PRIV(dev);


	if (dev == NULL) {
		printk("%s: irq %d for unknown device\n", dev->name, irq);
		return IRQ_NONE;
	}

	smc = (struct s_smc *) dev->priv;

	// IRQs enabled or disabled ?
	if (inpd(ADDR(B0_IMSK)) == 0) {
		// IRQs are disabled: must be shared interrupt
		return IRQ_NONE;
	}
	// Note: At this point, IRQs are enabled.
	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
		// Adapter did not issue an IRQ: must be shared interrupt
		return IRQ_NONE;
	}
	CLI_FBI();		// Disable IRQs from our adapter.
	spin_lock(&bp->DriverLock);

	// Call interrupt handler in hardware module (HWM).
	fddi_isr(smc);

	if (smc->os.ResetRequested) {
		ResetAdapter(smc);
		smc->os.ResetRequested = FALSE;
	}
	spin_unlock(&bp->DriverLock);
	STI_FBI();		// Enable IRQs from our adapter.

	return IRQ_HANDLED;
}				// skfp_interrupt


/*
 * ======================
 * = skfp_ctl_get_stats =
 * ======================
 *   
 * Overview:
 *   Get statistics for FDDI adapter
 *  
 * Returns:
 *   Pointer to FDDI statistics structure
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   Gets current MIB objects from adapter, then
 *   returns FDDI statistics structure as defined
 *   in if_fddi.h.
 *
 *   Note: Since the FDDI statistics structure is
 *   still new and the device structure doesn't
 *   have an FDDI-specific get statistics handler,
 *   we'll return the FDDI statistics structure as
 *   a pointer to an Ethernet statistics structure.
 *   That way, at least the first part of the statistics
 *   structure can be decoded properly.
 *   We'll have to pay attention to this routine as the
 *   device structure becomes more mature and LAN media
 *   independent.
 *
 */
struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
{
	struct s_smc *bp = (struct s_smc *) dev->priv;

	/* Fill the bp->stats structure with driver-maintained counters */

	bp->os.MacStat.port_bs_flag[0] = 0x1234;
	bp->os.MacStat.port_bs_flag[1] = 0x5678;
// goos: need to fill out fddi statistic
#if 0
	/* Get FDDI SMT MIB objects */

/* Fill the bp->stats structure with the SMT MIB object values */

	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];


	/* Fill the bp->stats structure with the FDDI counter values */

	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;

#endif
	return ((struct net_device_stats *) &bp->os.MacStat);
}				// ctl_get_stat


/*
 * ==============================
 * = skfp_ctl_set_multicast_list =
 * ==============================
 *   
 * Overview:
 *   Enable/Disable LLC frame promiscuous mode reception
 *   on the adapter and/or update multicast address table.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function acquires the driver lock and only calls
 *   skfp_ctl_set_multicast_list_wo_lock then.
 *   This routine follows a fairly simple algorithm for setting the
 *   adapter filters and CAM:
 *
 *      if IFF_PROMISC flag is set
 *              enable promiscuous mode
 *      else
 *              disable promiscuous mode
 *              if number of multicast addresses <= max. multicast number
 *                      add mc addresses to adapter table
 *              else
 *                      enable promiscuous mode
 *              update adapter filters
 *
 * Assumptions:
 *   Multicast addresses are presented in canonical (LSB) format.
 *
 * Side Effects:
 *   On-board adapter filters are updated.
 */
static void skfp_ctl_set_multicast_list(struct net_device *dev)
{
	skfddi_priv *bp = PRIV(dev);
	unsigned long Flags;

	spin_lock_irqsave(&bp->DriverLock, Flags);
	skfp_ctl_set_multicast_list_wo_lock(dev);
	spin_unlock_irqrestore(&bp->DriverLock, Flags);
	return;
}				// skfp_ctl_set_multicast_list



static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
{
	struct s_smc *smc = (struct s_smc *) dev->priv;
	struct dev_mc_list *dmi;	/* ptr to multicast addr entry */
	int i;

	/* Enable promiscuous mode, if necessary */
	if (dev->flags & IFF_PROMISC) {
		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
		PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
	}
	/* Else, update multicast address table */
	else {
		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
		PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");

		// Reset all MC addresses
		mac_clear_multicast(smc);
		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);

		if (dev->flags & IFF_ALLMULTI) {
			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
			PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
		} else if (dev->mc_count > 0) {
			if (dev->mc_count <= FPMAX_MULTICAST) {
				/* use exact filtering */

				// point to first multicast addr
				dmi = dev->mc_list;

				for (i = 0; i < dev->mc_count; i++) {
					mac_add_multicast(smc,
							  dmi->dmi_addr, 1);
					PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
					PRINTK(" %02x %02x %02x ",
					       dmi->dmi_addr[0],
					       dmi->dmi_addr[1],
					       dmi->dmi_addr[2]);
					PRINTK("%02x %02x %02x\n",
					       dmi->dmi_addr[3],
					       dmi->dmi_addr[4],
					       dmi->dmi_addr[5]);
					dmi = dmi->next;
				}	// for

