Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
/*
 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
 *
 * Copyright (C) 2003, 2007  IC Plus Corp
 *
 * Original Author:
 *
 *   Craig Rich
 *   Sundance Technology, Inc.
 *   www.sundanceti.com
 *   craig_rich@sundanceti.com
 *
 * Current Maintainer:
 *
 *   Sorbica Shieh.
 *   http://www.icplus.com.tw
 *   sorbica@icplus.com.tw
 *
 *   Jesse Huang
 *   http://www.icplus.com.tw
 *   jesse@icplus.com.tw
 */
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/mutex.h>

#include <asm/div64.h>

#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
#define IPG_RESET_MASK \
	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
	 IPG_AC_AUTO_INIT)

#define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
#define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
#define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))

#define ipg_r32(reg)		ioread32(ioaddr + (reg))
#define ipg_r16(reg)		ioread16(ioaddr + (reg))
#define ipg_r8(reg)		ioread8(ioaddr + (reg))

enum {
	netdev_io_size = 128
};

#include "ipg.h"
#define DRV_NAME	"ipg"

MODULE_AUTHOR("IC Plus Corp. 2003");
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
MODULE_LICENSE("GPL");

/*
 * Defaults
 */
#define IPG_MAX_RXFRAME_SIZE	0x0600
#define IPG_RXFRAG_SIZE		0x0600
#define IPG_RXSUPPORT_SIZE	0x0600
#define IPG_IS_JUMBO		false

/*
 * Variable record -- index by leading revision/length
 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
 */
static unsigned short DefaultPhyParam[] = {
	/* 11/12/03 IP1000A v1-3 rev=0x40 */
	/*--------------------------------------------------------------------------
	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
	  --------------------------------------------------------------------------*/
	/* 12/17/03 IP1000A v1-4 rev=0x40 */
	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	/* 01/09/04 IP1000A v1-5 rev=0x41 */
	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	0x0000
};

static const char *ipg_brand_name[] = {
	"IC PLUS IP1000 1000/100/10 based NIC",
	"Sundance Technology ST2021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"D-Link NIC IP1000A"
};

static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
	{ PCI_VDEVICE(SUNDANCE,	0x1021), 2 },
	{ PCI_VDEVICE(DLINK,	0x9021), 3 },
	{ PCI_VDEVICE(DLINK,	0x4020), 4 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);

static inline void __iomem *ipg_ioaddr(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	return sp->ioaddr;
}

#ifdef IPG_DEBUG
static void ipg_dump_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_rfdlist\n");

	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
	printk(KERN_INFO "RFDList start address = %16.16lx\n",
	       (unsigned long) sp->rxd_map);
	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].next_desc);
		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].rfs);
		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].frag_info);
	}
}

static void ipg_dump_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_tfdlist\n");

	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
	printk(KERN_INFO "TFDList start address = %16.16lx\n",
	       (unsigned long) sp->txd_map);
	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].next_desc);

		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].tfc);
		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].frag_info);
	}
}
#endif

static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
{
	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
	ndelay(IPG_PC_PHYCTRLWAIT_NS);
}

static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
{
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
}

static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;

	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
}

static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
}

static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	u16 bit_data;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);

	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);

	return bit_data;
}

/*
 * Read a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of read data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_READ,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0000,		2  },	/* TA */
		{ 0x0000,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 5; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	send_three_state(ioaddr, polarity);

	read_phy_bit(ioaddr, polarity);

	/*
	 * For a read cycle, the bits for the next two fields (TA and
	 * DATA) are driven by the PHY (the IPG reads these bits).
	 */
	for (i = 0; i < p[6].len; i++) {
		p[6].field |=
		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
	}

	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_end(ioaddr, polarity);

	/* Return the value of the DATA field. */
	return p[6].field;
}

/*
 * Write to a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of write data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_WRITE,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0002,		2  },	/* TA */
		{ val & 0xffff,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 7; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	/* The last cycle is a tri-state, so read from the PHY. */
	for (j = 7; j < 8; j++) {
		for (i = 0; i < p[j].len; i++) {
			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);

			p[j].field |= ((ipg_r8(PHY_CTRL) &
				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);

			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
		}
	}
}

static void ipg_set_led_mode(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u32 mode;

	mode = ipg_r32(ASIC_CTRL);
	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);

	if ((sp->led_mode & 0x03) > 1)
		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */

	if ((sp->led_mode & 0x01) == 1)
		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */

	if ((sp->led_mode & 0x08) == 8)
		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */

	ipg_w32(mode, ASIC_CTRL);
}

static void ipg_set_phy_set(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	int physet;

	physet = ipg_r8(PHY_SET);
	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
	physet |= ((sp->led_mode & 0x70) >> 4);
	ipg_w8(physet, PHY_SET);
}

static int ipg_reset(struct net_device *dev, u32 resetflags)
{
	/* Assert functional resets via the IPG AsicCtrl
	 * register as specified by the 'resetflags' input
	 * parameter.
	 */
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int timeout_count = 0;

	IPG_DEBUG_MSG("_reset\n");

	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);

	/* Delay added to account for problem with 10Mbps reset. */
	mdelay(IPG_AC_RESETWAIT);

	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
		mdelay(IPG_AC_RESETWAIT);
		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
			return -ETIME;
	}
	/* Set LED Mode in Asic Control */
	ipg_set_led_mode(dev);

	/* Set PHYSet Register Value */
	ipg_set_phy_set(dev);
	return 0;
}

/* Find the GMII PHY address. */
static int ipg_find_phyaddr(struct net_device *dev)
{
	unsigned int phyaddr, i;

	for (i = 0; i < 32; i++) {
		u32 status;

