Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*
 * IA-64 Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/config.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>

#define TASK_HPAGE_BASE (REGION_HPAGE << REGION_SHIFT)

static long	htlbpagemem;
int		htlbpage_max;
static long	htlbzone_pages;

static struct list_head hugepage_freelists[MAX_NUMNODES];
static spinlock_t htlbpage_lock = SPIN_LOCK_UNLOCKED;

static void enqueue_huge_page(struct page *page)
{
	list_add(&page->list,
		&hugepage_freelists[page_zone(page)->zone_pgdat->node_id]);
}

static struct page *dequeue_huge_page(void)
{
	int nid = numa_node_id();
	struct page *page = NULL;

	if (list_empty(&hugepage_freelists[nid])) {
		for (nid = 0; nid < MAX_NUMNODES; ++nid)
			if (!list_empty(&hugepage_freelists[nid]))
				break;
	}
	if (nid >= 0 && nid < MAX_NUMNODES &&
	    !list_empty(&hugepage_freelists[nid])) {
		page = list_entry(hugepage_freelists[nid].next, struct page, list);
		list_del(&page->list);
	}
	return page;
}

static struct page *alloc_fresh_huge_page(void)
{
	static int nid = 0;
	struct page *page;
	page = alloc_pages_node(nid, GFP_HIGHUSER, HUGETLB_PAGE_ORDER);
	nid = (nid + 1) % numnodes;
	return page;
}

void free_huge_page(struct page *page);

static struct page *alloc_hugetlb_page(void)
{
	int i;
	struct page *page;

	spin_lock(&htlbpage_lock);
	page = dequeue_huge_page();
	if (!page) {
		spin_unlock(&htlbpage_lock);
		return NULL;
	}
	htlbpagemem--;
	spin_unlock(&htlbpage_lock);
	set_page_count(page, 1);
	page->lru.prev = (void *)free_huge_page;
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
		clear_highpage(&page[i]);
	return page;
}

static pte_t *
huge_pte_alloc (struct mm_struct *mm, unsigned long addr)
{
	unsigned long taddr = htlbpage_to_page(addr);
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, taddr);
	pmd = pmd_alloc(mm, pgd, taddr);
	if (pmd)
		pte = pte_alloc_map(mm, pmd, taddr);
	return pte;
}

static pte_t *
huge_pte_offset (struct mm_struct *mm, unsigned long addr)
{
	unsigned long taddr = htlbpage_to_page(addr);
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, taddr);
	pmd = pmd_offset(pgd, taddr);
	pte = pte_offset_map(pmd, taddr);
	return pte;
}

#define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; }

static void
set_huge_pte (struct mm_struct *mm, struct vm_area_struct *vma,
	      struct page *page, pte_t * page_table, int write_access)
{
	pte_t entry;

	mm->rss += (HPAGE_SIZE / PAGE_SIZE);
	if (write_access) {
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else
		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
	entry = pte_mkyoung(entry);
	mk_pte_huge(entry);
	set_pte(page_table, entry);
	return;
}
/*
 * This function checks for proper alignment of input addr and len parameters.
 */
int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
{
	if (len & ~HPAGE_MASK)
		return -EINVAL;
	if (addr & ~HPAGE_MASK)
		return -EINVAL;
	if (REGION_NUMBER(addr) != REGION_HPAGE)
		return -EINVAL;

	return 0;
}

int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;

	while (addr < end) {
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
		src_pte = huge_pte_offset(src, addr);
		entry = *src_pte;
		ptepage = pte_page(entry);
		get_page(ptepage);
		set_pte(dst_pte, entry);
		dst->rss += (HPAGE_SIZE / PAGE_SIZE);
		addr += HPAGE_SIZE;
	}
	return 0;
nomem:
	return -ENOMEM;
}

int
follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
		    struct page **pages, struct vm_area_struct **vmas,
		    unsigned long *st, int *length, int i)
{
	pte_t *ptep, pte;
	unsigned long start = *st;
	unsigned long pstart;
	int len = *length;
	struct page *page;

	do {
		pstart = start & HPAGE_MASK;
		ptep = huge_pte_offset(mm, start);
		pte = *ptep;

back1:
		page = pte_page(pte);
		if (pages) {
			page += ((start & ~HPAGE_MASK) >> PAGE_SHIFT);
			get_page(page);
			pages[i] = page;
		}
		if (vmas)
			vmas[i] = vma;
		i++;
		len--;
		start += PAGE_SIZE;
		if (((start & HPAGE_MASK) == pstart) && len &&
				(start < vma->vm_end))
			goto back1;
	} while (len && start < vma->vm_end);
	*length = len;
	*st = start;
	return i;
}

