Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | /* * This file handles the architecture dependent parts of process handling. * * Copyright IBM Corp. 1999,2009 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>, * Hartmut Penner <hp@de.ibm.com>, * Denis Joseph Barrow, */ #include <linux/compiler.h> #include <linux/cpu.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/user.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/init.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/tick.h> #include <linux/elfcore.h> #include <linux/kernel_stat.h> #include <linux/syscalls.h> #include <linux/compat.h> #include <asm/compat.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/irq.h> #include <asm/timer.h> #include <asm/nmi.h> #include "entry.h" asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); /* * Return saved PC of a blocked thread. used in kernel/sched. * resume in entry.S does not create a new stack frame, it * just stores the registers %r6-%r15 to the frame given by * schedule. We want to return the address of the caller of * schedule, so we have to walk the backchain one time to * find the frame schedule() store its return address. */ unsigned long thread_saved_pc(struct task_struct *tsk) { struct stack_frame *sf, *low, *high; if (!tsk || !task_stack_page(tsk)) return 0; low = task_stack_page(tsk); high = (struct stack_frame *) task_pt_regs(tsk); sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; return sf->gprs[8]; } /* * The idle loop on a S390... */ static void default_idle(void) { /* CPU is going idle. */ local_irq_disable(); if (need_resched()) { local_irq_enable(); return; } #ifdef CONFIG_HOTPLUG_CPU if (cpu_is_offline(smp_processor_id())) { preempt_enable_no_resched(); cpu_die(); } #endif local_mcck_disable(); if (test_thread_flag(TIF_MCCK_PENDING)) { local_mcck_enable(); local_irq_enable(); s390_handle_mcck(); return; } trace_hardirqs_on(); /* Don't trace preempt off for idle. */ stop_critical_timings(); /* Stop virtual timer and halt the cpu. */ vtime_stop_cpu(); /* Reenable preemption tracer. */ start_critical_timings(); } void cpu_idle(void) { for (;;) { tick_nohz_stop_sched_tick(1); while (!need_resched()) default_idle(); tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } extern void kernel_thread_starter(void); asm( ".align 4\n" "kernel_thread_starter:\n" " la 2,0(10)\n" " basr 14,9\n" " la 2,0\n" " br 11\n"); int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; regs.gprs[9] = (unsigned long) fn; regs.gprs[10] = (unsigned long) arg; regs.gprs[11] = (unsigned long) do_exit; regs.orig_gpr2 = -1; /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* * Free current thread data structures etc.. */ void exit_thread(void) { } void flush_thread(void) { clear_used_math(); clear_tsk_thread_flag(current, TIF_USEDFPU); } void release_thread(struct task_struct *dead_task) { } int copy_thread(unsigned long clone_flags, unsigned long new_stackp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct thread_info *ti; struct fake_frame { struct stack_frame sf; struct pt_regs childregs; } *frame; frame = container_of(task_pt_regs(p), struct fake_frame, childregs); p->thread.ksp = (unsigned long) frame; /* Store access registers to kernel stack of new process. */ frame->childregs = *regs; frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ frame->childregs.gprs[15] = new_stackp; frame->sf.back_chain = 0; /* new return point is ret_from_fork */ frame->sf.gprs[8] = (unsigned long) ret_from_fork; /* fake return stack for resume(), don't go back to schedule */ frame->sf.gprs[9] = (unsigned long) frame; /* Save access registers to new thread structure. */ save_access_regs(&p->thread.acrs[0]); #ifndef CONFIG_64BIT /* * save fprs to current->thread.fp_regs to merge them with * the emulated registers and then copy the result to the child. */ save_fp_regs(¤t->thread.fp_regs); memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); /* Set a new TLS ? */ if (clone_flags & CLONE_SETTLS) p->thread.acrs[0] = regs->gprs[6]; #else /* CONFIG_64BIT */ /* Save the fpu registers to new thread structure. */ save_fp_regs(&p->thread.fp_regs); /* Set a new TLS ? */ if (clone_flags & CLONE_SETTLS) { if (is_compat_task()) { p->thread.acrs[0] = (unsigned int) regs->gprs[6]; } else { p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); p->thread.acrs[1] = (unsigned int) regs->gprs[6]; } } #endif /* CONFIG_64BIT */ /* start new process with ar4 pointing to the correct address space */ p->thread.mm_segment = get_fs(); /* Don't copy debug registers */ memset(&p->thread.per_info, 0, sizeof(p->thread.per_info)); /* Initialize per thread user and system timer values */ ti = task_thread_info(p); ti->user_timer = 0; ti->system_timer = 0; return 0; } SYSCALL_DEFINE0(fork) { struct pt_regs *regs = task_pt_regs(current); return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); } SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags, int __user *, parent_tidptr, int __user *, child_tidptr) { struct pt_regs *regs = task_pt_regs(current); if (!newsp) newsp = regs->gprs[15]; return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ SYSCALL_DEFINE0(vfork) { struct pt_regs *regs = task_pt_regs(current); return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); } asmlinkage void execve_tail(void) { current->thread.fp_regs.fpc = 0; if (MACHINE_HAS_IEEE) asm volatile("sfpc %0,%0" : : "d" (0)); } /* * sys_execve() executes a new program. */ SYSCALL_DEFINE3(execve, char __user *, name, char __user * __user *, argv, char __user * __user *, envp) { struct pt_regs *regs = task_pt_regs(current); char *filename; long rc; filename = getname(name); rc = PTR_ERR(filename); if (IS_ERR(filename)) return rc; rc = do_execve(filename, argv, envp, regs); if (rc) goto out; execve_tail(); rc = regs->gprs[2]; out: putname(filename); return rc; } /* * fill in the FPU structure for a core dump. */ int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) { #ifndef CONFIG_64BIT /* * save fprs to current->thread.fp_regs to merge them with * the emulated registers and then copy the result to the dump. */ save_fp_regs(¤t->thread.fp_regs); memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); #else /* CONFIG_64BIT */ save_fp_regs(fpregs); #endif /* CONFIG_64BIT */ return 1; } EXPORT_SYMBOL(dump_fpu); unsigned long get_wchan(struct task_struct *p) { struct stack_frame *sf, *low, *high; unsigned long return_address; int count; if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) return 0; low = task_stack_page(p); high = (struct stack_frame *) task_pt_regs(p); sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; for (count = 0; count < 16; count++) { sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); if (sf <= low || sf > high) return 0; return_address = sf->gprs[8] & PSW_ADDR_INSN; if (!in_sched_functions(return_address)) return return_address; } return 0; } |