Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/*
 * Alchemy Semi Au1000 ethernet driver
 *
 * Copyright 2001 MontaVista Software Inc.
 * Author: MontaVista Software, Inc.
 *         	ppopov@mvista.com or source@mvista.com
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 */
#include <linux/config.h>

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>

#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/au1000.h>

#include "au1000_eth.h"

#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 10;
#else
static int au1000_debug = 3;
#endif

// prototypes
static void *dma_alloc(size_t, dma_addr_t *);
static void dma_free(void *, size_t);
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static int __init au1000_probe1(long, int, int);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
static int au1000_close(struct net_device *);
static int au1000_tx(struct sk_buff *, struct net_device *);
static int au1000_rx(struct net_device *);
static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
static void au1000_tx_timeout(struct net_device *);
static int au1000_set_config(struct net_device *dev, struct ifmap *map);
static void set_rx_mode(struct net_device *);
static struct net_device_stats *au1000_get_stats(struct net_device *);
static inline void update_tx_stats(struct net_device *, u32, u32);
static inline void update_rx_stats(struct net_device *, u32);
static void au1000_timer(unsigned long);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static void dump_mii(struct net_device *dev, int phy_id);

// externs
extern  void ack_rise_edge_irq(unsigned int);
extern int get_ethernet_addr(char *ethernet_addr);
extern inline void str2eaddr(unsigned char *ea, unsigned char *str);
extern inline unsigned char str2hexnum(unsigned char c);
extern char * __init prom_getcmdline(void);

/*
 * Theory of operation
 *
 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 
 * There are four receive and four transmit descriptors.  These 
 * descriptors are not in memory; rather, they are just a set of 
 * hardware registers.
 *
 * Since the Au1000 has a coherent data cache, the receive and
 * transmit buffers are allocated from the KSEG0 segment. The 
 * hardware registers, however, are still mapped at KSEG1 to
 * make sure there's no out-of-order writes, and that all writes
 * complete immediately.
 */


/*
 * Base address and interrupt of the Au1xxx ethernet macs
 */
static struct {
	unsigned int port;
	int irq;
} au1000_iflist[NUM_INTERFACES] = {
		{AU1000_ETH0_BASE, AU1000_ETH0_IRQ}, 
		{AU1000_ETH1_BASE, AU1000_ETH1_IRQ}
	},
  au1500_iflist[NUM_INTERFACES] = {
		{AU1500_ETH0_BASE, AU1000_ETH0_IRQ}, 
		{AU1500_ETH1_BASE, AU1000_ETH1_IRQ}
	},
  au1100_iflist[NUM_INTERFACES] = {
		{AU1000_ETH0_BASE, AU1000_ETH0_IRQ}, 
		{0, 0}
	};

static char version[] __devinitdata =
    "au1000eth.c:1.0 ppopov@mvista.com\n";

/* These addresses are only used if yamon doesn't tell us what
 * the mac address is, and the mac address is not passed on the
 * command line.
 */
static unsigned char au1000_mac_addr[6] __devinitdata = { 
	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};

#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
#define RUN_AT(x) (jiffies + (x))

// For reading/writing 32-bit words from/to DMA memory
#define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu


/* FIXME 
 * All of the PHY code really should be detached from the MAC 
 * code.
 */

int bcm_5201_init(struct net_device *dev, int phy_addr)
{
	s16 data;
	
	/* Stop auto-negotiation */
	//printk("bcm_5201_init\n");
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);

	/* Set advertisement to 10/100 and Half/Full duplex
	 * (full capabilities) */
	data = mdio_read(dev, phy_addr, MII_ANADV);
	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
	mdio_write(dev, phy_addr, MII_ANADV, data);
	
	/* Restart auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
	mdio_write(dev, phy_addr, MII_CONTROL, data);

	/* Enable TX LED instead of FDX */
	data = mdio_read(dev, phy_addr, MII_INT);
	data &= ~MII_FDX_LED;
	mdio_write(dev, phy_addr, MII_INT, data);

