Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | /* * * BRIEF MODULE DESCRIPTION * The Descriptor Based DMA channel manager that first appeared * on the Au1550. I started with dma.c, but I think all that is * left is this initial comment :-) * * Copyright 2004 Embedded Edge, LLC * dan@embeddededge.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/module.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) /* * The Descriptor Based DMA supports up to 16 channels. * * There are 32 devices defined. We keep an internal structure * of devices using these channels, along with additional * information. * * We allocate the descriptors and allow access to them through various * functions. The drivers allocate the data buffers and assign them * to the descriptors. */ static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); /* I couldn't find a macro that did this... */ #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; static int dbdma_initialized; static void au1xxx_dbdma_init(void); static dbdev_tab_t dbdev_tab[] = { #ifdef CONFIG_SOC_AU1550 /* UARTS */ { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, /* EXT DMA */ { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, /* USB DEV */ { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, /* PSC 0 */ { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, /* PSC 1 */ { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, /* PSC 2 */ { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, /* PSC 3 */ { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ /* MAC 0 */ { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, /* MAC 1 */ { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, #endif /* CONFIG_SOC_AU1550 */ #ifdef CONFIG_SOC_AU1200 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, #endif /* CONFIG_SOC_AU1200 */ { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, /* Provide 16 user definable device types */ { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, { ~0, 0, 0, 0, 0, 0, 0 }, }; #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab) #ifdef CONFIG_PM static u32 au1xxx_dbdma_pm_regs[NUM_DBDMA_CHANS + 1][6]; #endif static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; static dbdev_tab_t *find_dbdev_id(u32 id) { int i; dbdev_tab_t *p; for (i = 0; i < DBDEV_TAB_SIZE; ++i) { p = &dbdev_tab[i]; if (p->dev_id == id) return p; } return NULL; } void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) { return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) { u32 ret = 0; dbdev_tab_t *p; static u16 new_id = 0x1000; p = find_dbdev_id(~0); if (NULL != p) { memcpy(p, dev, sizeof(dbdev_tab_t)); p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); ret = p->dev_id; new_id++; #if 0 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", p->dev_id, p->dev_flags, p->dev_physaddr); #endif } return ret; } EXPORT_SYMBOL(au1xxx_ddma_add_device); void au1xxx_ddma_del_device(u32 devid) { dbdev_tab_t *p = find_dbdev_id(devid); if (p != NULL) { memset(p, 0, sizeof(dbdev_tab_t)); p->dev_id = ~0; } } EXPORT_SYMBOL(au1xxx_ddma_del_device); /* Allocate a channel and return a non-zero descriptor if successful. */ u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, void (*callback)(int, void *), void *callparam) { unsigned long flags; u32 used, chan, rv; u32 dcp; int i; dbdev_tab_t *stp, *dtp; chan_tab_t *ctp; au1x_dma_chan_t *cp; /* * We do the intialization on the first channel allocation. * We have to wait because of the interrupt handler initialization * which can't be done successfully during board set up. */ if (!dbdma_initialized) au1xxx_dbdma_init(); dbdma_initialized = 1; stp = find_dbdev_id(srcid); if (stp == NULL) return 0; dtp = find_dbdev_id(destid); if (dtp == NULL) return 0; used = 0; rv = 0; /* Check to see if we can get both channels. */ spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); if (!(stp->dev_flags & DEV_FLAGS_INUSE) || (stp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got source */ stp->dev_flags |= DEV_FLAGS_INUSE; if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got destination */ dtp->dev_flags |= DEV_FLAGS_INUSE; } else { /* Can't get dest. Release src. */ stp->dev_flags &= ~DEV_FLAGS_INUSE; used++; } } else used++; spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (!used) { /* Let's see if we can allocate a channel for it. */ ctp = NULL; chan = 0; spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); for (i = 0; i < NUM_DBDMA_CHANS; i++) if (chan_tab_ptr[i] == NULL) { /* * If kmalloc fails, it is caught below same * as a channel not available. */ ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); chan_tab_ptr[i] = ctp; break; } spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (ctp != NULL) { memset(ctp, 0, sizeof(chan_tab_t)); ctp->chan_index = chan = i; dcp = DDMA_CHANNEL_BASE; dcp += (0x0100 * chan); ctp->chan_ptr = (au1x_dma_chan_t *)dcp; cp = (au1x_dma_chan_t *)dcp; ctp->chan_src = stp; ctp->chan_dest = dtp; ctp->chan_callback = callback; ctp->chan_callparam = callparam; /* Initialize channel configuration. */ i = 0; if (stp->dev_intlevel) i |= DDMA_CFG_SED; if (stp->dev_intpolarity) i |= DDMA_CFG_SP; if (dtp->dev_intlevel) i |= DDMA_CFG_DED; if (dtp->dev_intpolarity) i |= DDMA_CFG_DP; if ((stp->dev_flags & DEV_FLAGS_SYNC) || (dtp->dev_flags & DEV_FLAGS_SYNC)) i |= DDMA_CFG_SYNC; cp->ddma_cfg = i; au_sync(); /* Return a non-zero value that can be used to * find the channel information in subsequent * operations. */ rv = (u32)(&chan_tab_ptr[chan]); } else { /* Release devices */ stp->dev_flags &= ~DEV_FLAGS_INUSE; dtp->dev_flags &= ~DEV_FLAGS_INUSE; } } return rv; } EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); /* * Set the device width if source or destination is a FIFO. * Should be 8, 16, or 32 bits. */ u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) { u32 rv; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; rv = 0; if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ rv = stp->dev_devwidth; stp->dev_devwidth = bits; } if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ rv = dtp->dev_devwidth; dtp->dev_devwidth = bits; } return rv; } EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); /* Allocate a descriptor ring, initializing as much as possible. */ u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) { int i; u32 desc_base, srcid, destid; u32 cmd0, cmd1, src1, dest1; u32 src0, dest0; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; au1x_ddma_desc_t *dp; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; /* * The descriptors must be 32-byte aligned. There is a * possibility the allocation will give us such an address, * and if we try that first we are likely to not waste larger * slabs of memory. */ desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL|GFP_DMA); if (desc_base == 0) return 0; if (desc_base & 0x1f) { /* * Lost....do it again, allocate extra, and round * the address base. */ kfree((const void *)desc_base); i = entries * sizeof(au1x_ddma_desc_t); i += (sizeof(au1x_ddma_desc_t) - 1); desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); if (desc_base == 0) return 0; desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); } dp = (au1x_ddma_desc_t *)desc_base; /* Keep track of the base descriptor. */ ctp->chan_desc_base = dp; /* Initialize the rings with as much information as we know. */ srcid = stp->dev_id; destid = dtp->dev_id; cmd0 = cmd1 = src1 = dest1 = 0; src0 = dest0 = 0; cmd0 |= DSCR_CMD0_SID(srcid); cmd0 |= DSCR_CMD0_DID(destid); cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); /* Is it mem to mem transfer? */ if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) cmd0 |= DSCR_CMD0_MEM; switch (stp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); break; } switch (dtp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); break; } /* * If the device is marked as an in/out FIFO, ensure it is * set non-coherent. */ if (stp->dev_flags & DEV_FLAGS_IN) cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ if (dtp->dev_flags & DEV_FLAGS_OUT) cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ /* * Set up source1. For now, assume no stride and increment. * A channel attribute update can change this later. */ switch (stp->dev_tsize) { case 1: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); break; case 2: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); break; case 4: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); break; case 8: default: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); break; } /* If source input is FIFO, set static address. */ if (stp->dev_flags & DEV_FLAGS_IN) { if (stp->dev_flags & DEV_FLAGS_BURSTABLE) src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); else src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); } if (stp->dev_physaddr) src0 = stp->dev_physaddr; /* * Set up dest1. For now, assume no stride and increment. * A channel attribute update can change this later. */ switch (dtp->dev_tsize) { case 1: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); break; case 2: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); break; case 4: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); break; case 8: default: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); break; } /* If destination output is FIFO, set static address. */ if (dtp->dev_flags & DEV_FLAGS_OUT) { if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); else dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); } if (dtp->dev_physaddr) dest0 = dtp->dev_physaddr; #if 0 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " "source1:%x dest0:%x