			} else {	// more MC addresses than HW supports

				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
				PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
			}
		} else {	// no MC addresses

			PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
		}

		/* Update adapter filters */
		mac_update_multicast(smc);
	}
	return;
}				// skfp_ctl_set_multicast_list_wo_lock


/*
 * ===========================
 * = skfp_ctl_set_mac_address =
 * ===========================
 *   
 * Overview:
 *   set new mac address on adapter and update dev_addr field in device table.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   dev  - pointer to device information
 *   addr - pointer to sockaddr structure containing unicast address to set
 *
 * Assumptions:
 *   The address pointed to by addr->sa_data is a valid unicast
 *   address and is presented in canonical (LSB) format.
 */
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
{
	struct s_smc *smc = (struct s_smc *) dev->priv;
	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
	skfddi_priv *bp = (skfddi_priv *) & smc->os;
	unsigned long Flags;


	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
	spin_lock_irqsave(&bp->DriverLock, Flags);
	ResetAdapter(smc);
	spin_unlock_irqrestore(&bp->DriverLock, Flags);

	return (0);		/* always return zero */
}				// skfp_ctl_set_mac_address


/*
 * ==============
 * = skfp_ioctl =
 * ==============
 *   
 * Overview:
 *
 * Perform IOCTL call functions here. Some are privileged operations and the
 * effective uid is checked in those cases.
 *  
 * Returns:
 *   status value
 *   0 - success
 *   other - failure
 *       
 * Arguments:
 *   dev  - pointer to device information
 *   rq - pointer to ioctl request structure
 *   cmd - ?
 *
 */


static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	skfddi_priv *lp = PRIV(dev);
	struct s_skfp_ioctl ioc;
	int status = 0;

	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
		return -EFAULT;
	switch (ioc.cmd) {
	case SKFP_GET_STATS:	/* Get the driver statistics */
		ioc.len = sizeof(lp->MacStat);
		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
				? -EFAULT : 0;
		break;
	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
		if (!capable(CAP_NET_ADMIN)) {
			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
		} else {
			status = -EPERM;
		}
		break;
	default:
		printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
		status = -EOPNOTSUPP;

	}			// switch

	return status;
}				// skfp_ioctl


/*
 * =====================
 * = skfp_send_pkt     =
 * =====================
 *   
 * Overview:
 *   Queues a packet for transmission and try to transmit it.
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   skb - pointer to sk_buff to queue for transmission
 *   dev - pointer to device information
 *
 * Functional Description:
 *   Here we assume that an incoming skb transmit request
 *   is contained in a single physically contiguous buffer
 *   in which the virtual address of the start of packet
 *   (skb->data) can be converted to a physical address
 *   by using pci_map_single().
 *
 *   We have an internal queue for packets we can not send 
 *   immediately. Packets in this queue can be given to the 
 *   adapter if transmit buffers are freed.
 *
 *   We can't free the skb until after it's been DMA'd
 *   out by the adapter, so we'll keep it in the driver and
 *   return it in mac_drv_tx_complete.
 *
 * Return Codes:
 *   0 - driver has queued and/or sent packet
 *       1 - caller should requeue the sk_buff for later transmission
 *
 * Assumptions:
 *   The entire packet is stored in one physically
 *   contiguous buffer which is not cached and whose
 *   32-bit physical address can be determined.
 *
 *   It's vital that this routine is NOT reentered for the
 *   same board and that the OS is not in another section of
 *   code (eg. skfp_interrupt) for the same board on a
 *   different thread.
 *
 * Side Effects:
 *   None
 */
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
{
	skfddi_priv *bp = PRIV(dev);

	PRINTK(KERN_INFO "skfp_send_pkt\n");

	/*
	 * Verify that incoming transmit request is OK
	 *
	 * Note: The packet size check is consistent with other
	 *               Linux device drivers, although the correct packet
	 *               size should be verified before calling the
	 *               transmit routine.
	 */

	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
		bp->MacStat.tx_errors++;	/* bump error counter */
		// dequeue packets from xmt queue and send them
		netif_start_queue(dev);
		dev_kfree_skb(skb);
		return (0);	/* return "success" */
	}
	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full

		netif_stop_queue(dev);
		return 1;
	}
	bp->QueueSkb--;
	skb_queue_tail(&bp->SendSkbQueue, skb);
	send_queued_packets((struct s_smc *) dev->priv);
	if (bp->QueueSkb == 0) {
		netif_stop_queue(dev);
	}
	dev->trans_start = jiffies;
	return 0;

}				// skfp_send_pkt


/*
 * =======================
 * = send_queued_packets =
 * =======================
 *   
 * Overview:
 *   Send packets from the driver queue as long as there are some and
 *   transmit resources are available.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   smc - pointer to smc (adapter) structure
 *
 * Functional Description:
 *   Take a packet from queue if there is any. If not, then we are done.
 *   Check if there are resources to send the packet. If not, requeue it
 *   and exit. 
 *   Set packet descriptor flags and give packet to adapter.
 *   Check if any send resources can be freed (we do not use the
 *   transmit complete interrupt).
 */
static void send_queued_packets(struct s_smc *smc)
{
	skfddi_priv *bp = (skfddi_priv *) & smc->os;
	struct sk_buff *skb;
	unsigned char fc;
	int queue;
	struct s_smt_fp_txd *txd;	// Current TxD.
	dma_addr_t dma_address;
	unsigned long Flags;

	int frame_status;	// HWM tx frame status.