	/* Enable TX LED instead of FDX */
	data = mdio_read(dev, phy_addr, MII_INT);
	data &= ~MII_FDX_LED;
	mdio_write(dev, phy_addr, MII_INT, data);

	if (au1000_debug > 4) dump_mii(dev, phy_addr);
	return 0;
}

int bcm_5201_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	//printk("bcm_5201_reset\n");
	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int 
bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
		if (mii_data & MII_AUX_100) {
			if (mii_data & MII_AUX_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int lsi_80227_init(struct net_device *dev, int phy_addr)
{
	if (au1000_debug > 4)
		printk("lsi_80227_init\n");

	/* restart auto-negotiation */
	mdio_write(dev, phy_addr, 0, 0x3200);

	mdelay(1);

	/* set up LEDs to correct display */
	mdio_write(dev, phy_addr, 17, 0xffc0);

	if (au1000_debug > 4)
		dump_mii(dev, phy_addr);
	return 0;
}

int lsi_80227_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	if (au1000_debug > 4) {
		printk("lsi_80227_reset\n");
		dump_mii(dev, phy_addr);
	}

	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int
lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_STAT);
		if (mii_data & MII_LSI_STAT_SPD) {
			if (mii_data & MII_LSI_STAT_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int am79c901_init(struct net_device *dev, int phy_addr)
{
	printk("am79c901_init\n");
	return 0;
}

int am79c901_reset(struct net_device *dev, int phy_addr)
{
	printk("am79c901_reset\n");
	return 0;
}

int 
am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	return 0;
}

struct phy_ops bcm_5201_ops = {
	bcm_5201_init,
	bcm_5201_reset,
	bcm_5201_status,
};

struct phy_ops am79c901_ops = {
	am79c901_init,
	am79c901_reset,
	am79c901_status,
};

struct phy_ops lsi_80227_ops = { 
	lsi_80227_init,
	lsi_80227_reset,
	lsi_80227_status,
};

static struct mii_chip_info {
	const char * name;
	u16 phy_id0;
	u16 phy_id1;
	struct phy_ops *phy_ops;	
} mii_chip_table[] = {
	{"Broadcom BCM5201 10/100 BaseT PHY",  0x0040, 0x6212, &bcm_5201_ops },
	{"AMD 79C901 HomePNA PHY",  0x0000, 0x35c8, &am79c901_ops },
	{"LSI 80227 10/100 BaseT PHY", 0x0016, 0xf840, &lsi_80227_ops },
	{"Broadcom BCM5221 10/100 BaseT PHY",  0x0040, 0x61e4, &bcm_5201_ops },
	{0,},
};

static int mdio_read(struct net_device *dev, int phy_id, int reg)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u32 timedout = 20;
	u32 mii_control;

	while (aup->mac->mii_control & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: read_MII busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;

	aup->mac->mii_control = mii_control;

	timedout = 20;
	while (aup->mac->mii_control & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_read busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}
	return (int)aup->mac->mii_data;
}

static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u32 timedout = 20;
	u32 mii_control;

	while (aup->mac->mii_control & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_write busy timeout!!\n", 
					dev->name);
			return;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;

	aup->mac->mii_data = value;
	aup->mac->mii_control = mii_control;
}


static void dump_mii(struct net_device *dev, int phy_id)
{
	int i, val;

	for (i = 0; i < 7; i++) {
		if ((val = mdio_read(dev, phy_id, i)) >= 0)
			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
	}
	for (i = 16; i < 25; i++) {
		if ((val = mdio_read(dev, phy_id, i)) >= 0)
			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
	}
}

static int __init mii_probe (struct net_device * dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	int phy_addr;

	aup->mii = NULL;

	/* search for total of 32 possible mii phy addresses */
	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
		u16 mii_status;
		u16 phy_id0, phy_id1;
		int i;

		mii_status = mdio_read(dev, phy_addr, MII_STATUS);
		if (mii_status == 0xffff || mii_status == 0x0000)
			/* the mii is not accessible, try next one */
			continue;

		phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
		phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);

		/* search our mii table for the current mii */ 
		for (i = 0; mii_chip_table[i].phy_id1; i++) {
			if (phy_id0 == mii_chip_table[i].phy_id0 &&
			    phy_id1 == mii_chip_table[i].phy_id1) {
				struct mii_phy * mii_phy;

				printk(KERN_INFO "%s: %s at phy address %d\n",
				       dev->name, mii_chip_table[i].name, 
				       phy_addr);
				mii_phy = kmalloc(sizeof(struct mii_phy), 
						GFP_KERNEL);
				if (mii_phy) {
					mii_phy->chip_info = mii_chip_table+i;
					mii_phy->phy_addr = phy_addr;
					mii_phy->next = aup->mii;
					aup->phy_ops = 
						mii_chip_table[i].phy_ops;
					aup->mii = mii_phy;
					aup->phy_ops->phy_init(dev,phy_addr);
				} else {
					printk(KERN_ERR "%s: out of memory\n",
							dev->name);
					return -1;
				}
				/* the current mii is on our mii_info_table,
				   try next address */
				break;
			}
		}
	}

	if (aup->mii == NULL) {
		printk(KERN_ERR "%s: No MII transceivers found!\n", dev->name);
		return -1;
	}

	/* use last PHY */
	aup->phy_addr = aup->mii->phy_addr;
	printk(KERN_INFO "%s: Using %s as default\n", 
			dev->name, aup->mii->chip_info->name);

	return 0;
}


/*
 * Buffer allocation/deallocation routines. The buffer descriptor returned
 * has the virtual and dma address of a buffer suitable for 
 * both, receive and transmit operations.
 */
static db_dest_t *GetFreeDB(struct au1000_private *aup)
{
	db_dest_t *pDB;
	pDB = aup->pDBfree;

	if (pDB) {
		aup->pDBfree = pDB->pnext;
	}
	//printk("GetFreeDB: %x\n", pDB);
	return pDB;
}

void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
{
	db_dest_t *pDBfree = aup->pDBfree;
	if (pDBfree)
		pDBfree->pnext = pDB;
	aup->pDBfree = pDB;
}


/*
  DMA memory allocation, derived from pci_alloc_consistent.
  However, the Au1000 data cache is coherent (when programmed
  so), therefore we return KSEG0 address, not KSEG1.
*/
static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
{
	void *ret;
	int gfp = GFP_ATOMIC | GFP_DMA;

	ret = (void *) __get_free_pages(gfp, get_order(size));

	if (ret != NULL) {
		memset(ret, 0, size);
		*dma_handle = virt_to_bus(ret);
		ret = (void *)KSEG0ADDR(ret);
	}
	return ret;
}


static void dma_free(void *vaddr, size_t size)
{
	vaddr = (void *)KSEG0ADDR(vaddr);
	free_pages((unsigned long) vaddr, get_order(size));
}


static void enable_rx_tx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);

	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}

static void hard_stop(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: hard stop\n", dev->name);

	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}


static void reset_mac(struct net_device *dev)
{
	u32 flags;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4) 
		printk(KERN_INFO "%s: reset mac, aup %x\n", 
				dev->name, (unsigned)aup);

	spin_lock_irqsave(&aup->lock, flags);
	del_timer(&aup->timer);
	hard_stop(dev);
	*aup->enable = MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);
       	*aup->enable = 0;
	au_sync_delay(2);
	aup->tx_full = 0;
	spin_unlock_irqrestore(&aup->lock, flags);
}


