Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /* * linux/drivers/firmware/memmap.c * Copyright (C) 2008 SUSE LINUX Products GmbH * by Bernhard Walle <bernhard.walle@gmx.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License v2.0 as published by * the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/string.h> #include <linux/firmware-map.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/bootmem.h> /* * Data types ------------------------------------------------------------------ */ /* * Firmware map entry. Because firmware memory maps are flat and not * hierarchical, it's ok to organise them in a linked list. No parent * information is necessary as for the resource tree. */ struct firmware_map_entry { /* * start and end must be u64 rather than resource_size_t, because e820 * resources can lie at addresses above 4G. */ u64 start; /* start of the memory range */ u64 end; /* end of the memory range (incl.) */ const char *type; /* type of the memory range */ struct list_head list; /* entry for the linked list */ struct kobject kobj; /* kobject for each entry */ }; /* * Forward declarations -------------------------------------------------------- */ static ssize_t memmap_attr_show(struct kobject *kobj, struct attribute *attr, char *buf); static ssize_t start_show(struct firmware_map_entry *entry, char *buf); static ssize_t end_show(struct firmware_map_entry *entry, char *buf); static ssize_t type_show(struct firmware_map_entry *entry, char *buf); /* * Static data ----------------------------------------------------------------- */ struct memmap_attribute { struct attribute attr; ssize_t (*show)(struct firmware_map_entry *entry, char *buf); }; static struct memmap_attribute memmap_start_attr = __ATTR_RO(start); static struct memmap_attribute memmap_end_attr = __ATTR_RO(end); static struct memmap_attribute memmap_type_attr = __ATTR_RO(type); /* * These are default attributes that are added for every memmap entry. */ static struct attribute *def_attrs[] = { &memmap_start_attr.attr, &memmap_end_attr.attr, &memmap_type_attr.attr, NULL }; static struct sysfs_ops memmap_attr_ops = { .show = memmap_attr_show, }; static struct kobj_type memmap_ktype = { .sysfs_ops = &memmap_attr_ops, .default_attrs = def_attrs, }; /* * Registration functions ------------------------------------------------------ */ /* * Firmware memory map entries. No locking is needed because the * firmware_map_add() and firmware_map_add_early() functions are called * in firmware initialisation code in one single thread of execution. */ static LIST_HEAD(map_entries); /** * firmware_map_add_entry() - Does the real work to add a firmware memmap entry. * @start: Start of the memory range. * @end: End of the memory range (inclusive). * @type: Type of the memory range. * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised * entry. * * Common implementation of firmware_map_add() and firmware_map_add_early() * which expects a pre-allocated struct firmware_map_entry. **/ static int firmware_map_add_entry(u64 start, u64 end, const char *type, struct firmware_map_entry *entry) { BUG_ON(start > end); entry->start = start; entry->end = end; entry->type = type; INIT_LIST_HEAD(&entry->list); kobject_init(&entry->kobj, &memmap_ktype); list_add_tail(&entry->list, &map_entries); return 0; } /** * firmware_map_add() - Adds a firmware mapping entry. * @start: Start of the memory range. * @end: End of the memory range (inclusive). * @type: Type of the memory range. * * This function uses kmalloc() for memory * allocation. Use firmware_map_add_early() if you want to use the bootmem * allocator. * * That function must be called before late_initcall. * * Returns 0 on success, or -ENOMEM if no memory could be allocated. **/ int firmware_map_add(u64 start, u64 end, const char *type) { struct firmware_map_entry *entry; entry = kmalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC); if (!entry) return -ENOMEM; return firmware_map_add_entry(start, end, type, entry); } /** * firmware_map_add_early() - Adds a firmware mapping entry. * @start: Start of the memory range. * @end: End of the memory range (inclusive). * @type: Type of the memory range. * * Adds a firmware mapping entry. This function uses the bootmem allocator * for memory allocation. Use firmware_map_add() if you want to use kmalloc(). * * That function must be called before late_initcall. * * Returns 0 on success, or -ENOMEM if no memory could be allocated. **/ int __init firmware_map_add_early(u64 start, u64 end, const char *type) { struct firmware_map_entry *entry; entry = alloc_bootmem(sizeof(struct firmware_map_entry)); if (WARN_ON(!entry)) return -ENOMEM; return firmware_map_add_entry(start, end, type, entry); } /* * Sysfs functions ------------------------------------------------------------- */ static ssize_t start_show(struct firmware_map_entry *entry, char *buf) { return snprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)entry->start); } static ssize_t end_show(struct firmware_map_entry *entry, char *buf) { return snprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)entry->end); } static ssize_t type_show(struct firmware_map_entry *entry, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", entry->type); } #define to_memmap_attr(_attr) container_of(_attr, struct memmap_attribute, attr) #define to_memmap_entry(obj) container_of(obj, struct firmware_map_entry, kobj) static ssize_t memmap_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct firmware_map_entry *entry = to_memmap_entry(kobj); struct memmap_attribute *memmap_attr = to_memmap_attr(attr); return memmap_attr->show(entry, buf); } /* * Initialises stuff and adds the entries in the map_entries list to * sysfs. Important is that firmware_map_add() and firmware_map_add_early() * must be called before late_initcall. That's just because that function * is called as late_initcall() function, which means that if you call * firmware_map_add() or firmware_map_add_early() afterwards, the entries * are not added to sysfs. */ static int __init memmap_init(void) { int i = 0; struct firmware_map_entry *entry; struct kset *memmap_kset; memmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj); if (WARN_ON(!memmap_kset)) return -ENOMEM; list_for_each_entry(entry, &map_entries, list) { entry->kobj.kset = memmap_kset; if (kobject_add(&entry->kobj, NULL, "%d", i++)) kobject_put(&entry->kobj); } return 0; } late_initcall(memmap_init); |