		/* Search for the correct PHY address among 32 possible. */
		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;

		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
		   GMII_PHY_ID1
		 */

		status = mdio_read(dev, phyaddr, MII_BMSR);

		if ((status != 0xFFFF) && (status != 0))
			return phyaddr;
	}

	return 0x1f;
}

/*
 * Configure IPG based on result of IEEE 802.3 PHY
 * auto-negotiation.
 */
static int ipg_config_autoneg(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int txflowcontrol;
	unsigned int rxflowcontrol;
	unsigned int fullduplex;
	u32 mac_ctrl_val;
	u32 asicctrl;
	u8 phyctrl;

	IPG_DEBUG_MSG("_config_autoneg\n");

	asicctrl = ipg_r32(ASIC_CTRL);
	phyctrl = ipg_r8(PHY_CTRL);
	mac_ctrl_val = ipg_r32(MAC_CTRL);

	/* Set flags for use in resolving auto-negotation, assuming
	 * non-1000Mbps, half duplex, no flow control.
	 */
	fullduplex = 0;
	txflowcontrol = 0;
	rxflowcontrol = 0;

	/* To accomodate a problem in 10Mbps operation,
	 * set a global flag if PHY running in 10Mbps mode.
	 */
	sp->tenmbpsmode = 0;

	printk(KERN_INFO "%s: Link speed = ", dev->name);

	/* Determine actual speed of operation. */
	switch (phyctrl & IPG_PC_LINK_SPEED) {
	case IPG_PC_LINK_SPEED_10MBPS:
		printk("10Mbps.\n");
		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
		       dev->name);
		sp->tenmbpsmode = 1;
		break;
	case IPG_PC_LINK_SPEED_100MBPS:
		printk("100Mbps.\n");
		break;
	case IPG_PC_LINK_SPEED_1000MBPS:
		printk("1000Mbps.\n");
		break;
	default:
		printk("undefined!\n");
		return 0;
	}

	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
		fullduplex = 1;
		txflowcontrol = 1;
		rxflowcontrol = 1;
	}

	/* Configure full duplex, and flow control. */
	if (fullduplex == 1) {
		/* Configure IPG for full duplex operation. */
		printk(KERN_INFO "%s: setting full duplex, ", dev->name);

		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;

		if (txflowcontrol == 1) {
			printk("TX flow control");
			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
		} else {
			printk("no TX flow control");
			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
		}

		if (rxflowcontrol == 1) {
			printk(", RX flow control.");
			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
		} else {
			printk(", no RX flow control.");
			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
		}

		printk("\n");
	} else {
		/* Configure IPG for half duplex operation. */
		printk(KERN_INFO "%s: setting half duplex, "
		       "no TX flow control, no RX flow control.\n", dev->name);

		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
	}
	ipg_w32(mac_ctrl_val, MAC_CTRL);
	return 0;
}

/* Determine and configure multicast operation and set
 * receive mode for IPG.
 */
static void ipg_nic_set_multicast_list(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	struct dev_mc_list *mc_list_ptr;
	unsigned int hashindex;
	u32 hashtable[2];
	u8 receivemode;

	IPG_DEBUG_MSG("_nic_set_multicast_list\n");

	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;

	if (dev->flags & IFF_PROMISC) {
		/* NIC to be configured in promiscuous mode. */
		receivemode = IPG_RM_RECEIVEALLFRAMES;
	} else if ((dev->flags & IFF_ALLMULTI) ||
		   ((dev->flags & IFF_MULTICAST) &&
		    (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
		/* NIC to be configured to receive all multicast
		 * frames. */
		receivemode |= IPG_RM_RECEIVEMULTICAST;
	} else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
		/* NIC to be configured to receive selected
		 * multicast addresses. */
		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
	}

	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
	 * The IPG applies a cyclic-redundancy-check (the same CRC
	 * used to calculate the frame data FCS) to the destination
	 * address all incoming multicast frames whose destination
	 * address has the multicast bit set. The least significant
	 * 6 bits of the CRC result are used as an addressing index
	 * into the hash table. If the value of the bit addressed by
	 * this index is a 1, the frame is passed to the host system.
	 */

	/* Clear hashtable. */
	hashtable[0] = 0x00000000;
	hashtable[1] = 0x00000000;

	/* Cycle through all multicast addresses to filter. */
	for (mc_list_ptr = dev->mc_list;
	     mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
		/* Calculate CRC result for each multicast address. */
		hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
				     ETH_ALEN);

		/* Use only the least significant 6 bits. */
		hashindex = hashindex & 0x3F;

		/* Within "hashtable", set bit number "hashindex"
		 * to a logic 1.
		 */
		set_bit(hashindex, (void *)hashtable);
	}

	/* Write the value of the hashtable, to the 4, 16 bit
	 * HASHTABLE IPG registers.
	 */
	ipg_w32(hashtable[0], HASHTABLE_0);
	ipg_w32(hashtable[1], HASHTABLE_1);

	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);

	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
}

static int ipg_io_config(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = ipg_ioaddr(dev);
	u32 origmacctrl;
	u32 restoremacctrl;

	IPG_DEBUG_MSG("_io_config\n");

	origmacctrl = ipg_r32(MAC_CTRL);

	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;

	/* Based on compilation option, determine if FCS is to be
	 * stripped on receive frames by IPG.
	 */
	if (!IPG_STRIP_FCS_ON_RX)
		restoremacctrl |= IPG_MC_RCV_FCS;