/* 
 * Setup the receive and transmit "rings".  These pointers are the addresses
 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 * these are not descriptors sitting in memory.
 */
static void 
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
{
	int i;

	for (i=0; i<NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i] = 
			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
	}
	for (i=0; i<NUM_TX_DMA; i++) {
		aup->tx_dma_ring[i] = 
			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
	}
}

static int __init au1000_init_module(void)
{
	int i;
	int prid;
	int base_addr, irq;

	prid = read_c0_prid();
	for (i=0; i<NUM_INTERFACES; i++) {
		if ( (prid & 0xffff0000) == 0x00030000 ) {
			base_addr = au1000_iflist[i].port;
			irq = au1000_iflist[i].irq;
		} else if ( (prid & 0xffff0000) == 0x01030000 ) {
			base_addr = au1500_iflist[i].port;
			irq = au1500_iflist[i].irq;
		} else if ( (prid & 0xffff0000) == 0x02030000 ) {
			base_addr = au1100_iflist[i].port;
			irq = au1100_iflist[i].irq;
		} else {
			printk(KERN_ERR "au1000 eth: unknown Processor ID\n");
			return -ENODEV;
		}
		// check for valid entries, au1100 only has one entry
		if (base_addr && irq) {
			if (au1000_probe1(base_addr, irq, i) != 0)
				return -ENODEV;
		}
	}
	return 0;
}

static int __init
au1000_probe1(long ioaddr, int irq, int port_num)
{
	struct net_device *dev;
	static unsigned version_printed = 0;
	struct au1000_private *aup = NULL;
	int i, retval = 0;
	db_dest_t *pDB, *pDBfree;
	char *pmac, *argptr;
	char ethaddr[6];

	if (!request_region(PHYSADDR(ioaddr), MAC_IOSIZE, "Au1000 ENET"))
		 return -ENODEV;

	if (version_printed++ == 0)
		printk(version);

	retval = -ENOMEM;

	dev = alloc_etherdev(sizeof(struct au1000_private));
	if (!dev) {
		printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");  
		goto out;
	}

	SET_MODULE_OWNER(dev);

	printk("%s: Au1xxx ethernet found at 0x%lx, irq %d\n", 
	       dev->name, ioaddr, irq);

	aup = dev->priv;

	/* Allocate the data buffers */
	aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE * 
			(NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr);
	if (!aup->vaddr)
		goto out1;

	/* aup->mac is the base address of the MAC's registers */
	aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
	/* Setup some variables for quick register address access */
	switch (ioaddr) {
	case AU1000_ETH0_BASE:
	case AU1500_ETH0_BASE:
		/* check env variables first */
		if (!get_ethernet_addr(ethaddr)) { 
			memcpy(au1000_mac_addr, ethaddr, sizeof(dev->dev_addr));
		} else {
			/* Check command line */
			argptr = prom_getcmdline();
			if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
				printk(KERN_INFO "%s: No mac address found\n", 
						dev->name);
				/* use the hard coded mac addresses */
			} else {
				str2eaddr(ethaddr, pmac + strlen("ethaddr="));
				memcpy(au1000_mac_addr, ethaddr, 
						sizeof(dev->dev_addr));
			}
		}
		if (ioaddr == AU1000_ETH0_BASE)
			aup->enable = (volatile u32 *) 
				((unsigned long)AU1000_MAC0_ENABLE);
		else
			aup->enable = (volatile u32 *) 
				((unsigned long)AU1500_MAC0_ENABLE);
		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
			break;
	case AU1000_ETH1_BASE:
	case AU1500_ETH1_BASE:
		if (ioaddr == AU1000_ETH1_BASE)
			aup->enable = (volatile u32 *) 
				((unsigned long)AU1000_MAC1_ENABLE);
		else
			aup->enable = (volatile u32 *) 
				((unsigned long)AU1500_MAC1_ENABLE);
		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
		dev->dev_addr[4] += 0x10;
		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
			break;
	default:
		printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
		break;

	}

	aup->phy_addr = PHY_ADDRESS;

	/* bring the device out of reset, otherwise probing the mii
	 * will hang */
	*aup->enable = MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);
	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 
		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);

	retval = mii_probe(dev);
	if (retval)
		 goto out2;

	retval = -EINVAL;
	pDBfree = NULL;
	/* setup the data buffer descriptors and attach a buffer to each one */
	pDB = aup->db;
	for (i=0; i<(NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
		pDB->pnext = pDBfree;
		pDBfree = pDB;
		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
		pDB++;
	}
	aup->pDBfree = pDBfree;

	for (i=0; i<NUM_RX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) goto out2;
		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->rx_db_inuse[i] = pDB;
	}
	for (i=0; i<NUM_TX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) goto out2;
		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->tx_dma_ring[i]->len = 0;
		aup->tx_db_inuse[i] = pDB;
	}

	spin_lock_init(&aup->lock);
	dev->base_addr = ioaddr;
	dev->irq = irq;
	dev->open = au1000_open;
	dev->hard_start_xmit = au1000_tx;
	dev->stop = au1000_close;
	dev->get_stats = au1000_get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &au1000_ioctl;
	dev->set_config = &au1000_set_config;
	dev->tx_timeout = au1000_tx_timeout;
	dev->watchdog_timeo = ETH_TX_TIMEOUT;

	/* 
	 * The boot code uses the ethernet controller, so reset it to start 
	 * fresh.  au1000_init() expects that the device is in reset state.
	 */
	reset_mac(dev);

	retval = register_netdev(dev);
	if (retval)
		goto out2;
	return 0;

out2:
	dma_free(aup->vaddr, MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS));
out1:
	free_netdev(dev);
out:
	release_region(PHYSADDR(ioaddr), MAC_IOSIZE);
	printk(KERN_ERR "%s: au1000_probe1 failed.  Returns %d\n",
	       dev->name, retval);
	return retval;
}


/* 
 * Initialize the interface.
 *
 * When the device powers up, the clocks are disabled and the
 * mac is in reset state.  When the interface is closed, we
 * do the same -- reset the device and disable the clocks to
 * conserve power. Thus, whenever au1000_init() is called,
 * the device should already be in reset state.
 */
static int au1000_init(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u32 flags;
	int i;
	u32 control;
	u16 link, speed;

	if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name);

	spin_lock_irqsave(&aup->lock, flags);

	/* bring the device out of reset */
	*aup->enable = MAC_EN_CLOCK_ENABLE;
        au_sync_delay(2);
	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 
		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
	au_sync_delay(20);

	aup->mac->control = 0;
	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
	aup->tx_tail = aup->tx_head;
	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;

	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
		dev->dev_addr[1]<<8 | dev->dev_addr[0];

	for (i=0; i<NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
	}
	au_sync();

	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
	control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
	control |= MAC_BIG_ENDIAN;
#endif
	if (link && (dev->if_port == IF_PORT_100BASEFX)) {
		control |= MAC_FULL_DUPLEX;
	}
	aup->mac->control = control;
	au_sync();

	spin_unlock_irqrestore(&aup->lock, flags);
	return 0;
}

static void au1000_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	unsigned char if_port;
	u16 link, speed;

	if (!dev) {
		/* fatal error, don't restart the timer */
		printk(KERN_ERR "au1000_timer error: NULL dev\n");
		return;
	}

	if_port = dev->if_port;
	if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
		if (link) {
			if (!(dev->flags & IFF_RUNNING)) {
				netif_carrier_on(dev);
				dev->flags |= IFF_RUNNING;
				printk(KERN_INFO "%s: link up\n", dev->name);
			}
		}
		else {
			if (dev->flags & IFF_RUNNING) {
				netif_carrier_off(dev);
				dev->flags &= ~IFF_RUNNING;
				dev->if_port = 0;
				printk(KERN_INFO "%s: link down\n", dev->name);
			}
		}
	}

	if (link && (dev->if_port != if_port) && 
			(dev->if_port != IF_PORT_UNKNOWN)) {
		hard_stop(dev);
		if (dev->if_port == IF_PORT_100BASEFX) {
			printk(KERN_INFO "%s: going to full duplex\n", 
					dev->name);
			aup->mac->control |= MAC_FULL_DUPLEX;
			au_sync_delay(1);
		}
		else {
			aup->mac->control &= ~MAC_FULL_DUPLEX;
			au_sync_delay(1);
		}
		enable_rx_tx(dev);
	}

	aup->timer.expires = RUN_AT((1*HZ)); 
	aup->timer.data = (unsigned long)dev;
	aup->timer.function = &au1000_timer; /* timer handler */
	add_timer(&aup->timer);