	PRINTK(KERN_INFO "send queued packets\n");
	for (;;) {
		// send first buffer from queue
		skb = skb_dequeue(&bp->SendSkbQueue);

		if (!skb) {
			PRINTK(KERN_INFO "queue empty\n");
			return;
		}		// queue empty !

		spin_lock_irqsave(&bp->DriverLock, Flags);
		fc = skb->data[0];
		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
#ifdef ESS
		// Check if the frame may/must be sent as a synchronous frame.

		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
			// It's an LLC frame.
			if (!smc->ess.sync_bw_available)
				fc &= ~FC_SYNC_BIT; // No bandwidth available.

			else {	// Bandwidth is available.

				if (smc->mib.fddiESSSynchTxMode) {
					// Send as sync. frame.
					fc |= FC_SYNC_BIT;
				}
			}
		}
#endif				// ESS
		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);

		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
			// Unable to send the frame.

			if ((frame_status & RING_DOWN) != 0) {
				// Ring is down.
				PRINTK("Tx attempt while ring down.\n");
			} else if ((frame_status & OUT_OF_TXD) != 0) {
				PRINTK("%s: out of TXDs.\n", bp->dev->name);
			} else {
				PRINTK("%s: out of transmit resources",
					bp->dev->name);
			}

			// Note: We will retry the operation as soon as
			// transmit resources become available.
			skb_queue_head(&bp->SendSkbQueue, skb);
			spin_unlock_irqrestore(&bp->DriverLock, Flags);
			return;	// Packet has been queued.

		}		// if (unable to send frame)

		bp->QueueSkb++;	// one packet less in local queue

		// source address in packet ?
		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);

		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);

		dma_address = pci_map_single(&bp->pdev, skb->data,
					     skb->len, PCI_DMA_TODEVICE);
		if (frame_status & LAN_TX) {
			txd->txd_os.skb = skb;			// save skb
			txd->txd_os.dma_addr = dma_address;	// save dma mapping
		}
		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);

		if (!(frame_status & LAN_TX)) {		// local only frame
			pci_unmap_single(&bp->pdev, dma_address,
					 skb->len, PCI_DMA_TODEVICE);
			dev_kfree_skb_irq(skb);
		}
		spin_unlock_irqrestore(&bp->DriverLock, Flags);
	}			// for

	return;			// never reached

}				// send_queued_packets


/************************
 * 
 * CheckSourceAddress
 *
 * Verify if the source address is set. Insert it if necessary.
 *
 ************************/
void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
{
	unsigned char SRBit;

	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit

		return;
	if ((unsigned short) frame[1 + 10] != 0)
		return;
	SRBit = frame[1 + 6] & 0x01;
	memcpy(&frame[1 + 6], hw_addr, 6);
	frame[8] |= SRBit;
}				// CheckSourceAddress


/************************
 *
 *	ResetAdapter
 *
 *	Reset the adapter and bring it back to operational mode.
 * Args
 *	smc - A pointer to the SMT context struct.
 * Out
 *	Nothing.
 *
 ************************/
static void ResetAdapter(struct s_smc *smc)
{

	PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");

	// Stop the adapter.

	card_stop(smc);		// Stop all activity.

	// Clear the transmit and receive descriptor queues.
	mac_drv_clear_tx_queue(smc);
	mac_drv_clear_rx_queue(smc);

	// Restart the adapter.

	smt_reset_defaults(smc, 1);	// Initialize the SMT module.

	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.

	smt_online(smc, 1);	// Insert into the ring again.
	STI_FBI();

	// Restore original receive mode (multicasts, promiscuous, etc.).
	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
}				// ResetAdapter


//--------------- functions called by hardware module ----------------

/************************
 *
 *	llc_restart_tx
 *
 *	The hardware driver calls this routine when the transmit complete
 *	interrupt bits (end of frame) for the synchronous or asynchronous
 *	queue is set.
 *
 * NOTE The hardware driver calls this function also if no packets are queued.
 *	The routine must be able to handle this case.
 * Args
 *	smc - A pointer to the SMT context struct.
 * Out
 *	Nothing.
 *
 ************************/
void llc_restart_tx(struct s_smc *smc)
{
	skfddi_priv *bp = (skfddi_priv *) & smc->os;

	PRINTK(KERN_INFO "[llc_restart_tx]\n");

	// Try to send queued packets
	spin_unlock(&bp->DriverLock);
	send_queued_packets(smc);
	spin_lock(&bp->DriverLock);
	netif_start_queue(bp->dev);// system may send again if it was blocked

}				// llc_restart_tx


/************************
 *
 *	mac_drv_get_space
 *
 *	The hardware module calls this function to allocate the memory
 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	size - Size of memory in bytes to allocate.
 * Out
 *	!= 0	A pointer to the virtual address of the allocated memory.
 *	== 0	Allocation error.
 *
 ************************/
void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
{
	void *virt;

	PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);

	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
		printk("Unexpected SMT memory size requested: %d\n", size);
		return (NULL);
	}
	smc->os.SharedMemHeap += size;	// Move heap pointer.

	PRINTK(KERN_INFO "mac_drv_get_space end\n");
	PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
	PRINTK(KERN_INFO "bus  addr: %lx\n", (ulong)
	       (smc->os.SharedMemDMA +
		((char *) virt - (char *)smc->os.SharedMemAddr)));
	return (virt);
}				// mac_drv_get_space


/************************
 *
 *	mac_drv_get_desc_mem
 *
 *	This function is called by the hardware dependent module.
 *	It allocates the memory for the RxD and TxD descriptors.
 *
 *	This memory must be non-cached, non-movable and non-swappable.
 *	This memory should start at a physical page boundary.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	size - Size of memory in bytes to allocate.
 * Out
 *	!= 0	A pointer to the virtual address of the allocated memory.
 *	== 0	Allocation error.
 *
 ************************/
void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
{

	char *virt;

	PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");

	// Descriptor memory must be aligned on 16-byte boundary.

	virt = mac_drv_get_space(smc, size);

	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
	size = size % 16;

	PRINTK("Allocate %u bytes alignment gap ", size);
	PRINTK("for descriptor memory.\n");

	if (!mac_drv_get_space(smc, size)) {
		printk("fddi: Unable to align descriptor memory.\n");
		return (NULL);
	}
	return (virt + size);
}				// mac_drv_get_desc_mem


/************************
 *
 *	mac_drv_virt2phys
 *
 *	Get the physical address of a given virtual address.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	virt - A (virtual) pointer into our 'shared' memory area.
 * Out
 *	Physical address of the given virtual address.
 *
 ************************/
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
{
	return (smc->os.SharedMemDMA +
		((char *) virt - (char *)smc->os.SharedMemAddr));
}				// mac_drv_virt2phys


/************************
 *
 *	dma_master
 *
 *	The HWM calls this function, when the driver leads through a DMA
 *	transfer. If the OS-specific module must prepare the system hardware
 *	for the DMA transfer, it should do it in this function.
 *
 *	The hardware module calls this dma_master if it wants to send an SMT
 *	frame.  This means that the virt address passed in here is part of
 *      the 'shared' memory area.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	virt - The virtual address of the data.
 *
 *	len - The length in bytes of the data.
 *
 *	flag - Indicates the transmit direction and the buffer type:
 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
 *		SMT_BUF (0x80)	SMT buffer
 *
 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
 * Out
 *	Returns the pyhsical address for the DMA transfer.
 *
 ************************/
u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
{
	return (smc->os.SharedMemDMA +
		((char *) virt - (char *)smc->os.SharedMemAddr));
}				// dma_master


/************************
 *
 *	dma_complete
 *
 *	The hardware module calls this routine when it has completed a DMA
 *	transfer. If the operating system dependent module has set up the DMA
 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
 *	the DMA channel.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	descr - A pointer to a TxD or RxD, respectively.
 *
 *	flag - Indicates the DMA transfer direction / SMT buffer:
 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
 * Out
 *	Nothing.
 *
 ************************/
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
{
	/* For TX buffers, there are two cases.  If it is an SMT transmit
	 * buffer, there is nothing to do since we use consistent memory
	 * for the 'shared' memory area.  The other case is for normal
	 * transmit packets given to us by the networking stack, and in
	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
	 * below.
	 *
	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
	 * because the hardware module is about to potentially look at
	 * the contents of the buffer.  If we did not call the PCI DMA
	 * unmap first, the hardware module could read inconsistent data.
	 */
	if (flag & DMA_WR) {
		skfddi_priv *bp = (skfddi_priv *) & smc->os;
		volatile struct s_smt_fp_rxd *r = &descr->r;

		/* If SKB is NULL, we used the local buffer. */
		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
			int MaxFrameSize = bp->MaxFrameSize;

			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
					 MaxFrameSize, PCI_DMA_FROMDEVICE);
			r->rxd_os.dma_addr = 0;
		}
	}
}				// dma_complete


/************************
 *
 *	mac_drv_tx_complete
 *
 *	Transmit of a packet is complete. Release the tx staging buffer.
 *
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	txd - A pointer to the last TxD which is used by the frame.
 * Out
 *	Returns nothing.
 *
 ************************/
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
{
	struct sk_buff *skb;

	PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
	// Check if this TxD points to a skb

	if (!(skb = txd->txd_os.skb)) {
		PRINTK("TXD with no skb assigned.\n");
		return;
	}
	txd->txd_os.skb = NULL;

	// release the DMA mapping
	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
			 skb->len, PCI_DMA_TODEVICE);
	txd->txd_os.dma_addr = 0;

	smc->os.MacStat.tx_packets++;	// Count transmitted packets.
	smc->os.MacStat.tx_bytes+=skb->len;	// Count bytes

	// free the skb
	dev_kfree_skb_irq(skb);

	PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
}				// mac_drv_tx_complete


/************************
 *
 * dump packets to logfile
 *
 ************************/
#ifdef DUMPPACKETS
void dump_data(unsigned char *Data, int length)
{
	int i, j;
	unsigned char s[255], sh[10];
	if (length > 64) {
		length = 64;
	}
	printk(KERN_INFO "---Packet start---\n");
	for (i = 0, j = 0; i < length / 8; i++, j += 8)
		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
	strcpy(s, "");
	for (i = 0; i < length % 8; i++) {
		sprintf(sh, "%02x ", Data[j + i]);
		strcat(s, sh);
	}
	printk(KERN_INFO "%s\n", s);
	printk(KERN_INFO "------------------\n");
}				// dump_data
#else
#define dump_data(data,len)
#endif				// DUMPPACKETS

/************************
 *
 *	mac_drv_rx_complete
 *
 *	The hardware module calls this function if an LLC frame is received
 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
 *	from the network will be passed to the LLC layer by this function
 *	if passing is enabled.
 *
 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
 *	be received. It also fills the RxD ring with new receive buffers if
 *	some can be queued.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	rxd - A pointer to the first RxD which is used by the receive frame.
 *
 *	frag_count - Count of RxDs used by the received frame.
 *
 *	len - Frame length.
 * Out
 *	Nothing.
 *
 ************************/
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
			 int frag_count, int len)
{
	skfddi_priv *bp = (skfddi_priv *) & smc->os;
	struct sk_buff *skb;
	unsigned char *virt, *cp;
	unsigned short ri;
	u_int RifLength;

	PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
	if (frag_count != 1) {	// This is not allowed to happen.

		printk("fddi: Multi-fragment receive!\n");
		goto RequeueRxd;	// Re-use the given RXD(s).

	}
	skb = rxd->rxd_os.skb;
	if (!skb) {
		PRINTK(KERN_INFO "No skb in rxd\n");
		smc->os.MacStat.rx_errors++;
		goto RequeueRxd;
	}
	virt = skb->data;

	// The DMA mapping was released in dma_complete above.

	dump_data(skb->data, len);

	/*
	 * FDDI Frame format:
	 * +-------+-------+-------+------------+--------+------------+
	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
	 * +-------+-------+-------+------------+--------+------------+
	 *
	 * FC = Frame Control
	 * DA = Destination Address
	 * SA = Source Address
	 * RIF = Routing Information Field
	 * LLC = Logical Link Control
	 */

	// Remove Routing Information Field (RIF), if present.

	if ((virt[1 + 6] & FDDI_RII) == 0)
		RifLength = 0;
	else {
		int n;
// goos: RIF removal has still to be tested
		PRINTK(KERN_INFO "RIF found\n");
		// Get RIF length from Routing Control (RC) field.
		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.

		ri = ntohs(*((unsigned short *) cp));
		RifLength = ri & FDDI_RCF_LEN_MASK;
		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
			printk("fddi: Invalid RIF.\n");
			goto RequeueRxd;	// Discard the frame.

		}
		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
		// regions overlap

		virt = cp + RifLength;
		for (n = FDDI_MAC_HDR_LEN; n; n--)
			*--virt = *--cp;
		// adjust sbd->data pointer
		skb_pull(skb, RifLength);
		len -= RifLength;
		RifLength = 0;
	}

	// Count statistics.
	smc->os.MacStat.rx_packets++;	// Count indicated receive packets.
	smc->os.MacStat.rx_bytes+=len;	// Count bytes

	// virt points to header again
	if (virt[1] & 0x01) {	// Check group (multicast) bit.

		smc->os.MacStat.multicast++;
	}

	// deliver frame to system
	rxd->rxd_os.skb = NULL;
	skb_trim(skb, len);
	skb->protocol = fddi_type_trans(skb, bp->dev);
	skb->dev = bp->dev;	/* pass up device pointer */

	netif_rx(skb);
	bp->dev->last_rx = jiffies;

	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
	return;

      RequeueRxd:
	PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
	mac_drv_requeue_rxd(smc, rxd, frag_count);
	smc->os.MacStat.rx_errors++;	// Count receive packets not indicated.

