Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | /* * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> * Copyright © 2004 Micron Technology Inc. * Copyright © 2004 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/sched.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/io.h> #include <plat/dma.h> #include <plat/gpmc.h> #include <plat/nand.h> #define GPMC_IRQ_STATUS 0x18 #define GPMC_ECC_CONFIG 0x1F4 #define GPMC_ECC_CONTROL 0x1F8 #define GPMC_ECC_SIZE_CONFIG 0x1FC #define GPMC_ECC1_RESULT 0x200 #define DRIVER_NAME "omap2-nand" /* size (4 KiB) for IO mapping */ #define NAND_IO_SIZE SZ_4K #define NAND_WP_OFF 0 #define NAND_WP_BIT 0x00000010 #define WR_RD_PIN_MONITORING 0x00600000 #define GPMC_BUF_FULL 0x00000001 #define GPMC_BUF_EMPTY 0x00000000 #define NAND_Ecc_P1e (1 << 0) #define NAND_Ecc_P2e (1 << 1) #define NAND_Ecc_P4e (1 << 2) #define NAND_Ecc_P8e (1 << 3) #define NAND_Ecc_P16e (1 << 4) #define NAND_Ecc_P32e (1 << 5) #define NAND_Ecc_P64e (1 << 6) #define NAND_Ecc_P128e (1 << 7) #define NAND_Ecc_P256e (1 << 8) #define NAND_Ecc_P512e (1 << 9) #define NAND_Ecc_P1024e (1 << 10) #define NAND_Ecc_P2048e (1 << 11) #define NAND_Ecc_P1o (1 << 16) #define NAND_Ecc_P2o (1 << 17) #define NAND_Ecc_P4o (1 << 18) #define NAND_Ecc_P8o (1 << 19) #define NAND_Ecc_P16o (1 << 20) #define NAND_Ecc_P32o (1 << 21) #define NAND_Ecc_P64o (1 << 22) #define NAND_Ecc_P128o (1 << 23) #define NAND_Ecc_P256o (1 << 24) #define NAND_Ecc_P512o (1 << 25) #define NAND_Ecc_P1024o (1 << 26) #define NAND_Ecc_P2048o (1 << 27) #define TF(value) (value ? 1 : 0) #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) #ifdef CONFIG_MTD_PARTITIONS static const char *part_probes[] = { "cmdlinepart", NULL }; #endif #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH static int use_prefetch = 1; /* "modprobe ... use_prefetch=0" etc */ module_param(use_prefetch, bool, 0); MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH"); #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA static int use_dma = 1; /* "modprobe ... use_dma=0" etc */ module_param(use_dma, bool, 0); MODULE_PARM_DESC(use_dma, "enable/disable use of DMA"); #else const int use_dma; #endif #else const int use_prefetch; const int use_dma; #endif struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; struct mtd_partition *parts; struct nand_chip nand; struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; void __iomem *gpmc_cs_baseaddr; void __iomem *gpmc_baseaddr; void __iomem *nand_pref_fifo_add; struct completion comp; int dma_ch; }; /** * omap_nand_wp - This function enable or disable the Write Protect feature * @mtd: MTD device structure * @mode: WP ON/OFF */ static void omap_nand_wp(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); if (mode) config &= ~(NAND_WP_BIT); /* WP is ON */ else config |= (NAND_WP_BIT); /* WP is OFF */ __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); } /** * omap_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: command to device * @ctrl: * NAND_NCE: bit 0 -> don't care * NAND_CLE: bit 1 -> Command Latch * NAND_ALE: bit 2 -> Address Latch * * NOTE: boards may use different bits for these!! */ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); switch (ctrl) { case NAND_CTRL_CHANGE | NAND_CTRL_CLE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_COMMAND; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; case NAND_CTRL_CHANGE | NAND_CTRL_ALE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_ADDRESS; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; case NAND_CTRL_CHANGE | NAND_NCE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; } if (cmd != NAND_CMD_NONE) __raw_writeb(cmd, info->nand.IO_ADDR_W); } /** * omap_read_buf8 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread8_rep(nand->IO_ADDR_R, buf, len); } /** * omap_write_buf8 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u_char *p = (u_char *)buf; while (len--) { iowrite8(*p++, info->nand.IO_ADDR_W); while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + GPMC_STATUS) & GPMC_BUF_FULL)); } } /** * omap_read_buf16 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread16_rep(nand->IO_ADDR_R, buf, len / 2); } /** * omap_write_buf16 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; /* FIXME try