}

static int au1000_open(struct net_device *dev)
{
	int retval;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: open: dev=%p\n", dev->name, dev);

	if ((retval = au1000_init(dev))) {
		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
		free_irq(dev->irq, dev);
		return retval;
	}
	netif_start_queue(dev);

	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, 
					dev->name, dev))) {
		printk(KERN_ERR "%s: unable to get IRQ %d\n", 
				dev->name, dev->irq);
		return retval;
	}

	aup->timer.expires = RUN_AT((3*HZ)); 
	aup->timer.data = (unsigned long)dev;
	aup->timer.function = &au1000_timer; /* timer handler */
	add_timer(&aup->timer);

	if (au1000_debug > 4)
		printk("%s: open: Initialization done.\n", dev->name);

	return 0;
}

static int au1000_close(struct net_device *dev)
{
	u32 flags;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: close: dev=%p\n", dev->name, dev);

	spin_lock_irqsave(&aup->lock, flags);
	
	/* stop the device */
	if (netif_device_present(dev))
		netif_stop_queue(dev);

	/* disable the interrupt */
	free_irq(dev->irq, dev);
	spin_unlock_irqrestore(&aup->lock, flags);

	reset_mac(dev);
	return 0;
}

static void __exit au1000_cleanup_module(void)
{
}


static inline void 
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	ps->tx_packets++;
	ps->tx_bytes += pkt_len;

	if (status & TX_FRAME_ABORTED) {
		if (dev->if_port == IF_PORT_100BASEFX) {
			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
				/* any other tx errors are only valid
				 * in half duplex mode */
				ps->tx_errors++;
				ps->tx_aborted_errors++;
			}
		}
		else {
			ps->tx_errors++;
			ps->tx_aborted_errors++;
			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
				ps->tx_carrier_errors++;
		}
	}
}


/*
 * Called from the interrupt service routine to acknowledge
 * the TX DONE bits.  This is a must if the irq is setup as
 * edge triggered.
 */
static void au1000_tx_ack(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile tx_dma_t *ptxd;

	ptxd = aup->tx_dma_ring[aup->tx_tail];

	while (ptxd->buff_stat & TX_T_DONE) {
 		update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_tail]  & 0x3ff);
		ptxd->buff_stat &= ~TX_T_DONE;
 		aup->tx_len[aup->tx_tail] = 0;
		ptxd->len = 0;
		au_sync();

		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
		ptxd = aup->tx_dma_ring[aup->tx_tail];

		if (aup->tx_full) {
			aup->tx_full = 0;
			netif_wake_queue(dev);
		}
	}
}


/*
 * Au1000 transmit routine.
 */
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile tx_dma_t *ptxd;
	u32 buff_stat;
	db_dest_t *pDB;
	int i;

	if (au1000_debug > 4)
		printk("%s: tx: aup %x len=%d, data=%p, head %d\n", 
				dev->name, (unsigned)aup, skb->len, 
				skb->data, aup->tx_head);

	ptxd = aup->tx_dma_ring[aup->tx_head];
	buff_stat = ptxd->buff_stat;
	if (buff_stat & TX_DMA_ENABLE) {
		/* We've wrapped around and the transmitter is still busy */
		netif_stop_queue(dev);
		aup->tx_full = 1;
		return 1;
	}
	else if (buff_stat & TX_T_DONE) {
 		update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_head] & 0x3ff);
 		aup->tx_len[aup->tx_head] = 0;
		ptxd->len = 0;
	}

	if (aup->tx_full) {
		aup->tx_full = 0;
		netif_wake_queue(dev);
	}

	pDB = aup->tx_db_inuse[aup->tx_head];
	memcpy((void *)pDB->vaddr, skb->data, skb->len);
	if (skb->len < MAC_MIN_PKT_SIZE) {
		for (i=skb->len; i<MAC_MIN_PKT_SIZE; i++) { 
			((char *)pDB->vaddr)[i] = 0;
		}
 		aup->tx_len[aup->tx_head] = MAC_MIN_PKT_SIZE;
		ptxd->len = MAC_MIN_PKT_SIZE;
	}
	else {
 		aup->tx_len[aup->tx_head] = skb->len;
		ptxd->len = skb->len;
	}
	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
	au_sync();
	dev_kfree_skb(skb);
	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
	dev->trans_start = jiffies;
	return 0;
}


static inline void update_rx_stats(struct net_device *dev, u32 status)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	ps->rx_packets++;
	if (status & RX_MCAST_FRAME)
		ps->multicast++;

	if (status & RX_ERROR) {
		ps->rx_errors++;
		if (status & RX_MISSED_FRAME)
			ps->rx_missed_errors++;
		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
			ps->rx_length_errors++;
		if (status & RX_CRC_ERROR)
			ps->rx_crc_errors++;
		if (status & RX_COLL)
			ps->collisions++;
	}
	else 
		ps->rx_bytes += status & RX_FRAME_LEN_MASK;

}

/*
 * Au1000 receive routine.
 */
static int au1000_rx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct sk_buff *skb;
	volatile rx_dma_t *prxd;
	u32 buff_stat, status;
	db_dest_t *pDB;

	if (au1000_debug > 4)
		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);

	prxd = aup->rx_dma_ring[aup->rx_head];
	buff_stat = prxd->buff_stat;
	while (buff_stat & RX_T_DONE)  {
		status = prxd->status;
		pDB = aup->rx_db_inuse[aup->rx_head];
		update_rx_stats(dev, status);
		if (!(status & RX_ERROR))  {

			/* good frame */
			skb = dev_alloc_skb((status & RX_FRAME_LEN_MASK) + 2);
			if (skb == NULL) {
				printk(KERN_ERR
				       "%s: Memory squeeze, dropping packet.\n",
				       dev->name);
				aup->stats.rx_dropped++;
				continue;
			}
			skb->dev = dev;
			skb_reserve(skb, 2);	/* 16 byte IP header align */
			eth_copy_and_sum(skb, (unsigned char *)pDB->vaddr, 
					status & RX_FRAME_LEN_MASK, 0);
			skb_put(skb, status & RX_FRAME_LEN_MASK);
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);	/* pass the packet to upper layers */
		}
		else {
			if (au1000_debug > 4) {
				if (status & RX_MISSED_FRAME) 
					printk("rx miss\n");
				if (status & RX_WDOG_TIMER) 
					printk("rx wdog\n");
				if (status & RX_RUNT) 
					printk("rx runt\n");
				if (status & RX_OVERLEN) 
					printk("rx overlen\n");
				if (status & RX_COLL)
					printk("rx coll\n");
				if (status & RX_MII_ERROR)
					printk("rx mii error\n");
				if (status & RX_CRC_ERROR)
					printk("rx crc error\n");
				if (status & RX_LEN_ERROR)
					printk("rx len error\n");
				if (status & RX_U_CNTRL_FRAME)
					printk("rx u control frame\n");
				if (status & RX_MISSED_FRAME)
					printk("rx miss\n");
			}
		}
		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
		au_sync();

		/* next descriptor */
		prxd = aup->rx_dma_ring[aup->rx_head];
		buff_stat = prxd->buff_stat;
		dev->last_rx = jiffies;
	}
	return 0;
}


/*
 * Au1000 interrupt service routine.
 */
irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;

	if (dev == NULL) {
		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
		return IRQ_NONE;
	}
	au1000_tx_ack(dev);
	au1000_rx(dev);
	return IRQ_HANDLED;
}