}				// mac_drv_rx_complete


/************************
 *
 *	mac_drv_requeue_rxd
 *
 *	The hardware module calls this function to request the OS-specific
 *	module to queue the receive buffer(s) represented by the pointer
 *	to the RxD and the frag_count into the receive queue again. This
 *	buffer was filled with an invalid frame or an SMT frame.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	rxd - A pointer to the first RxD which is used by the receive frame.
 *
 *	frag_count - Count of RxDs used by the received frame.
 * Out
 *	Nothing.
 *
 ************************/
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
			 int frag_count)
{
	volatile struct s_smt_fp_rxd *next_rxd;
	volatile struct s_smt_fp_rxd *src_rxd;
	struct sk_buff *skb;
	int MaxFrameSize;
	unsigned char *v_addr;
	dma_addr_t b_addr;

	if (frag_count != 1)	// This is not allowed to happen.

		printk("fddi: Multi-fragment requeue!\n");

	MaxFrameSize = ((skfddi_priv *) & smc->os)->MaxFrameSize;
	src_rxd = rxd;
	for (; frag_count > 0; frag_count--) {
		next_rxd = src_rxd->rxd_next;
		rxd = HWM_GET_CURR_RXD(smc);

		skb = src_rxd->rxd_os.skb;
		if (skb == NULL) {	// this should not happen

			PRINTK("Requeue with no skb in rxd!\n");
			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
			if (skb) {
				// we got a skb
				rxd->rxd_os.skb = skb;
				skb_reserve(skb, 3);
				skb_put(skb, MaxFrameSize);
				v_addr = skb->data;
				b_addr = pci_map_single(&smc->os.pdev,
							v_addr,
							MaxFrameSize,
							PCI_DMA_FROMDEVICE);
				rxd->rxd_os.dma_addr = b_addr;
			} else {
				// no skb available, use local buffer
				PRINTK("Queueing invalid buffer!\n");
				rxd->rxd_os.skb = NULL;
				v_addr = smc->os.LocalRxBuffer;
				b_addr = smc->os.LocalRxBufferDMA;
			}
		} else {
			// we use skb from old rxd
			rxd->rxd_os.skb = skb;
			v_addr = skb->data;
			b_addr = pci_map_single(&smc->os.pdev,
						v_addr,
						MaxFrameSize,
						PCI_DMA_FROMDEVICE);
			rxd->rxd_os.dma_addr = b_addr;
		}
		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
			    FIRST_FRAG | LAST_FRAG);

		src_rxd = next_rxd;
	}
}				// mac_drv_requeue_rxd


/************************
 *
 *	mac_drv_fill_rxd
 *
 *	The hardware module calls this function at initialization time
 *	to fill the RxD ring with receive buffers. It is also called by
 *	mac_drv_rx_complete if rx_free is large enough to queue some new
 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
 *	receive buffers as long as enough RxDs and receive buffers are
 *	available.
 * Args
 *	smc - A pointer to the SMT context struct.
 * Out
 *	Nothing.
 *
 ************************/
void mac_drv_fill_rxd(struct s_smc *smc)
{
	int MaxFrameSize;
	unsigned char *v_addr;
	unsigned long b_addr;
	struct sk_buff *skb;
	volatile struct s_smt_fp_rxd *rxd;

	PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");

	// Walk through the list of free receive buffers, passing receive
	// buffers to the HWM as long as RXDs are available.

	MaxFrameSize = ((skfddi_priv *) & smc->os)->MaxFrameSize;
	// Check if there is any RXD left.
	while (HWM_GET_RX_FREE(smc) > 0) {
		PRINTK(KERN_INFO ".\n");

		rxd = HWM_GET_CURR_RXD(smc);
		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
		if (skb) {
			// we got a skb
			skb_reserve(skb, 3);
			skb_put(skb, MaxFrameSize);
			v_addr = skb->data;
			b_addr = pci_map_single(&smc->os.pdev,
						v_addr,
						MaxFrameSize,
						PCI_DMA_FROMDEVICE);
			rxd->rxd_os.dma_addr = b_addr;
		} else {
			// no skb available, use local buffer
			// System has run out of buffer memory, but we want to
			// keep the receiver running in hope of better times.
			// Multiple descriptors may point to this local buffer,
			// so data in it must be considered invalid.
			PRINTK("Queueing invalid buffer!\n");
			v_addr = smc->os.LocalRxBuffer;
			b_addr = smc->os.LocalRxBufferDMA;
		}

		rxd->rxd_os.skb = skb;

		// Pass receive buffer to HWM.
		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
			    FIRST_FRAG | LAST_FRAG);
	}
	PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
}				// mac_drv_fill_rxd


/************************
 *
 *	mac_drv_clear_rxd
 *
 *	The hardware module calls this function to release unused
 *	receive buffers.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	rxd - A pointer to the first RxD which is used by the receive buffer.
 *
 *	frag_count - Count of RxDs used by the receive buffer.
 * Out
 *	Nothing.
 *
 ************************/
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
		       int frag_count)
{

	struct sk_buff *skb;

	PRINTK("entering mac_drv_clear_rxd\n");

	if (frag_count != 1)	// This is not allowed to happen.

		printk("fddi: Multi-fragment clear!\n");

	for (; frag_count > 0; frag_count--) {
		skb = rxd->rxd_os.skb;
		if (skb != NULL) {
			skfddi_priv *bp = (skfddi_priv *) & smc->os;
			int MaxFrameSize = bp->MaxFrameSize;

			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
					 MaxFrameSize, PCI_DMA_FROMDEVICE);

			dev_kfree_skb(skb);
			rxd->rxd_os.skb = NULL;
		}
		rxd = rxd->rxd_next;	// Next RXD.

	}
}				// mac_drv_clear_rxd


/************************
 *
 *	mac_drv_rx_init
 *
 *	The hardware module calls this routine when an SMT or NSA frame of the
 *	local SMT should be delivered to the LLC layer.
 *
 *	It is necessary to have this function, because there is no other way to
 *	copy the contents of SMT MBufs into receive buffers.
 *
 *	mac_drv_rx_init allocates the required target memory for this frame,
 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
 *
 *	fc - The Frame Control field of the received frame.
 *
 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
 *
 *	la_len - The length of the lookahead data stored in the lookahead
 *	buffer (may be zero).
 * Out
 *	Always returns zero (0).
 *
 ************************/
int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
		    char *look_ahead, int la_len)
{
	struct sk_buff *skb;

	PRINTK("entering mac_drv_rx_init(len=%d)\n", len);

	// "Received" a SMT or NSA frame of the local SMT.

	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
		PRINTK("fddi: Discard invalid local SMT frame\n");
		PRINTK("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
		       len, la_len, (unsigned long) look_ahead);
		return (0);
	}
	skb = alloc_skb(len + 3, GFP_ATOMIC);
	if (!skb) {
		PRINTK("fddi: Local SMT: skb memory exhausted.\n");
		return (0);
	}
	skb_reserve(skb, 3);
	skb_put(skb, len);
	memcpy(skb->data, look_ahead, len);

	// deliver frame to system
	skb->protocol = fddi_type_trans(skb, ((skfddi_priv *) & smc->os)->dev);
	skb->dev->last_rx = jiffies;
	netif_rx(skb);

	return (0);
}				// mac_drv_rx_init


/************************
 *
 *	smt_timer_poll
 *
 *	This routine is called periodically by the SMT module to clean up the
 *	driver.
 *
 *	Return any queued frames back to the upper protocol layers if the ring
 *	is down.
 * Args
 *	smc - A pointer to the SMT context struct.
 * Out
 *	Nothing.
 *
 ************************/
void smt_timer_poll(struct s_smc *smc)
{
}				// smt_timer_poll


/************************
 *
 *	ring_status_indication
 *
 *	This function indicates a change of the ring state.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	status - The current ring status.
 * Out
 *	Nothing.
 *
 ************************/
void ring_status_indication(struct s_smc *smc, u_long status)
{
	PRINTK("ring_status_indication( ");
	if (status & RS_RES15)
		PRINTK("RS_RES15 ");
	if (status & RS_HARDERROR)
		PRINTK("RS_HARDERROR ");
	if (status & RS_SOFTERROR)
		PRINTK("RS_SOFTERROR ");
	if (status & RS_BEACON)
		PRINTK("RS_BEACON ");
	if (status & RS_PATHTEST)
		PRINTK("RS_PATHTEST ");
	if (status & RS_SELFTEST)
		PRINTK("RS_SELFTEST ");
	if (status & RS_RES9)
		PRINTK("RS_RES9 ");
	if (status & RS_DISCONNECT)
		PRINTK("RS_DISCONNECT ");
	if (status & RS_RES7)
		PRINTK("RS_RES7 ");
	if (status & RS_DUPADDR)
		PRINTK("RS_DUPADDR ");
	if (status & RS_NORINGOP)
		PRINTK("RS_NORINGOP ");
	if (status & RS_VERSION)
		PRINTK("RS_VERSION ");
	if (status & RS_STUCKBYPASSS)
		PRINTK("RS_STUCKBYPASSS ");
	if (status & RS_EVENT)
		PRINTK("RS_EVENT ");
	if (status & RS_RINGOPCHANGE)
		PRINTK("RS_RINGOPCHANGE ");
	if (status & RS_RES0)
		PRINTK("RS_RES0 ");
	PRINTK("]\n");
}				// ring_status_indication


/************************
 *
 *	smt_get_time
 *
 *	Gets the current time from the system.
 * Args
 *	None.
 * Out
 *	The current time in TICKS_PER_SECOND.
 *
 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
 *	to the time returned by smt_get_time().
 *
 ************************/
unsigned long smt_get_time(void)
{
	return jiffies;
}				// smt_get_time


/************************
 *
 *	smt_stat_counter
 *
 *	Status counter update (ring_op, fifo full).
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	stat -	= 0: A ring operational change occurred.
 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
 * Out
 *	Nothing.
 *
 ************************/
void smt_stat_counter(struct s_smc *smc, int stat)
{
//      BOOLEAN RingIsUp ;