	/* Determine if transmitter and/or receiver are
	 * enabled so we may restore MACCTRL correctly.
	 */
	if (origmacctrl & IPG_MC_TX_ENABLED)
		restoremacctrl |= IPG_MC_TX_ENABLE;

	if (origmacctrl & IPG_MC_RX_ENABLED)
		restoremacctrl |= IPG_MC_RX_ENABLE;

	/* Transmitter and receiver must be disabled before setting
	 * IFSSelect.
	 */
	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
		IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Now that transmitter and receiver are disabled, write
	 * to IFSSelect.
	 */
	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Set RECEIVEMODE register. */
	ipg_nic_set_multicast_list(dev);

	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);

	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);

	/* IPG multi-frag frame bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);

	/* IPG TX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);

	/* IPG RX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);

	/* Now restore MACCTRL to original setting. */
	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);

	/* Disable unused RMON statistics. */
	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);

	/* Disable unused MIB statistics. */
	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);

	return 0;
}

/*
 * Create a receive buffer within system memory and update
 * NIC private structure appropriately.
 */
static int ipg_get_rxbuff(struct net_device *dev, int entry)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + entry;
	struct sk_buff *skb;
	u64 rxfragsize;

	IPG_DEBUG_MSG("_get_rxbuff\n");

	skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN);
	if (!skb) {
		sp->rx_buff[entry] = NULL;
		return -ENOMEM;
	}

	/* Adjust the data start location within the buffer to
	 * align IP address field to a 16 byte boundary.
	 */
	skb_reserve(skb, NET_IP_ALIGN);

	/* Associate the receive buffer with the IPG NIC. */
	skb->dev = dev;

	/* Save the address of the sk_buff structure. */
	sp->rx_buff[entry] = skb;

	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));

	/* Set the RFD fragment length. */
	rxfragsize = sp->rxfrag_size;
	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);

	return 0;
}

static int init_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_rfdlist\n");

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		struct ipg_rx *rxfd = sp->rxd + i;

		if (sp->rx_buff[i]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->rx_buff[i]);
			sp->rx_buff[i] = NULL;
		}

		/* Clear out the RFS field. */
		rxfd->rfs = 0x0000000000000000;

		if (ipg_get_rxbuff(dev, i) < 0) {
			/*
			 * A receive buffer was not ready, break the
			 * RFD list here.
			 */
			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");

			/* Just in case we cannot allocate a single RFD.
			 * Should not occur.
			 */
			if (i == 0) {
				printk(KERN_ERR "%s: No memory available"
					" for RFD list.\n", dev->name);
				return -ENOMEM;
			}
		}

		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
			sizeof(struct ipg_rx)*(i + 1));
	}
	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);

	sp->rx_current = 0;
	sp->rx_dirty = 0;

	/* Write the location of the RFDList to the IPG. */
	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
	ipg_w32(0x00000000, RFD_LIST_PTR_1);

	return 0;
}

static void init_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_tfdlist\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		struct ipg_tx *txfd = sp->txd + i;

		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

		if (sp->tx_buff[i]) {
			dev_kfree_skb_irq(sp->tx_buff[i]);
			sp->tx_buff[i] = NULL;
		}

		txfd->next_desc = cpu_to_le64(sp->txd_map +
			sizeof(struct ipg_tx)*(i + 1));
	}
	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);

	sp->tx_current = 0;
	sp->tx_dirty = 0;

	/* Write the location of the TFDList to the IPG. */
	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
		       (u32) sp->txd_map);
	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
	ipg_w32(0x00000000, TFD_LIST_PTR_1);

	sp->reset_current_tfd = 1;
}

/*
 * Free all transmit buffers which have already been transfered
 * via DMA to the IPG.
 */
static void ipg_nic_txfree(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int released, pending, dirty;

	IPG_DEBUG_MSG("_nic_txfree\n");

	pending = sp->tx_current - sp->tx_dirty;
	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;

	for (released = 0; released < pending; released++) {
		struct sk_buff *skb = sp->tx_buff[dirty];
		struct ipg_tx *txfd = sp->txd + dirty;

		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);

		/* Look at each TFD's TFC field beginning
		 * at the last freed TFD up to the current TFD.
		 * If the TFDDone bit is set, free the associated
		 * buffer.
		 */
		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
                        break;

		/* Free the transmit buffer. */
		if (skb) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				skb->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(skb);

			sp->tx_buff[dirty] = NULL;
		}
		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
	}

	sp->tx_dirty += released;

	if (netif_queue_stopped(dev) &&
	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
		netif_wake_queue(dev);
	}
}

static void ipg_tx_timeout(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;

	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
		  IPG_AC_FIFO);

	spin_lock_irq(&sp->lock);

	/* Re-configure after DMA reset. */
	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Error during re-configuration.\n",
		       dev->name);
	}

	init_tfdlist(dev);

	spin_unlock_irq(&sp->lock);

	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
		MAC_CTRL);
}

/*
 * For TxComplete interrupts, free all transmit
 * buffers which have already been transfered via DMA
 * to the IPG.
 */
static void ipg_nic_txcleanup(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_txcleanup\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		/* Reading the TXSTATUS register clears the
		 * TX_COMPLETE interrupt.
		 */
		u32 txstatusdword = ipg_r32(TX_STATUS);

		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);

		/* Check for Transmit errors. Error bits only valid if
		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
		 */
		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
			break;

		/* If in 10Mbps mode, indicate transmit is ready. */
		if (sp->tenmbpsmode) {
			netif_wake_queue(dev);
		}

		/* Transmit error, increment stat counters. */
		if (txstatusdword & IPG_TS_TX_ERROR) {
			IPG_DEBUG_MSG("Transmit error.\n");
			sp->stats.tx_errors++;
		}

