Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | /* * linux/kernel/workqueue.c * * Generic mechanism for defining kernel helper threads for running * arbitrary tasks in process context. * * Started by Ingo Molnar, Copyright (C) 2002 * * Derived from the taskqueue/keventd code by: * * David Woodhouse <dwmw2@redhat.com> * Andrew Morton <andrewm@uow.edu.au> * Kai Petzke <wpp@marie.physik.tu-berlin.de> * Theodore Ts'o <tytso@mit.edu> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/slab.h> #include <linux/kthread.h> /* * The per-CPU workqueue. * * The sequence counters are for flush_scheduled_work(). It wants to wait * until until all currently-scheduled works are completed, but it doesn't * want to be livelocked by new, incoming ones. So it waits until * remove_sequence is >= the insert_sequence which pertained when * flush_scheduled_work() was called. */ struct cpu_workqueue_struct { spinlock_t lock; long remove_sequence; /* Least-recently added (next to run) */ long insert_sequence; /* Next to add */ struct list_head worklist; wait_queue_head_t more_work; wait_queue_head_t work_done; struct workqueue_struct *wq; task_t *thread; } ____cacheline_aligned; /* * The externally visible workqueue abstraction is an array of * per-CPU workqueues: */ struct workqueue_struct { struct cpu_workqueue_struct cpu_wq[NR_CPUS]; }; /* Preempt must be disabled. */ static void __queue_work(struct cpu_workqueue_struct *cwq, struct work_struct *work) { unsigned long flags; spin_lock_irqsave(&cwq->lock, flags); work->wq_data = cwq; list_add_tail(&work->entry, &cwq->worklist); cwq->insert_sequence++; wake_up(&cwq->more_work); spin_unlock_irqrestore(&cwq->lock, flags); } /* * Queue work on a workqueue. Return non-zero if it was successfully * added. * * We queue the work to the CPU it was submitted, but there is no * guarantee that it will be processed by that CPU. */ int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) { int ret = 0, cpu = get_cpu(); if (!test_and_set_bit(0, &work->pending)) { BUG_ON(!list_empty(&work->entry)); __queue_work(wq->cpu_wq + cpu, work); ret = 1; } put_cpu(); return ret; } static void delayed_work_timer_fn(unsigned long __data) { struct work_struct *work = (struct work_struct *)__data; struct workqueue_struct *wq = work->wq_data; __queue_work(wq->cpu_wq + smp_processor_id(), work); } int fastcall queue_delayed_work(struct workqueue_struct *wq, struct work_struct *work, unsigned long delay) { int ret = 0; struct timer_list *timer = &work->timer; if (!test_and_set_bit(0, &work->pending)) { BUG_ON(timer_pending(timer)); BUG_ON(!list_empty(&work->entry)); /* This stores wq for the moment, for the timer_fn */ work->wq_data = wq; timer->expires = jiffies + delay; timer->data = (unsigned long)work; timer->function = delayed_work_timer_fn; add_timer(timer); ret = 1; } return ret; } static inline void run_workqueue(struct cpu_workqueue_struct *cwq) { unsigned long flags; /* * Keep taking off work from the queue until * done. */ spin_lock_irqsave(&cwq->lock, flags); while (!list_empty(&cwq->worklist)) { struct work_struct *work = list_entry(cwq->worklist.next, struct work_struct, entry); void (*f) (void *) = work->func; void *data = work->data; list_del_init(cwq->worklist.next); spin_unlock_irqrestore(&cwq->lock, flags); BUG_ON(work->wq_data != cwq); clear_bit(0, &work->pending); f(data); spin_lock_irqsave(&cwq->lock, flags); cwq->remove_sequence++; wake_up(&cwq->work_done); } spin_unlock_irqrestore(&cwq->lock, flags); } static int worker_thread(void *__cwq) { struct cpu_workqueue_struct *cwq = __cwq; int cpu = cwq - cwq->wq->cpu_wq; DECLARE_WAITQUEUE(wait, current); struct k_sigaction sa; sigset_t blocked; current->flags |= PF_IOTHREAD; set_user_nice(current, -10); BUG_ON(smp_processor_id() != cpu); /* Block and flush all signals */ sigfillset(&blocked); sigprocmask(SIG_BLOCK, &blocked, NULL); flush_signals(current); /* SIG_IGN makes children autoreap: see do_notify_parent(). */ sa.sa.sa_handler = SIG_IGN; sa.sa.sa_flags = 0; siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0); while (!kthread_should_stop()) { set_task_state(current, TASK_INTERRUPTIBLE); add_wait_queue(&cwq->more_work, &wait); if (list_empty(&cwq->worklist)) schedule(); else set_task_state(current, TASK_RUNNING); remove_wait_queue(&cwq->more_work, &wait); if (!list_empty(&cwq->worklist)) run_workqueue(cwq); } return 0; } /* * flush_workqueue - ensure that any scheduled work has run to completion. * * Forces execution of the workqueue and blocks until its completion. * This is typically used in driver shutdown handlers. * * This function will sample each workqueue's current insert_sequence number and * will sleep until the head sequence is greater than or equal to that. This * means that we sleep until all works which were queued on entry have been * handled, but we are not livelocked by new incoming ones. * * This function used to run the workqueues itself. Now we just wait for the * helper threads to do it. */ void fastcall flush_workqueue(struct workqueue_struct *wq) { struct cpu_workqueue_struct *cwq; int cpu; might_sleep(); for (cpu = 0; cpu < NR_CPUS; cpu++) { DEFINE_WAIT(wait); long sequence_needed; if (!cpu_online(cpu)) continue; cwq = wq->cpu_wq + cpu; spin_lock_irq(&cwq->lock); sequence_needed = cwq->insert_sequence; while (sequence_needed - cwq->remove_sequence > 0) { prepare_to_wait(&cwq->work_done, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&cwq->lock); schedule(); spin_lock_irq(&cwq->lock); } finish_wait(&cwq->work_done, &wait); spin_unlock_irq(&cwq->lock); } } static int create_workqueue_thread(struct workqueue_struct *wq, const char *name, int cpu) { struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; struct task_struct *p; spin_lock_init(&cwq->lock); cwq->wq = wq; cwq->thread = NULL; cwq->insert_sequence = 0; cwq->remove_sequence = 0; INIT_LIST_HEAD(&cwq->worklist); init_waitqueue_head(&cwq->more_work); init_waitqueue_head(&cwq->work_done); p = kthread_create(worker_thread, cwq, "%s/%d", name, cpu); if (IS_ERR(p)) return PTR_ERR(p); cwq->thread = p; kthread_bind(p, cpu); return 0; } struct workqueue_struct *create_workqueue(const char *name) { int cpu, destroy = 0; struct workqueue_struct *wq; BUG_ON(strlen(name) > 10); wq = kmalloc(sizeof(*wq), GFP_KERNEL); if (!wq) return NULL; for (cpu = 0; cpu < NR_CPUS; cpu++) { if (!cpu_online(cpu)) continue; if (create_workqueue_thread(wq, name, cpu) < 0) destroy = 1; else wake_up_process(wq->cpu_wq[cpu].thread); } /* * Was there any error during startup? If yes then clean up: */ if (destroy) { destroy_workqueue(wq); wq = NULL; } return wq; } static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu) { struct cpu_workqueue_struct *cwq; cwq = wq->cpu_wq + cpu; if (cwq->thread) kthread_stop(cwq->thread); } void destroy_workqueue(struct workqueue_struct *wq) { int cpu; flush_workqueue(wq); for (cpu = 0; cpu < NR_CPUS; cpu++) { if (cpu_online(cpu)) cleanup_workqueue_thread(wq, cpu); } kfree(wq); } static struct workqueue_struct *keventd_wq; int fastcall schedule_work(struct work_struct *work) { return queue_work(keventd_wq, work); } int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay) { return queue_delayed_work(keventd_wq, work, delay); } void flush_scheduled_work(void) { flush_workqueue(keventd_wq); } int keventd_up(void) { return keventd_wq != NULL; } int current_is_keventd(void) { struct cpu_workqueue_struct *cwq; int cpu; BUG_ON(!keventd_wq); for_each_cpu(cpu) { cwq = keventd_wq->cpu_wq + cpu; if (current == cwq->thread) return 1; } return 0; } void init_workqueues(void) { keventd_wq = create_workqueue("events"); BUG_ON(!keventd_wq); } EXPORT_SYMBOL_GPL(create_workqueue); EXPORT_SYMBOL_GPL(queue_work); EXPORT_SYMBOL_GPL(queue_delayed_work); EXPORT_SYMBOL_GPL(flush_workqueue); EXPORT_SYMBOL_GPL(destroy_workqueue); EXPORT_SYMBOL(schedule_work); EXPORT_SYMBOL(schedule_delayed_work); EXPORT_SYMBOL(flush_scheduled_work); |