struct vm_area_struct *hugepage_vma(struct mm_struct *mm, unsigned long addr)
{
	if (mm->used_hugetlb) {
		if (REGION_NUMBER(addr) == REGION_HPAGE) {
			struct vm_area_struct *vma = find_vma(mm, addr);
			if (vma && is_vm_hugetlb_page(vma))
				return vma;
		}
	}
	return NULL;
}

struct page *follow_huge_addr(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, int write)
{
	struct page *page;
	pte_t *ptep;

	ptep = huge_pte_offset(mm, addr);
	page = pte_page(*ptep);
	page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT);
	get_page(page);
	return page;
}
int pmd_huge(pmd_t pmd)
{
	return 0;
}
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write)
{
	return NULL;
}

void free_huge_page(struct page *page)
{
	BUG_ON(page_count(page));
	BUG_ON(page->mapping);

	INIT_LIST_HEAD(&page->list);

	spin_lock(&htlbpage_lock);
	enqueue_huge_page(page);
	htlbpagemem++;
	spin_unlock(&htlbpage_lock);
}

void huge_page_release(struct page *page)
{
	if (!put_page_testzero(page))
		return;

	free_huge_page(page);
}

/*
 * Same as generic free_pgtables(), except constant PGDIR_* and pgd_offset
 * are hugetlb region specific.
 */
void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
	unsigned long start, unsigned long end)
{
	unsigned long first = start & HUGETLB_PGDIR_MASK;
	unsigned long last = end + HUGETLB_PGDIR_SIZE - 1;
	unsigned long start_index, end_index;
	struct mm_struct *mm = tlb->mm;

	if (!prev) {
		prev = mm->mmap;
		if (!prev)
			goto no_mmaps;
		if (prev->vm_end > start) {
			if (last > prev->vm_start)
				last = prev->vm_start;
			goto no_mmaps;
		}
	}
	for (;;) {
		struct vm_area_struct *next = prev->vm_next;

		if (next) {
			if (next->vm_start < start) {
				prev = next;
				continue;
			}
			if (last > next->vm_start)
				last = next->vm_start;
		}
		if (prev->vm_end > first)
			first = prev->vm_end + HUGETLB_PGDIR_SIZE - 1;
		break;
	}
no_mmaps:
	if (last < first)	/* for arches with discontiguous pgd indices */
		return;
	/*
	 * If the PGD bits are not consecutive in the virtual address, the
	 * old method of shifting the VA >> by PGDIR_SHIFT doesn't work.
	 */

	start_index = pgd_index(htlbpage_to_page(first));
	end_index = pgd_index(htlbpage_to_page(last));

	if (end_index > start_index) {
		clear_page_tables(tlb, start_index, end_index - start_index);
	}
}

void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	struct page *page;

	BUG_ON(start & (HPAGE_SIZE - 1));
	BUG_ON(end & (HPAGE_SIZE - 1));

	for (address = start; address < end; address += HPAGE_SIZE) {
		pte = huge_pte_offset(mm, address);
		if (pte_none(*pte))
			continue;
		page = pte_page(*pte);
		huge_page_release(page);
		pte_clear(pte);
	}
	mm->rss -= (end - start) >> PAGE_SHIFT;
	flush_tlb_range(vma, start, end);
}

void zap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long length)
{
	struct mm_struct *mm = vma->vm_mm;
	spin_lock(&mm->page_table_lock);
	unmap_hugepage_range(vma, start, start + length);
	spin_unlock(&mm->page_table_lock);
}

int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
{
	struct mm_struct *mm = current->mm;
	unsigned long addr;
	int ret = 0;

	BUG_ON(vma->vm_start & ~HPAGE_MASK);
	BUG_ON(vma->vm_end & ~HPAGE_MASK);

	spin_lock(&mm->page_table_lock);
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
		unsigned long idx;
		pte_t *pte = huge_pte_alloc(mm, addr);
		struct page *page;

		if (!pte) {
			ret = -ENOMEM;
			goto out;
		}
		if (!pte_none(*pte))
			continue;

		idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
			+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
		page = find_get_page(mapping, idx);
		if (!page) {
			/* charge the fs quota first */
			if (hugetlb_get_quota(mapping)) {
				ret = -ENOMEM;
				goto out;
			}
			page = alloc_hugetlb_page();
			if (!page) {
				hugetlb_put_quota(mapping);
				ret = -ENOMEM;
				goto out;
			}
			ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
			unlock_page(page);
			if (ret) {
				hugetlb_put_quota(mapping);
				free_huge_page(page);
				goto out;
			}
		}
		set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
	}
out:
	spin_unlock(&mm->page_table_lock);
	return ret;
}

unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
		unsigned long pgoff, unsigned long flags)
{
	struct vm_area_struct *vmm;

	if (len > RGN_MAP_LIMIT)
		return -ENOMEM;
	if (len & ~HPAGE_MASK)
		return -EINVAL;
	/* This code assumes that REGION_HPAGE != 0. */
	if ((REGION_NUMBER(addr) != REGION_HPAGE) || (addr & (HPAGE_SIZE - 1)))
		addr = TASK_HPAGE_BASE;
	else
		addr = ALIGN(addr, HPAGE_SIZE);
	for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
		/* At this point:  (!vmm || addr < vmm->vm_end). */
		if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT)
			return -ENOMEM;
		if (!vmm || (addr + len) <= vmm->vm_start)
			return addr;
		addr = ALIGN(vmm->vm_end, HPAGE_SIZE);
	}
}
void update_and_free_page(struct page *page)
{
	int j;
	struct page *map;

	map = page;
	htlbzone_pages--;
	for (j = 0; j < (HPAGE_SIZE / PAGE_SIZE); j++) {
		map->flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
		set_page_count(map, 0);
		map++;
	}
	set_page_count(page, 1);
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

int try_to_free_low(int count)
{
	struct list_head *p;
	struct page *page, *map;

	map = NULL;
	spin_lock(&htlbpage_lock);
	list_for_each(p, &hugepage_freelists[0]) {
		if (map) {
			list_del(&map->list);
			update_and_free_page(map);
			htlbpagemem--;
			map = NULL;
			if (++count == 0)
				break;
		}
		page = list_entry(p, struct page, list);
		if (!PageHighMem(page))
			map = page;
	}
	if (map) {
		list_del(&map->list);
		update_and_free_page(map);
		htlbpagemem--;
		count++;
	}
	spin_unlock(&htlbpage_lock);
	return count;
}

int set_hugetlb_mem_size(int count)
{
	int  lcount;
	struct page *page ;

	if (count < 0)
		lcount = count;
	else
		lcount = count - htlbzone_pages;

	if (lcount == 0)
		return (int)htlbzone_pages;
	if (lcount > 0) {	/* Increase the mem size. */
		while (lcount--) {
			page = alloc_fresh_huge_page();
			if (page == NULL)
				break;
			spin_lock(&htlbpage_lock);
			enqueue_huge_page(page);
			htlbpagemem++;
			htlbzone_pages++;
			spin_unlock(&htlbpage_lock);
		}
		return (int) htlbzone_pages;
	}
	/* Shrink the memory size. */
	lcount = try_to_free_low(lcount);
	while (lcount++) {
		page = alloc_hugetlb_page();
		if (page == NULL)
			break;
		spin_lock(&htlbpage_lock);
		update_and_free_page(page);
		spin_unlock(&htlbpage_lock);
	}
	return (int) htlbzone_pages;
}

int hugetlb_sysctl_handler(ctl_table *table, int write, struct file *file, void *buffer, size_t *length)
{
	proc_dointvec(table, write, file, buffer, length);
	htlbpage_max = set_hugetlb_mem_size(htlbpage_max);
	return 0;
}

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%d", &htlbpage_max) <= 0)
		htlbpage_max = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

static int __init hugetlb_init(void)
{
	int i;
	struct page *page;

	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

	for (i = 0; i < htlbpage_max; ++i) {
		page = alloc_fresh_huge_page();
		if (!page)
			break;
		spin_lock(&htlbpage_lock);
		enqueue_huge_page(page);
		spin_unlock(&htlbpage_lock);
	}
	htlbpage_max = htlbpagemem = htlbzone_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", htlbpagemem);
	return 0;
}
module_init(hugetlb_init);

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
			"Hugepagesize:    %5lu kB\n",
			htlbzone_pages,
			htlbpagemem,
			HPAGE_SIZE/1024);
}

int is_hugepage_mem_enough(size_t size)
{
	if (size > (htlbpagemem << HPAGE_SHIFT))
		return 0;
	return 1;
}

static struct page *hugetlb_nopage(struct vm_area_struct * area, unsigned long address, int *unused)
{
	BUG();
	return NULL;
}

struct vm_operations_struct hugetlb_vm_ops = {
	.nopage =	hugetlb_nopage,
};