		/* Late collision, re-enable transmitter. */
		if (txstatusdword & IPG_TS_LATE_COLLISION) {
			IPG_DEBUG_MSG("Late collision on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Maximum collisions, re-enable transmitter. */
		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Transmit underrun, reset and re-enable
		 * transmitter.
		 */
		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
			IPG_DEBUG_MSG("Transmitter underrun.\n");
			sp->stats.tx_fifo_errors++;
			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
				  IPG_AC_NETWORK | IPG_AC_FIFO);

			/* Re-configure after DMA reset. */
			if (ipg_io_config(dev) < 0) {
				printk(KERN_INFO
				       "%s: Error during re-configuration.\n",
				       dev->name);
			}
			init_tfdlist(dev);

			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}
	}

	ipg_nic_txfree(dev);
}

/* Provides statistical information about the IPG NIC. */
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u16 temp1;
	u16 temp2;

	IPG_DEBUG_MSG("_nic_get_stats\n");

	/* Check to see if the NIC has been initialized via nic_open,
	 * before trying to read statistic registers.
	 */
	if (!test_bit(__LINK_STATE_START, &dev->state))
		return &sp->stats;

	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
	sp->stats.rx_errors += temp1;
	sp->stats.rx_missed_errors += temp1;
	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
		ipg_r32(IPG_LATECOLLISIONS);
	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
	sp->stats.collisions += temp1;
	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);

	/* detailed tx_errors */
	sp->stats.tx_carrier_errors += temp2;

	/* detailed rx_errors */
	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
		ipg_r16(IPG_FRAMETOOLONGERRRORS);
	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);

	/* Unutilized IPG statistic registers. */
	ipg_r32(IPG_MCSTFRAMESRCVDOK);

	return &sp->stats;
}

/* Restore used receive buffers. */
static int ipg_nic_rxrestore(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	const unsigned int curr = sp->rx_current;
	unsigned int dirty = sp->rx_dirty;

	IPG_DEBUG_MSG("_nic_rxrestore\n");

	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;

		/* rx_copybreak may poke hole here and there. */
		if (sp->rx_buff[entry])
			continue;

		/* Generate a new receive buffer to replace the
		 * current buffer (which will be released by the
		 * Linux system).
		 */
		if (ipg_get_rxbuff(dev, entry) < 0) {
			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");

			break;
		}

		/* Reset the RFS field. */
		sp->rxd[entry].rfs = 0x0000000000000000;
	}
	sp->rx_dirty = dirty;

	return 0;
}

/* use jumboindex and jumbosize to control jumbo frame status
 * initial status is jumboindex=-1 and jumbosize=0
 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
 *               previous receiving and need to continue dumping the current one
 */
enum {
	NORMAL_PACKET,
	ERROR_PACKET
};

enum {
	FRAME_NO_START_NO_END	= 0,
	FRAME_WITH_START		= 1,
	FRAME_WITH_END		= 10,
	FRAME_WITH_START_WITH_END = 11
};

static void ipg_nic_rx_free_skb(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;

	if (sp->rx_buff[entry]) {
		struct ipg_rx *rxfd = sp->rxd + entry;

		pci_unmap_single(sp->pdev,
			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		dev_kfree_skb_irq(sp->rx_buff[entry]);
		sp->rx_buff[entry] = NULL;
	}
}

static int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
	int type = FRAME_NO_START_NO_END;

	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
		type += FRAME_WITH_START;
	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
		type += FRAME_WITH_END;
	return type;
}

static int ipg_nic_rx_check_error(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
	struct ipg_rx *rxfd = sp->rxd + entry;

	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
			      (unsigned long) rxfd->rfs);

		/* Increment general receive error statistic. */
		sp->stats.rx_errors++;

		/* Increment detailed receive error statistics. */
		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
			IPG_DEBUG_MSG("RX FIFO overrun occured.\n");

			sp->stats.rx_fifo_errors++;
		}

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
			IPG_DEBUG_MSG("RX runt occured.\n");
			sp->stats.rx_length_errors++;
		}

		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
		 * error count handled by a IPG statistic register.
		 */

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
			IPG_DEBUG_MSG("RX alignment error occured.\n");
			sp->stats.rx_frame_errors++;
		}

		/* Do nothing for IPG_RFS_RXFCSERROR, error count
		 * handled by a IPG statistic register.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->rx_buff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

			dev_kfree_skb_irq(sp->rx_buff[entry]);
			sp->rx_buff[entry] = NULL;
		}
		return ERROR_PACKET;
	}
	return NORMAL_PACKET;
}

static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
					  struct ipg_nic_private *sp,
					  struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;
	struct sk_buff *skb;
	int framelen;

	if (jumbo->found_start) {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
		return;

	skb = sp->rx_buff[entry];
	if (!skb)
		return;

	/* accept this frame and send to upper layer */
	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
	if (framelen > sp->rxfrag_size)
		framelen = sp->rxfrag_size;

	skb_put(skb, framelen);
	skb->protocol = eth_type_trans(skb, dev);
	skb->ip_summed = CHECKSUM_NONE;
	netif_rx(skb);
	sp->rx_buff[entry] = NULL;
}

static void ipg_nic_rx_with_start(struct net_device *dev,
				  struct ipg_nic_private *sp,
				  struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;
	struct pci_dev *pdev = sp->pdev;
	struct sk_buff *skb;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
		return;

	/* accept this frame and send to upper layer */
	skb = sp->rx_buff[entry];
	if (!skb)
		return;

	if (jumbo->found_start)
		dev_kfree_skb_irq(jumbo->skb);

	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

	skb_put(skb, sp->rxfrag_size);

	jumbo->found_start = 1;
	jumbo->current_size = sp->rxfrag_size;
	jumbo->skb = skb;

	sp->rx_buff[entry] = NULL;
}

static void ipg_nic_rx_with_end(struct net_device *dev,
				struct ipg_nic_private *sp,
				struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
		struct sk_buff *skb = sp->rx_buff[entry];

		if (!skb)
			return;

		if (jumbo->found_start) {
			int framelen, endframelen;

			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

			endframelen = framelen - jumbo->current_size;
			if (framelen > sp->rxsupport_size)
				dev_kfree_skb_irq(jumbo->skb);
			else {
				memcpy(skb_put(jumbo->skb, endframelen),
				       skb->data, endframelen);

				jumbo->skb->protocol =
				    eth_type_trans(jumbo->skb, dev);

				jumbo->skb->ip_summed = CHECKSUM_NONE;
				netif_rx(jumbo->skb);
			}
		}

		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;

		ipg_nic_rx_free_skb(dev);
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}
}

static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
				       struct ipg_nic_private *sp,
				       struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
		struct sk_buff *skb = sp->rx_buff[entry];

		if (skb) {
			if (jumbo->found_start) {
				jumbo->current_size += sp->rxfrag_size;
				if (jumbo->current_size <= sp->rxsupport_size) {
					memcpy(skb_put(jumbo->skb,
						       sp->rxfrag_size),
					       skb->data, sp->rxfrag_size);
				}
			}
			ipg_nic_rx_free_skb(dev);
		}
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}
}

static int ipg_nic_rx_jumbo(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct ipg_rx *rxfd = sp->rxd + entry;

		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
			break;

		switch (ipg_nic_rx_check_frame_type(dev)) {
		case FRAME_WITH_START_WITH_END:
			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
			break;
		case FRAME_WITH_START:
			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
			break;
		case FRAME_WITH_END:
			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
			break;
		case FRAME_NO_START_NO_END:
			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
			break;
		}
	}

	sp->rx_current = curr;

	if (i == IPG_MAXRFDPROCESS_COUNT) {
		/* There are more RFDs to process, however the
		 * allocated amount of RFD processing time has
		 * expired. Assert Interrupt Requested to make
		 * sure we come back to process the remaining RFDs.
		 */
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
	}

	ipg_nic_rxrestore(dev);

	return 0;
}

static int ipg_nic_rx(struct net_device *dev)
{
	/* Transfer received Ethernet frames to higher network layers. */
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	struct ipg_rx *rxfd;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

#define __RFS_MASK \
	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct sk_buff *skb = sp->rx_buff[entry];
		unsigned int framelen;

		rxfd = sp->rxd + entry;

		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
			break;

		/* Get received frame length. */
		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

		/* Check for jumbo frame arrival with too small
		 * RXFRAG_SIZE.
		 */
		if (framelen > sp->rxfrag_size) {
			IPG_DEBUG_MSG
			    ("RFS FrameLen > allocated fragment size.\n");

			framelen = sp->rxfrag_size;
		}

		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {

			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
				      (unsigned long int) rxfd->rfs);

			/* Increment general receive error statistic. */
			sp->stats.rx_errors++;

			/* Increment detailed receive error statistics. */
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
				IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
				sp->stats.rx_fifo_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
				IPG_DEBUG_MSG("RX runt occured.\n");
				sp->stats.rx_length_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
				IPG_DEBUG_MSG("RX alignment error occured.\n");
				sp->stats.rx_frame_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			/* Free the memory associated with the RX
			 * buffer since it is erroneous and we will
			 * not pass it to higher layer processes.
			 */
			if (skb) {
				__le64 info = rxfd->frag_info;

				pci_unmap_single(sp->pdev,
					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

				dev_kfree_skb_irq(skb);
			}
		} else {

			/* Adjust the new buffer length to accomodate the size
			 * of the received frame.
			 */
			skb_put(skb, framelen);

			/* Set the buffer's protocol field to Ethernet. */
			skb->protocol = eth_type_trans(skb, dev);

			/* The IPG encountered an error with (or
			 * there were no) IP/TCP/UDP checksums.
			 * This may or may not indicate an invalid
			 * IP/TCP/UDP frame was received. Let the
			 * upper layer decide.
			 */
			skb->ip_summed = CHECKSUM_NONE;

			/* Hand off frame for higher layer processing.
			 * The function netif_rx() releases the sk_buff
			 * when processing completes.
			 */
			netif_rx(skb);
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->rx_buff[entry] = NULL;
	}

	/*
	 * If there are more RFDs to proces and the allocated amount of RFD
	 * processing time has expired, assert Interrupt Requested to make
	 * sure we come back to process the remaining RFDs.
	 */
	if (i == IPG_MAXRFDPROCESS_COUNT)
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);

#ifdef IPG_DEBUG
	/* Check if the RFD list contained no receive frame data. */
	if (!i)
		sp->EmptyRFDListCount++;
#endif
	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;

		rxfd = sp->rxd + entry;

		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");

		/* An unexpected event, additional code needed to handle
		 * properly. So for the time being, just disregard the
		 * frame.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->rx_buff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->rx_buff[entry]);
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->rx_buff[entry] = NULL;
	}

	sp->rx_current = curr;

	/* Check to see if there are a minimum number of used
	 * RFDs before restoring any (should improve performance.)
	 */
	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
		ipg_nic_rxrestore(dev);

	return 0;
}

static void ipg_reset_after_host_error(struct work_struct *work)
{
	struct ipg_nic_private *sp =
		container_of(work, struct ipg_nic_private, task.work);
	struct net_device *dev = sp->dev;

	IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));

