Loading...
/* * rational fractions * * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> * * helper functions when coping with rational numbers */ #include <linux/rational.h> /* * calculate best rational approximation for a given fraction * taking into account restricted register size, e.g. to find * appropriate values for a pll with 5 bit denominator and * 8 bit numerator register fields, trying to set up with a * frequency ratio of 3.1415, one would say: * * rational_best_approximation(31415, 10000, * (1 << 8) - 1, (1 << 5) - 1, &n, &d); * * you may look at given_numerator as a fixed point number, * with the fractional part size described in given_denominator. * * for theoretical background, see: * http://en.wikipedia.org/wiki/Continued_fraction */ void rational_best_approximation( unsigned long given_numerator, unsigned long given_denominator, unsigned long max_numerator, unsigned long max_denominator, unsigned long *best_numerator, unsigned long *best_denominator) { unsigned long n, d, n0, d0, n1, d1; n = given_numerator; d = given_denominator; n0 = d1 = 0; n1 = d0 = 1; for (;;) { unsigned long t, a; if ((n1 > max_numerator) || (d1 > max_denominator)) { n1 = n0; d1 = d0; break; } if (d == 0) break; t = d; a = n / d; d = n % d; n = t; t = n0 + a * n1; n0 = n1; n1 = t; t = d0 + a * d1; d0 = d1; d1 = t; } *best_numerator = n1; *best_denominator = d1; } EXPORT_SYMBOL(rational_best_approximation); |