dest1:%x\n", dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1); #endif for (i = 0; i < entries; i++) { dp->dscr_cmd0 = cmd0; dp->dscr_cmd1 = cmd1; dp->dscr_source0 = src0; dp->dscr_source1 = src1; dp->dscr_dest0 = dest0; dp->dscr_dest1 = dest1; dp->dscr_stat = 0; dp->sw_context = 0; dp->sw_status = 0; dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); dp++; } /* Make last descrptor point to the first. */ dp--; dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; return (u32)ctp->chan_desc_base; } EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); /* * Put a source buffer into the DMA ring. * This updates the source pointer and byte count. Normally used * for memory to fifo transfers. */ u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; /* * I guess we could check this to be within the * range of the table...... */ ctp = *(chan_tab_t **)chanid; /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer address and byte count. */ dp->dscr_source0 = virt_to_phys(buf); dp->dscr_cmd1 = nbytes; /* Check flags */ if (flags & DDMA_FLAGS_IE) dp->dscr_cmd0 |= DSCR_CMD0_IE; if (flags & DDMA_FLAGS_NOIE) dp->dscr_cmd0 &= ~DSCR_CMD0_IE; /* * There is an errata on the Au1200/Au1550 parts that could result * in "stale" data being DMA'ed. It has to do with the snoop logic on * the cache eviction buffer. DMA_NONCOHERENT is on by default for * these parts. If it is fixed in the future, these dma_cache_inv will * just be nothing more than empty macros. See io.h. */ dma_cache_wback_inv((unsigned long)buf, nbytes); dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ au_sync(); dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } EXPORT_SYMBOL(_au1xxx_dbdma_put_source); /* Put a destination buffer into the DMA ring. * This updates the destination pointer and byte count. Normally used * to place an empty buffer into the ring for fifo to memory transfers. */ u32 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; /* I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer address and byte count */ /* Check flags */ if (flags & DDMA_FLAGS_IE) dp->dscr_cmd0 |= DSCR_CMD0_IE; if (flags & DDMA_FLAGS_NOIE) dp->dscr_cmd0 &= ~DSCR_CMD0_IE; dp->dscr_dest0 = virt_to_phys(buf); dp->dscr_cmd1 = nbytes; #if 0 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); #endif /* * There is an errata on the Au1200/Au1550 parts that could result in * "stale" data being DMA'ed. It has to do with the snoop logic on the * cache eviction buffer. DMA_NONCOHERENT is on by default for these * parts. If it is fixed in the future, these dma_cache_inv will just * be nothing more than empty macros. See io.h. */ dma_cache_inv((unsigned long)buf, nbytes); dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ au_sync(); dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } EXPORT_SYMBOL(_au1xxx_dbdma_put_dest); /* * Get a destination buffer into the DMA ring. * Normally used to get a full buffer from the ring during fifo * to memory transfers. This does not set the valid bit, you will * have to put another destination buffer to keep the DMA going. */ u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; u32 rv; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->get_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Return buffer address and byte count. */ *buf = (void *)(phys_to_virt(dp->dscr_dest0)); *nbytes = dp->dscr_cmd1; rv = dp->dscr_stat; /* Get next descriptor pointer. */ ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return rv; } EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); void au1xxx_dbdma_stop(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; int halt_timeout = 0; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ au_sync(); while (!(cp->ddma_stat & DDMA_STAT_H)) { udelay(1); halt_timeout++; if (halt_timeout > 100) { printk(KERN_WARNING "warning: DMA channel won't halt\n"); break; } } /* clear current desc valid and doorbell */ cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); au_sync(); } EXPORT_SYMBOL(au1xxx_dbdma_stop); /* * Start using the current descriptor pointer. If the DBDMA encounters * a non-valid descriptor, it will stop. In this case, we can just * continue by adding a buffer to the list and starting again. */ void au1xxx_dbdma_start(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ au_sync(); cp->ddma_dbell = 0; au_sync(); } EXPORT_SYMBOL(au1xxx_dbdma_start); void au1xxx_dbdma_reset(u32 chanid) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; au1xxx_dbdma_stop(chanid); ctp = *((chan_tab_t **)chanid); ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; /* Run through the descriptors and reset the valid indicator. */ dp = ctp->chan_desc_base; do { dp->dscr_cmd0 &= ~DSCR_CMD0_V; /* * Reset our software status -- this is used to determine * if a descriptor is in use by upper level software. Since * posting can reset 'V' bit. */ dp->sw_status = 0; dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } while (dp != ctp->chan_desc_base); } EXPORT_SYMBOL(au1xxx_dbdma_reset); u32 au1xxx_get_dma_residue(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; u32 rv; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; /* This is only valid if the channel is stopped. */ rv = cp->ddma_bytecnt; au_sync(); return rv; } EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); void au1xxx_dbdma_chan_free(u32 chanid) { chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; au1xxx_dbdma_stop(chanid); kfree((void *)ctp->chan_desc_base); stp->dev_flags &= ~DEV_FLAGS_INUSE; dtp->dev_flags &= ~DEV_FLAGS_INUSE; chan_tab_ptr[ctp->chan_index] = NULL; kfree(ctp); } EXPORT_SYMBOL(au1xxx_dbdma_chan_free); static irqreturn_t dbdma_interrupt(int irq, void *dev_id) { u32 intstat; u32 chan_index; chan_tab_t *ctp; au1x_ddma_desc_t *dp; au1x_dma_chan_t *cp; intstat = dbdma_gptr->ddma_intstat; au_sync(); chan_index = __ffs(intstat); ctp = chan_tab_ptr[chan_index]; cp = ctp->chan_ptr; dp = ctp->cur_ptr; /* Reset interrupt. */ cp->ddma_irq = 0; au_sync(); if (ctp->chan_callback) ctp->chan_callback(irq, ctp->chan_callparam); ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); return IRQ_RETVAL(1); } static void au1xxx_dbdma_init(void) { int irq_nr; dbdma_gptr->ddma_config = 0; dbdma_gptr->ddma_throttle = 0; dbdma_gptr->ddma_inten = 0xffff; au_sync(); #if defined(CONFIG_SOC_AU1550) irq_nr = AU1550_DDMA_INT; #elif defined(CONFIG_SOC_AU1200) irq_nr = AU1200_DDMA_INT; #else #error Unknown Au1x00 SOC #endif if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED, "Au1xxx dbdma", (void *)dbdma_gptr)) printk(KERN_ERR "Can't get 1550 dbdma irq"); } void au1xxx_dbdma_dump(u32 chanid) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; dbdev_tab_t *stp, *dtp; au1x_dma_chan_t *cp; u32 i = 0; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; cp = ctp->chan_ptr; printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n", (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab); printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt); /* Run through the descriptors */ dp = ctp->chan_desc_base; do { printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", dp->dscr_stat, dp->dscr_nxtptr); dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } while (dp != ctp->chan_desc_base); } /* Put a descriptor into the DMA ring. * This updates the source/destination pointers and byte count. */ u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; u32 nbytes = 0; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer addresses and byte count. */ dp->dscr_dest0 = dscr->dscr_dest0; dp->dscr_source0 = dscr->dscr_source0; dp->dscr_dest1 = dscr->dscr_dest1; dp->dscr_source1 = dscr->dscr_source1; dp->dscr_cmd1 = dscr->dscr_cmd1; nbytes = dscr->dscr_cmd1; /* Allow the caller to specifiy if an interrupt is generated */ dp->dscr_cmd0 &= ~DSCR_CMD0_IE; dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } #ifdef CONFIG_PM void au1xxx_dbdma_suspend(void) { int i; u32 addr; addr = DDMA_GLOBAL_BASE; au1xxx_dbdma_pm_regs[0][0] = au_readl(addr + 0x00); au1xxx_dbdma_pm_regs[0][1] = au_readl(addr + 0x04); au1xxx_dbdma_pm_regs[0][2] = au_readl(addr + 0x08); au1xxx_dbdma_pm_regs[0][3] = au_readl(addr + 0x0c); /* save channel configurations */ for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) { au1xxx_dbdma_pm_regs[i][0] = au_readl(addr + 0x00); au1xxx_dbdma_pm_regs[i][1] = au_readl(addr + 0x04); au1xxx_dbdma_pm_regs[i][2] = au_readl(addr + 0x08); au1xxx_dbdma_pm_regs[i][3] = au_readl(addr + 0x0c); au1xxx_dbdma_pm_regs[i][4] = au_readl(addr + 0x10); au1xxx_dbdma_pm_regs[i][5] = au_readl(addr + 0x14); /* halt channel */ au_writel(au1xxx_dbdma_pm_regs[i][0] & ~1, addr + 0x00); au_sync(); while (!(au_readl(addr + 0x14) & 1)) au_sync(); addr += 0x100; /* next channel base */ } /* disable channel interrupts */ au_writel(0, DDMA_GLOBAL_BASE + 0x0c); au_sync(); } void au1xxx_dbdma_resume(void) { int i; u32 addr; addr = DDMA_GLOBAL_BASE; au_writel(au1xxx_dbdma_pm_regs[0][0], addr + 0x00); au_writel(au1xxx_dbdma_pm_regs[0][1], addr + 0x04); au_writel(au1xxx_dbdma_pm_regs[0][2], addr + 0x08); au_writel(au1xxx_dbdma_pm_regs[0][3], addr + 0x0c); /* restore channel configurations */ for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) { au_writel(au1xxx_dbdma_pm_regs[i][0], addr + 0x00); au_writel(au1xxx_dbdma_pm_regs[i][1], addr + 0x04); au_writel(au1xxx_dbdma_pm_regs[i][2], addr + 0x08); au_writel(au1xxx_dbdma_pm_regs[i][3], addr + 0x0c); au_writel(au1xxx_dbdma_pm_regs[i][4], addr + 0x10); au_writel(au1xxx_dbdma_pm_regs[i][5], addr + 0x14); au_sync(); addr += 0x100; /* next channel base */ } } #endif /* CONFIG_PM */ #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ |