Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | /* * Copyright (C) 2003, Axis Communications AB. */ #include <asm/irq.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/profile.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/threads.h> #include <linux/spinlock.h> #include <linux/kernel_stat.h> #include <hwregs/reg_map.h> #include <hwregs/reg_rdwr.h> #include <hwregs/intr_vect.h> #include <hwregs/intr_vect_defs.h> #define CPU_FIXED -1 /* IRQ masks (refer to comment for crisv32_do_multiple) */ #if TIMER0_INTR_VECT - FIRST_IRQ < 32 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ)) #undef TIMER_VECT1 #else #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32)) #define TIMER_VECT1 #endif #ifdef CONFIG_ETRAX_KGDB #if defined(CONFIG_ETRAX_KGDB_PORT0) #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGDB_PORT1) #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGB_PORT2) #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGDB_PORT3) #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ)) #endif #endif DEFINE_SPINLOCK(irq_lock); struct cris_irq_allocation { int cpu; /* The CPU to which the IRQ is currently allocated. */ cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */ }; struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] = { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} }; static unsigned long irq_regs[NR_CPUS] = { regi_irq, #ifdef CONFIG_SMP regi_irq2, #endif }; #if NR_REAL_IRQS > 32 #define NBR_REGS 2 #else #define NBR_REGS 1 #endif unsigned long cpu_irq_counters[NR_CPUS]; unsigned long irq_counters[NR_REAL_IRQS]; /* From irq.c. */ extern void weird_irq(void); /* From entry.S. */ extern void system_call(void); extern void nmi_interrupt(void); extern void multiple_interrupt(void); extern void gdb_handle_exception(void); extern void i_mmu_refill(void); extern void i_mmu_invalid(void); extern void i_mmu_access(void); extern void i_mmu_execute(void); extern void d_mmu_refill(void); extern void d_mmu_invalid(void); extern void d_mmu_access(void); extern void d_mmu_write(void); /* From kgdb.c. */ extern void kgdb_init(void); extern void breakpoint(void); /* From traps.c. */ extern void breakh_BUG(void); /* * Build the IRQ handler stubs using macros from irq.h. */ BUILD_IRQ(0x31) BUILD_IRQ(0x32) BUILD_IRQ(0x33) BUILD_IRQ(0x34) BUILD_IRQ(0x35) BUILD_IRQ(0x36) BUILD_IRQ(0x37) BUILD_IRQ(0x38) BUILD_IRQ(0x39) BUILD_IRQ(0x3a) BUILD_IRQ(0x3b) BUILD_IRQ(0x3c) BUILD_IRQ(0x3d) BUILD_IRQ(0x3e) BUILD_IRQ(0x3f) BUILD_IRQ(0x40) BUILD_IRQ(0x41) BUILD_IRQ(0x42) BUILD_IRQ(0x43) BUILD_IRQ(0x44) BUILD_IRQ(0x45) BUILD_IRQ(0x46) BUILD_IRQ(0x47) BUILD_IRQ(0x48) BUILD_IRQ(0x49) BUILD_IRQ(0x4a) BUILD_IRQ(0x4b) BUILD_IRQ(0x4c) BUILD_IRQ(0x4d) BUILD_IRQ(0x4e) BUILD_IRQ(0x4f) BUILD_IRQ(0x50) #if MACH_IRQS > 32 BUILD_IRQ(0x51) BUILD_IRQ(0x52) BUILD_IRQ(0x53) BUILD_IRQ(0x54) BUILD_IRQ(0x55) BUILD_IRQ(0x56) BUILD_IRQ(0x57) BUILD_IRQ(0x58) BUILD_IRQ(0x59) BUILD_IRQ(0x5a) BUILD_IRQ(0x5b) BUILD_IRQ(0x5c) BUILD_IRQ(0x5d) BUILD_IRQ(0x5e) BUILD_IRQ(0x5f) BUILD_IRQ(0x60) BUILD_IRQ(0x61) BUILD_IRQ(0x62) BUILD_IRQ(0x63) BUILD_IRQ(0x64) BUILD_IRQ(0x65) BUILD_IRQ(0x66) BUILD_IRQ(0x67) BUILD_IRQ(0x68) BUILD_IRQ(0x69) BUILD_IRQ(0x6a) BUILD_IRQ(0x6b) BUILD_IRQ(0x6c) BUILD_IRQ(0x6d) BUILD_IRQ(0x6e) BUILD_IRQ(0x6f) BUILD_IRQ(0x70) #endif /* Pointers to the low-level handlers. */ static void (*interrupt[MACH_IRQS])(void) = { IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt, IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt, IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt, IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt, IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt, IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt, IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt, IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt, IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt, IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt, IRQ0x4f_interrupt, IRQ0x50_interrupt, #if MACH_IRQS > 32 IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt, IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt, IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt, IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt, IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt, IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt, IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt, IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt, IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt, IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt, IRQ0x6f_interrupt, IRQ0x70_interrupt, #endif }; void block_irq(int irq, int cpu) { int intr_mask; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); if (irq - FIRST_IRQ < 32) intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0); else intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1); /* Remember; 1 let thru, 0 block. */ if (irq - FIRST_IRQ < 32) intr_mask &= ~(1 << (irq - FIRST_IRQ)); else intr_mask &= ~(1 << (irq - FIRST_IRQ - 32)); if (irq - FIRST_IRQ < 32) REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0, intr_mask); else REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1, intr_mask); spin_unlock_irqrestore(&irq_lock, flags); } void unblock_irq(int irq, int cpu) { int intr_mask; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); if (irq - FIRST_IRQ < 32) intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0); else intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1); /* Remember; 1 let thru, 0 block. */ if (irq - FIRST_IRQ < 32) intr_mask |= (1 << (irq - FIRST_IRQ)); else intr_mask |= (1 << (irq - FIRST_IRQ - 32)); if (irq - FIRST_IRQ < 32) REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0, intr_mask); else REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1, intr_mask); spin_unlock_irqrestore(&irq_lock, flags); } /* Find out which CPU the irq should be allocated to. */ static int irq_cpu(int irq) { int cpu; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); cpu = irq_allocations[irq - FIRST_IRQ].cpu; /* Fixed interrupts stay on the local CPU. */ if (cpu == CPU_FIXED) { spin_unlock_irqrestore(&irq_lock, flags); return smp_processor_id(); } /* Let the interrupt stay if possible */ if (cpu_isset(cpu, irq_allocations[irq - FIRST_IRQ].mask)) goto out; /* IRQ must be moved to another CPU. */ cpu = first_cpu(irq_allocations[irq - FIRST_IRQ].mask); irq_allocations[irq - FIRST_IRQ].cpu = cpu; out: spin_unlock_irqrestore(&irq_lock, flags); return cpu; } void mask_irq(int irq) { int cpu; for (cpu = 0; cpu < NR_CPUS; cpu++) block_irq(irq, cpu); } void unmask_irq(int irq) { unblock_irq(irq, irq_cpu(irq)); } static unsigned int startup_crisv32_irq(unsigned int irq) { unmask_irq(irq); return 0; } static void shutdown_crisv32_irq(unsigned int irq) { mask_irq(irq); } static void enable_crisv32_irq(unsigned int irq) { unmask_irq(irq); } static void disable_crisv32_irq(unsigned int irq) { mask_irq(irq); } static void ack_crisv32_irq(unsigned int irq) { } static void end_crisv32_irq(unsigned int irq) { } int set_affinity_crisv32_irq(unsigned int irq, const struct cpumask *dest) { unsigned long flags; spin_lock_irqsave(&irq_lock, flags); irq_allocations[irq - FIRST_IRQ].mask = *dest; spin_unlock_irqrestore(&irq_lock, flags); return 0; } static struct irq_chip crisv32_irq_type = { .typename = "CRISv32", .startup = startup_crisv32_irq, .shutdown = shutdown_crisv32_irq, .enable = enable_crisv32_irq, .disable = disable_crisv32_irq, .ack = ack_crisv32_irq, .end = end_crisv32_irq, .set_affinity = set_affinity_crisv32_irq }; void set_exception_vector(int n, irqvectptr addr) { etrax_irv->v[n] = (irqvectptr) addr; } extern void do_IRQ(int irq, struct pt_regs * regs); void crisv32_do_IRQ(int irq, int block, struct pt_regs* regs) { /* Interrupts that may not be moved to another CPU and * are IRQF_DISABLED may skip blocking. This is currently * only valid for the timer IRQ and the IPI and is used * for the timer interrupt to avoid watchdog starvation. */ if (!block) { do_IRQ(irq, regs); return; } block_irq(irq, smp_processor_id()); do_IRQ(irq, regs); unblock_irq(irq, irq_cpu(irq)); } /* If