Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /* * linux/mm/fremap.c * * Explicit pagetable population and nonlinear (random) mappings support. * * started by Ingo Molnar, Copyright (C) 2002, 2003 */ #include <linux/mm.h> #include <linux/swap.h> #include <linux/file.h> #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/swapops.h> #include <linux/rmap-locking.h> #include <linux/module.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> static inline void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; if (pte_none(pte)) return; if (pte_present(pte)) { unsigned long pfn = pte_pfn(pte); flush_cache_page(vma, addr); pte = ptep_clear_flush(vma, addr, ptep); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page)) { if (pte_dirty(pte)) set_page_dirty(page); page_remove_rmap(page, ptep); page_cache_release(page); mm->rss--; } } } else { if (!pte_file(pte)) free_swap_and_cache(pte_to_swp_entry(pte)); pte_clear(ptep); } } /* * Install a page to a given virtual memory address, release any * previously existing mapping. */ int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { int err = -ENOMEM; pte_t *pte; pgd_t *pgd; pmd_t *pmd; pte_t pte_val; struct pte_chain *pte_chain; pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto err; pgd = pgd_offset(mm, addr); spin_lock(&mm->page_table_lock); pmd = pmd_alloc(mm, pgd, addr); if (!pmd) goto err_unlock; pte = pte_alloc_map(mm, pmd, addr); if (!pte) goto err_unlock; zap_pte(mm, vma, addr, pte); mm->rss++; flush_icache_page(vma, page); set_pte(pte, mk_pte(page, prot)); pte_chain = page_add_rmap(page, pte, pte_chain); pte_val = *pte; pte_unmap(pte); update_mmu_cache(vma, addr, pte_val); spin_unlock(&mm->page_table_lock); pte_chain_free(pte_chain); return 0; err_unlock: spin_unlock(&mm->page_table_lock); pte_chain_free(pte_chain); err: return err; } EXPORT_SYMBOL(install_page); /* * Install a file pte to a given virtual memory address, release any * previously existing mapping. */ int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot) { int err = -ENOMEM; pte_t *pte; pgd_t *pgd; pmd_t *pmd; pte_t pte_val; pgd = pgd_offset(mm, addr); spin_lock(&mm->page_table_lock); pmd = pmd_alloc(mm, pgd, addr); if (!pmd) goto err_unlock; pte = pte_alloc_map(mm, pmd, addr); if (!pte) goto err_unlock; zap_pte(mm, vma, addr, pte); set_pte(pte, pgoff_to_pte(pgoff)); pte_val = *pte; pte_unmap(pte); update_mmu_cache(vma, addr, pte_val); spin_unlock(&mm->page_table_lock); return 0; err_unlock: spin_unlock(&mm->page_table_lock); return err; } /*** * sys_remap_file_pages - remap arbitrary pages of a shared backing store * file within an existing vma. * @start: start of the remapped virtual memory range * @size: size of the remapped virtual memory range * @prot: new protection bits of the range * @pgoff: to be mapped page of the backing store file * @flags: 0 or MAP_NONBLOCKED - the later will cause no IO. * * this syscall works purely via pagetables, so it's the most efficient * way to map the same (large) file into a given virtual window. Unlike * mmap()/mremap() it does not create any new vmas. The new mappings are * also safe across swapout. * * NOTE: the 'prot' parameter right now is ignored, and the vma's default * protection is used. Arbitrary protections might be implemented in the * future. */ long sys_remap_file_pages(unsigned long start, unsigned long size, unsigned long __prot, unsigned long pgoff, unsigned long flags) { struct mm_struct *mm = current->mm; unsigned long end = start + size; struct vm_area_struct *vma; int err = -EINVAL; if (__prot) return err; /* * Sanitize the syscall parameters: */ start = start & PAGE_MASK; size = size & PAGE_MASK; /* Does the address range wrap, or is the span zero-sized? */ if (start + size <= start) return err; /* Can we represent this offset inside this architecture's pte's? */ #if PTE_FILE_MAX_BITS < BITS_PER_LONG if (pgoff + (size >> PAGE_SHIFT) >= (1UL << PTE_FILE_MAX_BITS)) return err; #endif /* We need down_write() to change vma->vm_flags. */ down_write(&mm->mmap_sem); vma = find_vma(mm, start); /* * Make sure the vma is shared, that it supports prefaulting, * and that the remapped range is valid and fully within * the single existing vma: */ if (vma && (vma->vm_flags & VM_SHARED) && vma->vm_ops && vma->vm_ops->populate && end > start && start >= vma->vm_start && end <= vma->vm_end) { /* Must set VM_NONLINEAR before any pages are populated. */ if (pgoff != ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff) vma->vm_flags |= VM_NONLINEAR; /* ->populate can take a long time, so downgrade the lock. */ downgrade_write(&mm->mmap_sem); err = vma->vm_ops->populate(vma, start, size, vma->vm_page_prot, pgoff, flags & MAP_NONBLOCK); /* * We can't clear VM_NONLINEAR because we'd have to do * it after ->populate completes, and that would prevent * downgrading the lock. (Locks can't be upgraded). */ up_read(&mm->mmap_sem); } else { up_write(&mm->mmap_sem); } return err; } |