	/*
	 * Acknowledge HostError interrupt by resetting
	 * IPG DMA and HOST.
	 */
	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

	init_rfdlist(dev);
	init_tfdlist(dev);

	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
		       dev->name);
		schedule_delayed_work(&sp->task, HZ);
	}
}

static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
{
	struct net_device *dev = dev_inst;
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int handled = 0;
	u16 status;

	IPG_DEBUG_MSG("_interrupt_handler\n");

	if (sp->is_jumbo)
		ipg_nic_rxrestore(dev);

	spin_lock(&sp->lock);

	/* Get interrupt source information, and acknowledge
	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
	 * IntRequested, MacControlFrame, LinkEvent) interrupts
	 * if issued. Also, all IPG interrupts are disabled by
	 * reading IntStatusAck.
	 */
	status = ipg_r16(INT_STATUS_ACK);

	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);

	/* Shared IRQ of remove event. */
	if (!(status & IPG_IS_RSVD_MASK))
		goto out_enable;

	handled = 1;

	if (unlikely(!netif_running(dev)))
		goto out_unlock;

	/* If RFDListEnd interrupt, restore all used RFDs. */
	if (status & IPG_IS_RFD_LIST_END) {
		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");

		/* The RFD list end indicates an RFD was encountered
		 * with a 0 NextPtr, or with an RFDDone bit set to 1
		 * (indicating the RFD is not read for use by the
		 * IPG.) Try to restore all RFDs.
		 */
		ipg_nic_rxrestore(dev);

#ifdef IPG_DEBUG
		/* Increment the RFDlistendCount counter. */
		sp->RFDlistendCount++;
#endif
	}

	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
	 * IntRequested interrupt, process received frames. */
	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
	    (status & IPG_IS_RFD_LIST_END) ||
	    (status & IPG_IS_RX_DMA_COMPLETE) ||
	    (status & IPG_IS_INT_REQUESTED)) {
#ifdef IPG_DEBUG
		/* Increment the RFD list checked counter if interrupted
		 * only to check the RFD list. */
		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
				IPG_IS_UPDATE_STATS)))
			sp->RFDListCheckedCount++;
#endif

		if (sp->is_jumbo)
			ipg_nic_rx_jumbo(dev);
		else
			ipg_nic_rx(dev);
	}

	/* If TxDMAComplete interrupt, free used TFDs. */
	if (status & IPG_IS_TX_DMA_COMPLETE)
		ipg_nic_txfree(dev);

	/* TxComplete interrupts indicate one of numerous actions.
	 * Determine what action to take based on TXSTATUS register.
	 */
	if (status & IPG_IS_TX_COMPLETE)
		ipg_nic_txcleanup(dev);

	/* If UpdateStats interrupt, update Linux Ethernet statistics */
	if (status & IPG_IS_UPDATE_STATS)
		ipg_nic_get_stats(dev);

	/* If HostError interrupt, reset IPG. */
	if (status & IPG_IS_HOST_ERROR) {
		IPG_DDEBUG_MSG("HostError Interrupt\n");

		schedule_delayed_work(&sp->task, 0);
	}

	/* If LinkEvent interrupt, resolve autonegotiation. */
	if (status & IPG_IS_LINK_EVENT) {
		if (ipg_config_autoneg(dev) < 0)
			printk(KERN_INFO "%s: Auto-negotiation error.\n",
			       dev->name);
	}

	/* If MACCtrlFrame interrupt, do nothing. */
	if (status & IPG_IS_MAC_CTRL_FRAME)
		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");

	/* If RxComplete interrupt, do nothing. */
	if (status & IPG_IS_RX_COMPLETE)
		IPG_DEBUG_MSG("RxComplete interrupt.\n");

	/* If RxEarly interrupt, do nothing. */
	if (status & IPG_IS_RX_EARLY)
		IPG_DEBUG_MSG("RxEarly interrupt.\n");

out_enable:
	/* Re-enable IPG interrupts. */
	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
out_unlock:
	spin_unlock(&sp->lock);

	return IRQ_RETVAL(handled);
}

static void ipg_rx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		if (sp->rx_buff[i]) {
			struct ipg_rx *rxfd = sp->rxd + i;

			dev_kfree_skb_irq(sp->rx_buff[i]);
			sp->rx_buff[i] = NULL;
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		}
	}
}

static void ipg_tx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		if (sp->tx_buff[i]) {
			struct ipg_tx *txfd = sp->txd + i;

			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(sp->tx_buff[i]);

			sp->tx_buff[i] = NULL;
		}
	}
}

static int ipg_nic_open(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;
	int rc;

	IPG_DEBUG_MSG("_nic_open\n");

	sp->rx_buf_sz = sp->rxsupport_size;

	/* Check for interrupt line conflicts, and request interrupt
	 * line for IPG.
	 *
	 * IMPORTANT: Disable IPG interrupts prior to registering
	 *            IRQ.
	 */
	ipg_w16(0x0000, INT_ENABLE);

	/* Register the interrupt line to be used by the IPG within
	 * the Linux system.
	 */
	rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
			 dev->name, dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
		       dev->name);
		goto out;
	}

	dev->irq = pdev->irq;

	rc = -ENOMEM;

	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
				     &sp->rxd_map, GFP_KERNEL);
	if (!sp->rxd)
		goto err_free_irq_0;

	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
				     &sp->txd_map, GFP_KERNEL);
	if (!sp->txd)
		goto err_free_rx_1;

	rc = init_rfdlist(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_free_tx_2;
	}

	init_tfdlist(dev);

	rc = ipg_io_config(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_release_tfdlist_3;
	}

	/* Resolve autonegotiation. */
	if (ipg_config_autoneg(dev) < 0)
		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);