multiple interrupts occur simultaneously we get a multiple * interrupt from the CPU and software has to sort out which * interrupts that happened. There are two special cases here: * * 1. Timer interrupts may never be blocked because of the * watchdog (refer to comment in include/asr/arch/irq.h) * 2. GDB serial port IRQs are unhandled here and will be handled * as a single IRQ when it strikes again because the GDB * stubb wants to save the registers in its own fashion. */ void crisv32_do_multiple(struct pt_regs* regs) { int cpu; int mask; int masked[NBR_REGS]; int bit; int i; cpu = smp_processor_id(); /* An extra irq_enter here to prevent softIRQs to run after * each do_IRQ. This will decrease the interrupt latency. */ irq_enter(); for (i = 0; i < NBR_REGS; i++) { /* Get which IRQs that happend. */ masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], r_masked_vect, i); /* Calculate new IRQ mask with these IRQs disabled. */ mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); mask &= ~masked[i]; /* Timer IRQ is never masked */ #ifdef TIMER_VECT1 if ((i == 1) && (masked[0] & TIMER_MASK)) mask |= TIMER_MASK; #else if ((i == 0) && (masked[0] & TIMER_MASK)) mask |= TIMER_MASK; #endif /* Block all the IRQs */ REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); /* Check for timer IRQ and handle it special. */ #ifdef TIMER_VECT1 if ((i == 1) && (masked[i] & TIMER_MASK)) { masked[i] &= ~TIMER_MASK; do_IRQ(TIMER0_INTR_VECT, regs); } #else if ((i == 0) && (masked[i] & TIMER_MASK)) { masked[i] &= ~TIMER_MASK; do_IRQ(TIMER0_INTR_VECT, regs); } #endif } #ifdef IGNORE_MASK /* Remove IRQs that can't be handled as multiple. */ masked[0] &= ~IGNORE_MASK; #endif /* Handle the rest of the IRQs. */ for (i = 0; i < NBR_REGS; i++) { for (bit = 0; bit < 32; bit++) { if (masked[i] & (1 << bit)) do_IRQ(bit + FIRST_IRQ + i*32, regs); } } /* Unblock all the IRQs. */ for (i = 0; i < NBR_REGS; i++) { mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); mask |= masked[i]; REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); } /* This irq_exit() will trigger the soft IRQs. */ irq_exit(); } /* * This is called by start_kernel. It fixes the IRQ masks and setup the * interrupt vector table to point to bad_interrupt pointers. */ void __init init_IRQ(void) { int i; int j; reg_intr_vect_rw_mask vect_mask = {0}; /* Clear all interrupts masks. */ for (i = 0; i < NBR_REGS; i++) REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask); for (i = 0; i < 256; i++) etrax_irv->v[i] = weird_irq; /* Point all IRQ's to bad handlers. */ for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) { irq_desc[j].chip = &crisv32_irq_type; set_exception_vector(i, interrupt[j]); } /* Mark Timer and IPI IRQs as CPU local */ irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; irq_desc[TIMER0_INTR_VECT].status |= IRQ_PER_CPU; irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; irq_desc[IPI_INTR_VECT].status |= IRQ_PER_CPU; set_exception_vector(0x00, nmi_interrupt); set_exception_vector(0x30, multiple_interrupt); /* Set up handler for various MMU bus faults. */ set_exception_vector(0x04, i_mmu_refill); set_exception_vector(0x05, i_mmu_invalid); set_exception_vector(0x06, i_mmu_access); set_exception_vector(0x07, i_mmu_execute); set_exception_vector(0x08, d_mmu_refill); set_exception_vector(0x09, d_mmu_invalid); set_exception_vector(0x0a, d_mmu_access); set_exception_vector(0x0b, d_mmu_write); #ifdef CONFIG_BUG /* Break 14 handler, used to implement cheap BUG(). */ set_exception_vector(0x1e, breakh_BUG); #endif /* The system-call trap is reached by "break 13". */ set_exception_vector(0x1d, system_call); /* Exception handlers for debugging, both user-mode and kernel-mode. */ /* Break 8. */ set_exception_vector(0x18, gdb_handle_exception); /* Hardware single step. */ set_exception_vector(0x3, gdb_handle_exception); /* Hardware breakpoint. */ set_exception_vector(0xc, gdb_handle_exception); #ifdef CONFIG_ETRAX_KGDB kgdb_init(); /* Everything is set up; now trap the kernel. */ breakpoint(); #endif } |