	PRINTK(KERN_INFO "smt_stat_counter\n");
	switch (stat) {
	case 0:
		PRINTK(KERN_INFO "Ring operational change.\n");
		break;
	case 1:
		PRINTK(KERN_INFO "Receive fifo overflow.\n");
		smc->os.MacStat.rx_errors++;
		break;
	default:
		PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
		break;
	}
}				// smt_stat_counter


/************************
 *
 *	cfm_state_change
 *
 *	Sets CFM state in custom statistics.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	c_state - Possible values are:
 *
 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
 * Out
 *	Nothing.
 *
 ************************/
void cfm_state_change(struct s_smc *smc, int c_state)
{
#ifdef DRIVERDEBUG
	char *s;

	switch (c_state) {
	case SC0_ISOLATED:
		s = "SC0_ISOLATED";
		break;
	case SC1_WRAP_A:
		s = "SC1_WRAP_A";
		break;
	case SC2_WRAP_B:
		s = "SC2_WRAP_B";
		break;
	case SC4_THRU_A:
		s = "SC4_THRU_A";
		break;
	case SC5_THRU_B:
		s = "SC5_THRU_B";
		break;
	case SC7_WRAP_S:
		s = "SC7_WRAP_S";
		break;
	case SC9_C_WRAP_A:
		s = "SC9_C_WRAP_A";
		break;
	case SC10_C_WRAP_B:
		s = "SC10_C_WRAP_B";
		break;
	case SC11_C_WRAP_S:
		s = "SC11_C_WRAP_S";
		break;
	default:
		PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
		return;
	}
	PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
#endif				// DRIVERDEBUG
}				// cfm_state_change


/************************
 *
 *	ecm_state_change
 *
 *	Sets ECM state in custom statistics.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	e_state - Possible values are:
 *
 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
 *		SC5_THRU_B (7), SC7_WRAP_S (8)
 * Out
 *	Nothing.
 *
 ************************/
void ecm_state_change(struct s_smc *smc, int e_state)
{
#ifdef DRIVERDEBUG
	char *s;

	switch (e_state) {
	case EC0_OUT:
		s = "EC0_OUT";
		break;
	case EC1_IN:
		s = "EC1_IN";
		break;
	case EC2_TRACE:
		s = "EC2_TRACE";
		break;
	case EC3_LEAVE:
		s = "EC3_LEAVE";
		break;
	case EC4_PATH_TEST:
		s = "EC4_PATH_TEST";
		break;
	case EC5_INSERT:
		s = "EC5_INSERT";
		break;
	case EC6_CHECK:
		s = "EC6_CHECK";
		break;
	case EC7_DEINSERT:
		s = "EC7_DEINSERT";
		break;
	default:
		s = "unknown";
		break;
	}
	PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
#endif				//DRIVERDEBUG
}				// ecm_state_change


/************************
 *
 *	rmt_state_change
 *
 *	Sets RMT state in custom statistics.
 * Args
 *	smc - A pointer to the SMT context struct.
 *
 *	r_state - Possible values are:
 *
 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
 * Out
 *	Nothing.
 *
 ************************/
void rmt_state_change(struct s_smc *smc, int r_state)
{
#ifdef DRIVERDEBUG
	char *s;

	switch (r_state) {
	case RM0_ISOLATED:
		s = "RM0_ISOLATED";
		break;
	case RM1_NON_OP:
		s = "RM1_NON_OP - not operational";
		break;
	case RM2_RING_OP:
		s = "RM2_RING_OP - ring operational";
		break;
	case RM3_DETECT:
		s = "RM3_DETECT - detect dupl addresses";
		break;
	case RM4_NON_OP_DUP:
		s = "RM4_NON_OP_DUP - dupl. addr detected";
		break;
	case RM5_RING_OP_DUP:
		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
		break;
	case RM6_DIRECTED:
		s = "RM6_DIRECTED - sending directed beacons";
		break;
	case RM7_TRACE:
		s = "RM7_TRACE - trace initiated";
		break;
	default:
		s = "unknown";
		break;
	}
	PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
#endif				// DRIVERDEBUG
}				// rmt_state_change


/************************
 *
 *	drv_reset_indication
 *
 *	This function is called by the SMT when it has detected a severe
 *	hardware problem. The driver should perform a reset on the adapter
 *	as soon as possible, but not from within this function.
 * Args
 *	smc - A pointer to the SMT context struct.
 * Out
 *	Nothing.
 *
 ************************/
void drv_reset_indication(struct s_smc *smc)
{
	PRINTK(KERN_INFO "entering drv_reset_indication\n");

	smc->os.ResetRequested = TRUE;	// Set flag.

}				// drv_reset_indication

static struct pci_driver skfddi_pci_driver = {
	.name		= "skfddi",
	.id_table	= skfddi_pci_tbl,
	.probe		= skfp_init_one,
	.remove		= __devexit_p(skfp_remove_one),
};

static int __init skfd_init(void)
{
	return pci_module_init(&skfddi_pci_driver);
}

static void __exit skfd_exit(void)
{
	pci_unregister_driver(&skfddi_pci_driver);
}

module_init(skfd_init);
module_exit(skfd_exit);