	/* initialize JUMBO Frame control variable */
	sp->jumbo.found_start = 0;
	sp->jumbo.current_size = 0;
	sp->jumbo.skb = NULL;

	/* Enable transmit and receive operation of the IPG. */
	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
		 IPG_MC_RSVD_MASK, MAC_CTRL);

	netif_start_queue(dev);
out:
	return rc;

err_release_tfdlist_3:
	ipg_tx_clear(sp);
	ipg_rx_clear(sp);
err_free_tx_2:
	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
err_free_rx_1:
	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
err_free_irq_0:
	free_irq(pdev->irq, dev);
	goto out;
}

static int ipg_nic_stop(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;

	IPG_DEBUG_MSG("_nic_stop\n");

	netif_stop_queue(dev);

	IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
	IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
	IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
	IPG_DUMPTFDLIST(dev);

	do {
		(void) ipg_r16(INT_STATUS_ACK);

		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

		synchronize_irq(pdev->irq);
	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);

	ipg_rx_clear(sp);

	ipg_tx_clear(sp);

	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);

	free_irq(pdev->irq, dev);

	return 0;
}

static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
	unsigned long flags;
	struct ipg_tx *txfd;

	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");

	/* If in 10Mbps mode, stop the transmit queue so
	 * no more transmit frames are accepted.
	 */
	if (sp->tenmbpsmode)
		netif_stop_queue(dev);

	if (sp->reset_current_tfd) {
		sp->reset_current_tfd = 0;
		entry = 0;
	}

	txfd = sp->txd + entry;

	sp->tx_buff[entry] = skb;

	/* Clear all TFC fields, except TFDDONE. */
	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

	/* Specify the TFC field within the TFD. */
	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
		(IPG_TFC_FRAMEID & sp->tx_current) |
		(IPG_TFC_FRAGCOUNT & (1 << 24)));
	/*
	 * 16--17 (WordAlign) <- 3 (disable),
	 * 0--15 (FrameId) <- sp->tx_current,
	 * 24--27 (FragCount) <- 1
	 */

	/* Request TxComplete interrupts at an interval defined
	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
	 * Request TxComplete interrupt for every frame
	 * if in 10Mbps mode to accomodate problem with 10Mbps
	 * processing.
	 */
	if (sp->tenmbpsmode)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
	/* Based on compilation option, determine if FCS is to be
	 * appended to transmit frame by IPG.
	 */
	if (!(IPG_APPEND_FCS_ON_TX))
		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);

	/* Based on compilation option, determine if IP, TCP and/or
	 * UDP checksums are to be added to transmit frame by IPG.
	 */
	if (IPG_ADD_IPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);

	if (IPG_ADD_TCPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);

	if (IPG_ADD_UDPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);

	/* Based on compilation option, determine if VLAN tag info is to be
	 * inserted into transmit frame by IPG.
	 */
	if (IPG_INSERT_MANUAL_VLAN_TAG) {
		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
			((u64) IPG_MANUAL_VLAN_VID << 32) |
			((u64) IPG_MANUAL_VLAN_CFI << 44) |
			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
	}

	/* The fragment start location within system memory is defined
	 * by the sk_buff structure's data field. The physical address
	 * of this location within the system's virtual memory space
	 * is determined using the IPG_HOST2BUS_MAP function.
	 */
	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		skb->len, PCI_DMA_TODEVICE));

	/* The length of the fragment within system memory is defined by
	 * the sk_buff structure's len field.
	 */
	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
		((u64) (skb->len & 0xffff) << 48));

	/* Clear the TFDDone bit last to indicate the TFD is ready
	 * for transfer to the IPG.
	 */
	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);

	spin_lock_irqsave(&sp->lock, flags);

	sp->tx_current++;

	mmiowb();

	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);

	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
		netif_stop_queue(dev);

	spin_unlock_irqrestore(&sp->lock, flags);

	return NETDEV_TX_OK;
}

static void ipg_set_phy_default_param(unsigned char rev,
				      struct net_device *dev, int phy_address)
{
	unsigned short length;
	unsigned char revision;
	unsigned short *phy_param;
	unsigned short address, value;

	phy_param = &DefaultPhyParam[0];
	length = *phy_param & 0x00FF;
	revision = (unsigned char)((*phy_param) >> 8);
	phy_param++;
	while (length != 0) {
		if (rev == revision) {
			while (length > 1) {
				address = *phy_param;
				value = *(phy_param + 1);
				phy_param += 2;
				mdio_write(dev, phy_address, address, value);
				length -= 4;
			}
			break;
		} else {
			phy_param += length / 2;
			length = *phy_param & 0x00FF;
			revision = (unsigned char)((*phy_param) >> 8);
			phy_param++;
		}
	}
}

static int read_eeprom(struct net_device *dev, int eep_addr)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int i;
	int ret = 0;
	u16 value;

	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
	ipg_w16(value, EEPROM_CTRL);

	for (i = 0; i < 1000; i++) {
		u16 data;

		mdelay(10);
		data = ipg_r16(EEPROM_CTRL);
		if (!(data & IPG_EC_EEPROM_BUSY)) {
			ret = ipg_r16(EEPROM_DATA);
			break;
		}
	}
	return ret;
}

static void ipg_init_mii(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct mii_if_info *mii_if = &sp->mii_if;
	int phyaddr;

	mii_if->dev          = dev;
	mii_if->mdio_read    = mdio_read;
	mii_if->mdio_write   = mdio_write;
	mii_if->phy_id_mask  = 0x1f;
	mii_if->reg_num_mask = 0x1f;

	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);

	if (phyaddr != 0x1f) {
		u16 mii_phyctrl, mii_1000cr;
		u8 revisionid = 0;

		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
			GMII_PHY_1000BASETCONTROL_PreferMaster;
		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);

		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);

		/* Set default phyparam */
		pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
		ipg_set_phy_default_param(revisionid, dev, phyaddr);

		/* Reset PHY */
		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);

	}
}

static int ipg_hw_init(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	int rc;

	/* Read/Write and Reset EEPROM Value */
	/* Read LED Mode Configuration from EEPROM */
	sp->led_mode = read_eeprom(dev, 6);

	/* Reset all functions within the IPG. Do not assert
	 * RST_OUT as not compatible with some PHYs.
	 */
	rc = ipg_reset(dev, IPG_RESET_MASK);
	if (rc < 0)
		goto out;

	ipg_init_mii(dev);

	/* Read MAC Address from EEPROM */
	for (i = 0; i < 3; i++)
		sp->station_addr[i] = read_eeprom(dev, 16 + i);

	for (i = 0; i < 3; i++)
		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);

	/* Set station address in ethernet_device structure. */
	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
out:
	return rc;
}

static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int err;

	/* Function to accomodate changes to Maximum Transfer Unit
	 * (or MTU) of IPG NIC. Cannot use default function since
	 * the default will not allow for MTU > 1500 bytes.
	 */

	IPG_DEBUG_MSG("_nic_change_mtu\n");

	/*
	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
	 */
	if (new_mtu < 68 || new_mtu > 10240)
		return -EINVAL;

	err = ipg_nic_stop(dev);
	if (err)
		return err;

	dev->mtu = new_mtu;

	sp->max_rxframe_size = new_mtu;

	sp->rxfrag_size = new_mtu;
	if (sp->rxfrag_size > 4088)
		sp->rxfrag_size = 4088;

	sp->rxsupport_size = sp->max_rxframe_size;

	if (new_mtu > 0x0600)
		sp->is_jumbo = true;
	else
		sp->is_jumbo = false;

	return ipg_nic_open(dev);
}

static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_gset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_sset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nway_reset(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_nway_restart(&sp->mii_if);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static const struct ethtool_ops ipg_ethtool_ops = {
	.get_settings = ipg_get_settings,
	.set_settings = ipg_set_settings,
	.nway_reset   = ipg_nway_reset,
};

static void __devexit ipg_remove(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct ipg_nic_private *sp = netdev_priv(dev);

	IPG_DEBUG_MSG("_remove\n");

	/* Un-register Ethernet device. */
	unregister_netdev(dev);

	pci_iounmap(pdev, sp->ioaddr);

	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static const struct net_device_ops ipg_netdev_ops = {
	.ndo_open		= ipg_nic_open,
	.ndo_stop		= ipg_nic_stop,
	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
	.ndo_get_stats		= ipg_nic_get_stats,
	.ndo_set_multicast_list = ipg_nic_set_multicast_list,
	.ndo_do_ioctl		= ipg_ioctl,
	.ndo_tx_timeout 	= ipg_tx_timeout,
	.ndo_change_mtu 	= ipg_nic_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

static int __devinit ipg_probe(struct pci_dev *pdev,
			       const struct pci_device_id *id)
{
	unsigned int i = id->driver_data;
	struct ipg_nic_private *sp;
	struct net_device *dev;
	void __iomem *ioaddr;
	int rc;

	rc = pci_enable_device(pdev);
	if (rc < 0)
		goto out;

	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);

	pci_set_master(pdev);

	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (rc < 0) {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc < 0) {
			printk(KERN_ERR "%s: DMA config failed.\n",
			       pci_name(pdev));
			goto err_disable_0;
		}
	}

	/*
	 * Initialize net device.
	 */
	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
	if (!dev) {
		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
		rc = -ENOMEM;
		goto err_disable_0;
	}

	sp = netdev_priv(dev);
	spin_lock_init(&sp->lock);
	mutex_init(&sp->mii_mutex);

	sp->is_jumbo = IPG_IS_JUMBO;
	sp->rxfrag_size = IPG_RXFRAG_SIZE;
	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;

	/* Declare IPG NIC functions for Ethernet device methods.
	 */
	dev->netdev_ops = &ipg_netdev_ops;
	SET_NETDEV_DEV(dev, &pdev->dev);
	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_free_dev_1;

	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
	if (!ioaddr) {
		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
		rc = -EIO;
		goto err_release_regions_2;
	}

	/* Save the pointer to the PCI device information. */
	sp->ioaddr = ioaddr;
	sp->pdev = pdev;
	sp->dev = dev;

	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);

	pci_set_drvdata(pdev, dev);

	rc = ipg_hw_init(dev);
	if (rc < 0)
		goto err_unmap_3;

	rc = register_netdev(dev);
	if (rc < 0)
		goto err_unmap_3;

	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
out:
	return rc;

err_unmap_3:
	pci_iounmap(pdev, ioaddr);
err_release_regions_2:
	pci_release_regions(pdev);
err_free_dev_1:
	free_netdev(dev);
err_disable_0:
	pci_disable_device(pdev);
	goto out;
}

static struct pci_driver ipg_pci_driver = {
	.name		= IPG_DRIVER_NAME,
	.id_table	= ipg_pci_tbl,
	.probe		= ipg_probe,
	.remove		= __devexit_p(ipg_remove),
};

static int __init ipg_init_module(void)
{
	return pci_register_driver(&ipg_pci_driver);
}

static void __exit ipg_exit_module(void)
{
	pci_unregister_driver(&ipg_pci_driver);
}

module_init(ipg_init_module);
module_exit(ipg_exit_module);