bursts of writesw() or DMA ... */ len >>= 1; while (len--) { iowrite16(*p++, info->nand.IO_ADDR_W); while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + GPMC_STATUS) & GPMC_BUF_FULL)) ; } } /** * omap_read_buf_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t pfpw_status = 0, r_count = 0; int ret = 0; u32 *p = (u32 *)buf; /* take care of subpage reads */ for (; len % 4 != 0; ) { *buf++ = __raw_readb(info->nand.IO_ADDR_R); len--; } p = (u32 *) buf; /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, buf, len); else omap_read_buf8(mtd, buf, len); } else { do { pfpw_status = gpmc_prefetch_status(); r_count = ((pfpw_status >> 24) & 0x7F) >> 2; ioread32_rep(info->nand_pref_fifo_add, p, r_count); p += r_count; len -= r_count << 2; } while (len); /* disable and stop the PFPW engine */ gpmc_prefetch_reset(); } } /** * omap_write_buf_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_pref(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t pfpw_status = 0, w_count = 0; int i = 0, ret = 0; u16 *p = (u16 *) buf; /* take care of subpage writes */ if (len % 2 != 0) { writeb(*buf, info->nand.IO_ADDR_R); p = (u16 *)(buf + 1); len--; } /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_write_buf16(mtd, buf, len); else omap_write_buf8(mtd, buf, len); } else { pfpw_status = gpmc_prefetch_status(); while (pfpw_status & 0x3FFF) { w_count = ((pfpw_status >> 24) & 0x7F) >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) iowrite16(*p++, info->nand_pref_fifo_add); pfpw_status = gpmc_prefetch_status(); } /* disable and stop the PFPW engine */ gpmc_prefetch_reset(); } } #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA /* * omap_nand_dma_cb: callback on the completion of dma transfer * @lch: logical channel * @ch_satuts: channel status * @data: pointer to completion data structure */ static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) { complete((struct completion *) data); } /* * omap_nand_dma_transfer: configer and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred * @is_write: flag for read/write operation */ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, unsigned int len, int is_write) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t prefetch_status = 0; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; dma_addr_t dma_addr; int ret; /* The fifo depth is 64 bytes. We have a sync at each frame and frame * length is 64 bytes. */ int buf_len = len >> 6; if (addr >= high_memory) { struct page *p1; if (((size_t)addr & PAGE_MASK) != ((size_t)(addr + len - 1) & PAGE_MASK)) goto out_copy; p1 = vmalloc_to_page(addr); if (!p1) goto out_copy; addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); if (dma_mapping_error(&info->pdev->dev, dma_addr)) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } if (is_write) { omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, info->phys_base, 0, 0); omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, 0x10, buf_len, OMAP_DMA_SYNC_FRAME, OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); } else { omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, info->phys_base, 0, 0); omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, 0x10, buf_len, OMAP_DMA_SYNC_FRAME, OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); } /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write); if (ret) /* PFPW engine is busy, use cpu copy methode */ goto out_copy; init_completion(&info->comp); omap_start_dma(info->dma_ch); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); while (0x3fff & (prefetch_status = gpmc_prefetch_status())) ; /* disable and stop the PFPW engine */ gpmc_prefetch_reset(); dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); return 0; out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) : omap_write_buf16(mtd, (u_char *) addr, len); else is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) : omap_write_buf8(mtd, (u_char *) addr, len); return 0; } #else static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {} static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, unsigned int len, int is_write) { return 0; } #endif /** * omap_read_buf_dma_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) { if (len <= mtd->oobsize) omap_read_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, buf, len, 0x0); } /** * omap_write_buf_dma_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_dma_pref(struct mtd_info *mtd, const u_char *buf, int len) { if (len <= mtd->oobsize) omap_write_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, buf, len, 0x1); } /** * omap_verify_buf - Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare */ static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; len >>= 1; while (len--) { if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) return -EFAULT; } return 0; } #ifdef CONFIG_MTD_NAND_OMAP_HWECC /** * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller * @mtd: MTD device structure */ static void omap_hwecc_init(struct mtd_info *mtd) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_chip *chip = mtd->priv; unsigned long val = 0x0; /* Read from ECC Control Register */ val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); /* Clear all ECC | Enable Reg1 */ val = ((0x00000001<<8) | 0x00000001); __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); /* Read from ECC Size Config Register */ val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); /* ECCSIZE1=512 | Select eccResultsize[0-3] */ val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); } /** * gen_true_ecc - This function will generate true ECC value * @ecc_buf: buffer to store ecc code * * This generated true ECC value can be used when correcting * data read from NAND flash memory core */ static void gen_true_ecc(u8 *ecc_buf) { u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); } /** * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data * @ecc_data1: ecc code from nand spare area * @ecc_data2: ecc code from hardware register obtained from hardware ecc * @page_data: page data * * This function compares two ECC's and indicates if there is an error. * If the error can be corrected it will be corrected to the buffer. */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ u8 *page_data) { uint i; u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; u8 ecc_bit[24]; u8 ecc_sum = 0; u8 find_bit = 0; uint find_byte = 0; int isEccFF; isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); gen_true_ecc(ecc_data1); gen_true_ecc(ecc_data2); for (i = 0; i <= 2; i++) { *(ecc_data1 + i) = ~(*(ecc_data1 + i)); *(ecc_data2 + i) = ~(*(ecc_data2 + i)); } for (i = 0; i < 8; i++) { tmp0_bit[i] = *ecc_data1 % 2; *ecc_data1 = *ecc_data1 / 2; } for (i = 0; i < 8; i++) { tmp1_bit[i] = *(ecc_data1 + 1) % 2; *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; } for (i = 0; i < 8; i++) { tmp2_bit[i] = *(ecc_data1 + 2) % 2; *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; } for (i = 0; i < 8; i++) { comp0_bit[i] = *ecc_data2 % 2; *ecc_data2 = *ecc_data2 / 2; } for (i = 0; i < 8; i++) { comp1_bit[i] = *(ecc_data2 + 1) % 2; *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; } for (i = 0; i < 8; i++) { comp2_bit[i] = *(ecc_data2 + 2) % 2; *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; } for (i = 0; i < 6; i++) ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; for (i = 0; i < 8; i++) ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; for (i = 0; i < 8; i++) ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; for (i = 0; i < 24; i++) ecc_sum += ecc_bit[i]; switch (ecc_sum) { case 0: /* Not reached because this function is not called if * ECC values are equal */ return 0; case 1: /* Uncorrectable error */ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); return -1; case 11: /* UN-Correctable error */ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); return -1; case 12: /* Correctable error */ find_byte = (ecc_bit[23] << 8) + (ecc_bit[21] << 7) + (ecc_bit[19] << 6) + (ecc_bit[17] << 5) + (ecc_bit[15] << 4) + (ecc_bit[13] << 3) + (ecc_bit[11] << 2) + (ecc_bit[9] << 1) + ecc_bit[7]; find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " "offset: %d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); return 0; default: if (isEccFF) { if (ecc_data2[0] == 0 && ecc_data2[1] == 0 && ecc_data2[2] == 0) return 0; } DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); return -1; } } /** * omap_correct_data - Compares the ECC read with HW generated ECC * @mtd: MTD device structure * @dat: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers * * Compares the ecc read from nand spare area with ECC registers values * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection * and correction. */ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int blockCnt = 0, i = 0, ret = 0; /* Ex NAND_ECC_HW12_2048 */ if ((info->nand.ecc.mode == NAND_ECC_HW) && (info->nand.ecc.size == 2048)) blockCnt = 4; else blockCnt = 1; for (i = 0; i < blockCnt; i++) { if (memcmp(read_ecc, calc_ecc, 3) != 0) { ret = omap_compare_ecc(read_ecc, calc_ecc, dat); if (ret < 0) return ret; } read_ecc += 3; calc_ecc += 3; dat += 512; } return 0; } /** * omap_calcuate_ecc - Generate non-inverted ECC bytes. * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer * * Using noninverted ECC can be considered ugly since writing a blank * page ie. padding will clear the ECC bytes. This is no problem as long * nobody is trying to write data on the seemingly unused page. Reading * an erased page will produce an ECC mismatch between generated and read * ECC bytes that has to be dealt with separately. */ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long val = 0x0; unsigned long reg; /* Start Reading from HW ECC1_Result = 0x200 */ reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); val = __raw_readl(reg); *ecc_code++ = val; /* P128e, ..., P1e */ *ecc_code++ = val >> 16; /* P128o, ..., P1o */ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); reg += 4; return 0; } /** * omap_enable_hwecc - This function enables the hardware ecc functionality * @mtd: MTD device structure * @mode: Read/Write mode */ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); switch (mode) { case NAND_ECC_READ: __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; case NAND_ECC_READSYN: __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; case NAND_ECC_WRITE: __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; default: DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", mode); break; } __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); } #endif /** * omap_wait - wait until the command is done * @mtd: MTD device structure * @chip: NAND Chip structure * * Wait function is called during Program and erase operations and * the way it is called from MTD layer, we should wait till the NAND * chip is ready after the programming/erase operation has completed. * * Erase can take up to 400ms and program up to 20ms according to * general NAND and SmartMedia specs */ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct nand_chip *this = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long timeo = jiffies; int status = NAND_STATUS_FAIL, state = this->state; if (state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_COMMAND; this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); while (time_before(jiffies, timeo)) { status = __raw_readb(this->IO_ADDR_R); if (status & NAND_STATUS_READY) break; cond_resched(); } return status; } /** * omap_dev_ready - calls the platform specific dev_ready function * @mtd: MTD device structure */ static int omap_dev_ready(struct mtd_info *mtd) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); if ((val & 0x100) == 0x100) { /* Clear IRQ Interrupt */ val |= 0x100; val &= ~(0x0); __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); } else { unsigned int cnt = 0; while (cnt++ < 0x1FF) { if ((val & 0x100) == 0x100) return 0; val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); } } return 1; } static int __devinit omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; int err; unsigned long val; pdata = pdev->dev.platform_data; if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); info->pdev = pdev; info->gpmc_cs = pdata->cs; info->gpmc_baseaddr = pdata->gpmc_baseaddr; info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; info->mtd.priv = &info->nand; info->mtd.name = dev_name(&pdev->dev); info->mtd.owner = THIS_MODULE; err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); if (err < 0) { dev_err(&pdev->dev, "Cannot request GPMC CS\n"); goto out_free_info; } /* Enable RD PIN Monitoring Reg */ if (pdata->dev_ready) { val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); val |= WR_RD_PIN_MONITORING; gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); } val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); val &= ~(0xf << 8); val |= (0xc & 0xf) << 8; gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); /* NAND write protect off */ omap_nand_wp(&info->mtd, NAND_WP_OFF); if (!request_mem_region(info->phys_base, NAND_IO_SIZE, pdev->dev.driver->name)) { err = -EBUSY; goto out_free_cs; } info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); if (!info->nand.IO_ADDR_R) { err = -ENOMEM; goto out_release_mem_region; } info->nand.controller = &info->controller; info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; info->nand.cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready * funcrtion and the generic nand_wait function which reads the status * register after monitoring the RDY/BSY line.Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { info->nand.dev_ready = omap_dev_ready; info->nand.chip_delay = 0; } else { info->nand.waitfunc = omap_wait; info->nand.chip_delay = 50; } info->nand.options |= NAND_SKIP_BBTSCAN; if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) == 0x1000) info->nand.options |= NAND_BUSWIDTH_16; if (use_prefetch) { /* copy the virtual address of nand base for fifo access */ info->nand_pref_fifo_add = info->nand.IO_ADDR_R; info->nand.read_buf = omap_read_buf_pref; info->nand.write_buf = omap_write_buf_pref; if (use_dma) { err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", omap_nand_dma_cb, &info->comp, &info->dma_ch); if (err < 0) { info->dma_ch = -1; printk(KERN_WARNING "DMA request failed." " Non-dma data transfer mode\n"); } else { omap_set_dma_dest_burst_mode(info->dma_ch, OMAP_DMA_DATA_BURST_16); omap_set_dma_src_burst_mode(info->dma_ch, OMAP_DMA_DATA_BURST_16); info->nand.read_buf = omap_read_buf_dma_pref; info->nand.write_buf = omap_write_buf_dma_pref; } } } else { if (info->nand.options & NAND_BUSWIDTH_16) { info->nand.read_buf = omap_read_buf16; info->nand.write_buf = omap_write_buf16; } else { info->nand.read_buf = omap_read_buf8; info->nand.write_buf = omap_write_buf8; } } info->nand.verify_buf = omap_verify_buf; #ifdef CONFIG_MTD_NAND_OMAP_HWECC info->nand.ecc.bytes = 3; info->nand.ecc.size = 512; info->nand.ecc.calculate = omap_calculate_ecc; info->nand.ecc.hwctl = omap_enable_hwecc; info->nand.ecc.correct = omap_correct_data; info->nand.ecc.mode = NAND_ECC_HW; /* init HW ECC */ omap_hwecc_init(&info->mtd); #else info->nand.ecc.mode = NAND_ECC_SOFT; #endif /* DIP switches on some boards change between 8 and 16 bit * bus widths for flash. Try the other width if the first try fails. */ if (nand_scan(&info->mtd, 1)) { info->nand.options ^= NAND_BUSWIDTH_16; if (nand_scan(&info->mtd, 1)) { err = -ENXIO; goto out_release_mem_region; } } #ifdef CONFIG_MTD_PARTITIONS err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); if (err > 0) add_mtd_partitions(&info->mtd, info->parts, err); else if (pdata->parts) add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); else #endif add_mtd_device(&info->mtd); platform_set_drvdata(pdev, &info->mtd); return 0; out_release_mem_region: release_mem_region(info->phys_base, NAND_IO_SIZE); out_free_cs: gpmc_cs_free(info->gpmc_cs); out_free_info: kfree(info); return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct omap_nand_info *info = mtd->priv; platform_set_drvdata(pdev, NULL); if (use_dma) omap_free_dma(info->dma_ch); /* Release NAND device, its internal structures and partitions */ nand_release(&info->mtd); iounmap(info->nand_pref_fifo_add); kfree(&info->mtd); return 0; } static struct platform_driver omap_nand_driver = { .probe = omap_nand_probe, .remove = omap_nand_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; static int __init omap_nand_init(void) { printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); /* This check is required if driver is being * loaded run time as a module */ if ((1 == use_dma) && (0 == use_prefetch)) { printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 " "without use_prefetch'. Prefetch will not be" " used in either mode (mpu or dma)\n"); } return platform_driver_register(&omap_nand_driver); } static void __exit omap_nand_exit(void) { platform_driver_unregister(&omap_nand_driver); } module_init(omap_nand_init); module_exit(omap_nand_exit); MODULE_ALIAS(DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |