Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | /* * lib/prio_tree.c - priority search tree * * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> * * This file is released under the GPL v2. * * Based on the radix priority search tree proposed by Edward M. McCreight * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 * * 02Feb2004 Initial version */ #include <linux/init.h> #include <linux/mm.h> #include <linux/prio_tree.h> /* * A clever mix of heap and radix trees forms a radix priority search tree (PST) * which is useful for storing intervals, e.g, we can consider a vma as a closed * interval of file pages [offset_begin, offset_end], and store all vmas that * map a file in a PST. Then, using the PST, we can answer a stabbing query, * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a * given input interval X (a set of consecutive file pages), in "O(log n + m)" * time where 'log n' is the height of the PST, and 'm' is the number of stored * intervals (vmas) that overlap (map) with the input interval X (the set of * consecutive file pages). * * In our implementation, we store closed intervals of the form [radix_index, * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST * is designed for storing intervals with unique radix indices, i.e., each * interval have different radix_index. However, this limitation can be easily * overcome by using the size, i.e., heap_index - radix_index, as part of the * index, so we index the tree using [(radix_index,size), heap_index]. * * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit * machine, the maximum height of a PST can be 64. We can use a balanced version * of the priority search tree to optimize the tree height, but the balanced * tree proposed by McCreight is too complex and memory-hungry for our purpose. */ /* * The following macros are used for implementing prio_tree for i_mmap */ #define RADIX_INDEX(vma) ((vma)->vm_pgoff) #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) /* avoid overflow */ #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) static void get_index(const struct prio_tree_root *root, const struct prio_tree_node *node, unsigned long *radix, unsigned long *heap) { if (root->raw) { struct vm_area_struct *vma = prio_tree_entry( node, struct vm_area_struct, shared.prio_tree_node); *radix = RADIX_INDEX(vma); *heap = HEAP_INDEX(vma); } else { *radix = node->start; *heap = node->last; } } static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; void __init prio_tree_init(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; } /* * Maximum heap_index that can be stored in a PST with index_bits bits */ static inline unsigned long prio_tree_maxindex(unsigned int bits) { return index_bits_to_maxindex[bits - 1]; } /* * Extend a priority search tree so that it can store a node with heap_index * max_heap_index. In the worst case, this algorithm takes O((log n)^2). * However, this function is used rarely and the common case performance is * not bad. */ static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, struct prio_tree_node *node, unsigned long max_heap_index) { struct prio_tree_node *first = NULL, *prev, *last = NULL; if (max_heap_index > prio_tree_maxindex(root->index_bits)) root->index_bits++; while (max_heap_index > prio_tree_maxindex(root->index_bits)) { root->index_bits++; if (prio_tree_empty(root)) continue; if (first == NULL) { first = root->prio_tree_node; prio_tree_remove(root, root->prio_tree_node); INIT_PRIO_TREE_NODE(first); last = first; } else { prev = last; last = root->prio_tree_node; prio_tree_remove(root, root->prio_tree_node); INIT_PRIO_TREE_NODE(last); prev->left = last; last->parent = prev; } } INIT_PRIO_TREE_NODE(node); if (first) { node->left = first; first->parent = node; } else last = node; if (!prio_tree_empty(root)) { last->left = root->prio_tree_node; last->left->parent = last; } root->prio_tree_node = node; return node; } /* * Replace a prio_tree_node with a new node and return the old node */ struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, struct prio_tree_node *old, struct prio_tree_node *node) { INIT_PRIO_TREE_NODE(node); if (prio_tree_root(old)) { BUG_ON(root->prio_tree_node != old); /* * We can reduce root->index_bits here. However, it is complex * and does not help much to improve performance (IMO). */ node->parent = node; root->prio_tree_node = node; } else { node->parent = old->parent; if (old->parent->left == old) old->parent->left = node; else old->parent->right = node; } if (!prio_tree_left_empty(old)) { node->left = old->left; old->left->parent = node; } if (!prio_tree_right_empty(old)) { node->right = old->right; old->right->parent = node; } return old; } /* * Insert a prio_tree_node @node into a radix priority search tree @root. The * algorithm typically takes O(log n) time where 'log n' is the number of bits * required to represent the maximum heap_index. In the worst case, the algo * can take O((log n)^2) - check prio_tree_expand. * * If a prior node with same radix_index and heap_index is already found in * the tree, then returns the address of the prior node. Otherwise, inserts * @node into the tree and returns @node. */ struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, struct prio_tree_node *node) { struct prio_tree_node *cur, *res = node; unsigned long radix_index, heap_index; unsigned long r_index, h_index, index, mask; int size_flag = 0; get_index(root, node, &radix_index, &heap_index); if (prio_tree_empty(root) || heap_index > prio_tree_maxindex(root->index_bits)) return prio_tree_expand(root, node, heap_index); cur = root->prio_tree_node; mask = 1UL << (root->index_bits - 1); while (mask) { get_index(root, cur, &r_index, &h_index); if (r_index == radix_index && h_index == heap_index) return cur; if (h_index < heap_index || (h_index == heap_index && r_index > radix_index)) { struct prio_tree_node *tmp = node; node = prio_tree_replace(root, cur, node); cur = tmp; /* swap indices */ index = r_index; r_index = radix_index; radix_index = index; index = h_index; h_index = heap_index; heap_index = index; } if (size_flag) index = heap_index - radix_index; else index = radix_index; if (index & mask) { if (prio_tree_right_empty(cur)) { INIT_PRIO_TREE_NODE(node); cur->right = node; node->parent = cur; return res; } else cur = cur->right; } else { if (prio_tree_left_empty(cur)) { INIT_PRIO_TREE_NODE(node); cur->left = node; node->parent = cur; return res; } else cur = cur->left; } mask >>= 1; if (!mask) { mask = 1UL << (BITS_PER_LONG - 1); size_flag = 1; } } /* Should not reach here */ BUG(); return NULL; } /* * Remove a prio_tree_node @node from a radix priority search tree @root. The * algorithm takes O(log n) time where 'log n' is the number of bits required * to represent the maximum heap_index. */ void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) { struct prio_tree_node *cur; unsigned long r_index, h_index_right, h_index_left; cur = node; while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { if (!prio_tree_left_empty(cur)) get_index(root, cur->left, &r_index, &h_index_left); else { cur = cur->right; continue; } if (!prio_tree_right_empty(cur)) get_index(root, cur->right, &r_index, &h_index_right); else { cur = cur->left; continue; } /* both h_index_left and h_index_right cannot be 0 */ if (h_index_left >= h_index_right) cur = cur->left; else cur = cur->right; } if (prio_tree_root(cur)) { BUG_ON(root->prio_tree_node != cur); __INIT_PRIO_TREE_ROOT(root, root->raw); return; } if (cur->parent->right == cur) cur->parent->right = cur->parent; else cur->parent->left = cur->parent; while (cur != node) cur = prio_tree_replace(root, cur->parent, cur); } /* * Following functions help to enumerate all prio_tree_nodes in the tree that * overlap with the input interval X [radix_index, heap_index]. The enumeration * takes O(log n + m) time where 'log n' is the height of the tree (which is * proportional to # of bits required to represent the maximum heap_index) and * 'm' is the number of prio_tree_nodes that overlap the interval X. */ static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, unsigned long *r_index, unsigned long *h_index) { if (prio_tree_left_empty(iter->cur)) return NULL; get_index(iter->root, iter->cur->left, r_index, h_index); if (iter->r_index <= *h_index) { iter->cur = iter->cur->left; iter->mask >>= 1; if (iter->mask) { if (iter->size_level) iter->size_level++; } else { if (iter->size_level) { BUG_ON(!prio_tree_left_empty(iter->cur)); BUG_ON(!prio_tree_right_empty(iter->cur)); iter->size_level++; iter->mask = ULONG_MAX; } else { iter->size_level = 1; iter->mask = 1UL << (BITS_PER_LONG - 1); } } return iter->cur; } return NULL; } static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, unsigned long *r_index, unsigned long *h_index) { unsigned long value; if (prio_tree_right_empty(iter->cur)) return NULL; if (iter->size_level) value = iter->value; else value = iter->value | iter->mask; if (iter->h_index < value) return NULL; get_index(iter->root, iter->cur->right, r_index, h_index); if (iter->r_index <= *h_index) { iter->cur = iter->cur->right; iter->mask >>= 1; iter->value = value; if (iter->mask) { if (iter->size_level) iter->size_level++; } else { if (iter->size_level) { BUG_ON(!prio_tree_left_empty(iter->cur)); BUG_ON(!prio_tree_right_empty(iter->cur)); iter->size_level++; iter->mask = ULONG_MAX; } else { iter->size_level = 1; iter->mask = 1UL << (BITS_PER_LONG - 1); } } return iter->cur; } return NULL; } static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) { iter->cur = iter->cur->parent; if (iter->mask == ULONG_MAX) iter->mask = 1UL; else if (iter->size_level == 1) iter->mask = 1UL; else iter->mask <<= 1; if (iter->size_level) iter->size_level--; if (!iter->size_level && (iter->value & iter->mask)) iter->value ^= iter->mask; return iter->cur; } static inline int overlap(struct prio_tree_iter *iter, unsigned long r_index, unsigned long h_index) { return iter->h_index >= r_index && iter->r_index <= h_index; } /* * prio_tree_first: * * Get the first prio_tree_node that overlaps with the interval [radix_index, * heap_index]. Note that always radix_index <= heap_index. We do a pre-order * traversal of the tree. */ static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) { struct prio_tree_root *root; unsigned long r_index, h_index; INIT_PRIO_TREE_ITER(iter); root = iter->root; if (prio_tree_empty(root)) return NULL; get_index(root, root->prio_tree_node, &r_index, &h_index); if (iter->r_index > h_index) return NULL; iter->mask = 1UL << (root->index_bits - 1); iter->cur = root->prio_tree_node; while (1) { if (overlap(iter, r_index, h_index)) return iter->cur; if (prio_tree_left(iter, &r_index, &h_index)) continue; if (prio_tree_right(iter, &r_index, &h_index)) continue; break; } return NULL; } /* * prio_tree_next: * * Get the next prio_tree_node that overlaps with the input interval in iter */ struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) { unsigned long r_index, h_index; if (iter->cur == NULL) return prio_tree_first(iter); repeat: while (prio_tree_left(iter, &r_index, &h_index)) if (overlap(iter, r_index, h_index)) return iter->cur; while (!prio_tree_right(iter, &r_index, &h_index)) { while (!prio_tree_root(iter->cur) && iter->cur->parent->right == iter->cur) prio_tree_parent(iter); if (prio_tree_root(iter->cur)) return NULL; prio_tree_parent(iter); } if (overlap(iter, r_index, h_index)) return iter->cur; goto repeat; } |