/*
 * The Tx ring has been full longer than the watchdog timeout
 * value. The transmitter must be hung?
 */
static void au1000_tx_timeout(struct net_device *dev)
{
	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
	reset_mac(dev);
	au1000_init(dev);
	dev->trans_start = jiffies;
	netif_wake_queue(dev);
}

static void set_rx_mode(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4) 
		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		aup->mac->control |= MAC_PROMISCUOUS;
		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
	} else if ((dev->flags & IFF_ALLMULTI)  ||
			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
		aup->mac->control |= MAC_PASS_ALL_MULTI;
		aup->mac->control &= ~MAC_PROMISCUOUS;
		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
	} else {
		int i;
		struct dev_mc_list *mclist;
		u32 mc_filter[2];	/* Multicast hash filter */

		mc_filter[1] = mc_filter[0] = 0;
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr)>>26, 
					mc_filter);
		}
		aup->mac->multi_hash_high = mc_filter[1];
		aup->mac->multi_hash_low = mc_filter[0];
		aup->mac->control &= ~MAC_PROMISCUOUS;
		aup->mac->control |= MAC_HASH_MODE;
	}
}


static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	u16 *data = (u16 *)&rq->ifr_data;

	/* fixme */
	switch(cmd) { 
	case SIOCGMIIPHY:	/* Get the address of the PHY in use. */
		data[0] = PHY_ADDRESS;
		return 0;

	case SIOCGMIIREG:	/* Read the specified MII register. */
		//data[3] = mdio_read(ioaddr, data[0], data[1]); 
		return 0;

	case SIOCSMIIREG:	/* Write the specified MII register */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;

		//mdio_write(ioaddr, data[0], data[1], data[2]);
		return 0;

	default:
		return -EOPNOTSUPP;
	}
}


static int au1000_set_config(struct net_device *dev, struct ifmap *map)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u16 control;

	if (au1000_debug > 4)  {
		printk("%s: set_config called: dev->if_port %d map->port %x\n", 
				dev->name, dev->if_port, map->port);
	}

	switch(map->port){
		case IF_PORT_UNKNOWN: /* use auto here */   
			printk(KERN_INFO "%s: config phy for aneg\n", 
					dev->name);
			dev->if_port = map->port;
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* read current control */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~(MII_CNTL_FDX | MII_CNTL_F100);

			/* enable auto negotiation and reset the negotiation */
			mdio_write(dev, aup->phy_addr, MII_CONTROL, 
					control | MII_CNTL_AUTO | 
					MII_CNTL_RST_AUTO);

			break;
    
		case IF_PORT_10BASET: /* 10BaseT */         
			printk(KERN_INFO "%s: config phy for 10BaseT\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);

			/* set Speed to 10Mbps, Half Duplex */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | 
					MII_CNTL_FDX);
	
			/* disable auto negotiation and force 10M/HD mode*/
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
    
		case IF_PORT_100BASET: /* 100BaseT */
		case IF_PORT_100BASETX: /* 100BaseTx */ 
			printk(KERN_INFO "%s: config phy for 100BaseTX\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* set Speed to 100Mbps, Half Duplex */
			/* disable auto negotiation and enable 100MBit Mode */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			printk("read control %x\n", control);
			control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
			control |= MII_CNTL_F100;
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
    
		case IF_PORT_100BASEFX: /* 100BaseFx */
			printk(KERN_INFO "%s: config phy for 100BaseFX\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* set Speed to 100Mbps, Full Duplex */
			/* disable auto negotiation and enable 100MBit Mode */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~MII_CNTL_AUTO;
			control |=  MII_CNTL_F100 | MII_CNTL_FDX;
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
		case IF_PORT_10BASE2: /* 10Base2 */
		case IF_PORT_AUI: /* AUI */
		/* These Modes are not supported (are they?)*/
			printk(KERN_ERR "%s: 10Base2/AUI not supported", 
					dev->name);
			return -EOPNOTSUPP;
			break;
    
		default:
			printk(KERN_ERR "%s: Invalid media selected", 
					dev->name);
			return -EINVAL;
	}
	return 0;
}

static struct net_device_stats *au1000_get_stats(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);

	if (netif_device_present(dev)) {
		return &aup->stats;
	}
	return 0;
}

module_init(au1000_init_module);
module_exit(au1000_cleanup_module);