Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 | /* * Alchemy Semi Au1000 ethernet driver * * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. */ #include <linux/config.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/crc32.h> #include <asm/mipsregs.h> #include <asm/irq.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/au1000.h> #include "au1000_eth.h" #ifdef AU1000_ETH_DEBUG static int au1000_debug = 10; #else static int au1000_debug = 3; #endif // prototypes static void *dma_alloc(size_t, dma_addr_t *); static void dma_free(void *, size_t); static void hard_stop(struct net_device *); static void enable_rx_tx(struct net_device *dev); static int __init au1000_probe1(long, int, int); static int au1000_init(struct net_device *); static int au1000_open(struct net_device *); static int au1000_close(struct net_device *); static int au1000_tx(struct sk_buff *, struct net_device *); static int au1000_rx(struct net_device *); static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); static void au1000_tx_timeout(struct net_device *); static int au1000_set_config(struct net_device *dev, struct ifmap *map); static void set_rx_mode(struct net_device *); static struct net_device_stats *au1000_get_stats(struct net_device *); static inline void update_tx_stats(struct net_device *, u32, u32); static inline void update_rx_stats(struct net_device *, u32); static void au1000_timer(unsigned long); static int au1000_ioctl(struct net_device *, struct ifreq *, int); static int mdio_read(struct net_device *, int, int); static void mdio_write(struct net_device *, int, int, u16); static void dump_mii(struct net_device *dev, int phy_id); // externs extern void ack_rise_edge_irq(unsigned int); extern int get_ethernet_addr(char *ethernet_addr); extern inline void str2eaddr(unsigned char *ea, unsigned char *str); extern inline unsigned char str2hexnum(unsigned char c); extern char * __init prom_getcmdline(void); /* * Theory of operation * * The Au1000 MACs use a simple rx and tx descriptor ring scheme. * There are four receive and four transmit descriptors. These * descriptors are not in memory; rather, they are just a set of * hardware registers. * * Since the Au1000 has a coherent data cache, the receive and * transmit buffers are allocated from the KSEG0 segment. The * hardware registers, however, are still mapped at KSEG1 to * make sure there's no out-of-order writes, and that all writes * complete immediately. */ /* * Base address and interrupt of the Au1xxx ethernet macs */ static struct { unsigned int port; int irq; } au1000_iflist[NUM_INTERFACES] = { {AU1000_ETH0_BASE, AU1000_ETH0_IRQ}, {AU1000_ETH1_BASE, AU1000_ETH1_IRQ} }, au1500_iflist[NUM_INTERFACES] = { {AU1500_ETH0_BASE, AU1000_ETH0_IRQ}, {AU1500_ETH1_BASE, AU1000_ETH1_IRQ} }, au1100_iflist[NUM_INTERFACES] = { {AU1000_ETH0_BASE, AU1000_ETH0_IRQ}, {0, 0} }; static char version[] __devinitdata = "au1000eth.c:1.0 ppopov@mvista.com\n"; /* These addresses are only used if yamon doesn't tell us what * the mac address is, and the mac address is not passed on the * command line. */ static unsigned char au1000_mac_addr[6] __devinitdata = { 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 }; #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) #define RUN_AT(x) (jiffies + (x)) // For reading/writing 32-bit words from/to DMA memory #define cpu_to_dma32 cpu_to_be32 #define dma32_to_cpu be32_to_cpu /* FIXME * All of the PHY code really should be detached from the MAC * code. */ int bcm_5201_init(struct net_device *dev, int phy_addr) { s16 data; /* Stop auto-negotiation */ //printk("bcm_5201_init\n"); data = mdio_read(dev, phy_addr, MII_CONTROL); mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); /* Set advertisement to 10/100 and Half/Full duplex * (full capabilities) */ data = mdio_read(dev, phy_addr, MII_ANADV); data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; mdio_write(dev, phy_addr, MII_ANADV, data); /* Restart auto-negotiation */ data = mdio_read(dev, phy_addr, MII_CONTROL); data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; mdio_write(dev, phy_addr, MII_CONTROL, data); /* Enable TX LED instead of FDX */ data = mdio_read(dev, phy_addr, MII_INT); data &= ~MII_FDX_LED; mdio_write(dev, phy_addr, MII_INT, data); /* Enable TX LED instead of FDX */ data = mdio_read(dev, phy_addr, MII_INT); data &= ~MII_FDX_LED; mdio_write(dev, phy_addr, MII_INT, data); if (au1000_debug > 4) dump_mii(dev, phy_addr); return 0; } int bcm_5201_reset(struct net_device *dev, int phy_addr) { s16 mii_control, timeout; //printk("bcm_5201_reset\n"); mii_control = mdio_read(dev, phy_addr, MII_CONTROL); mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); mdelay(1); for (timeout = 100; timeout > 0; --timeout) { mii_control = mdio_read(dev, phy_addr, MII_CONTROL); if ((mii_control & MII_CNTL_RESET) == 0) break; mdelay(1); } if (mii_control & MII_CNTL_RESET) { printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); return -1; } return 0; } int bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) { u16 mii_data; struct au1000_private *aup; if (!dev) { printk(KERN_ERR "bcm_5201_status error: NULL dev\n"); return -1; } aup = (struct au1000_private *) dev->priv; mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); if (mii_data & MII_STAT_LINK) { *link = 1; mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); if (mii_data & MII_AUX_100) { if (mii_data & MII_AUX_FDX) { *speed = IF_PORT_100BASEFX; dev->if_port = IF_PORT_100BASEFX; } else { *speed = IF_PORT_100BASETX; dev->if_port = IF_PORT_100BASETX; } } else { *speed = IF_PORT_10BASET; dev->if_port = IF_PORT_10BASET; } } else { *link = 0; *speed = 0; dev->if_port = IF_PORT_UNKNOWN; } return 0; } int lsi_80227_init(struct net_device *dev, int phy_addr) { if (au1000_debug > 4) printk("lsi_80227_init\n"); /* restart auto-negotiation */ mdio_write(dev, phy_addr, 0, 0x3200); mdelay(1); /* set up LEDs to correct display */ mdio_write(dev, phy_addr, 17, 0xffc0); if (au1000_debug > 4) dump_mii(dev, phy_addr); return 0; } int lsi_80227_reset(struct net_device *dev, int phy_addr) { s16 mii_control, timeout; if (au1000_debug > 4) { printk("lsi_80227_reset\n"); dump_mii(dev, phy_addr); } mii_control = mdio_read(dev, phy_addr, MII_CONTROL); mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); mdelay(1); for (timeout = 100; timeout > 0; --timeout) { mii_control = mdio_read(dev, phy_addr, MII_CONTROL); if ((mii_control & MII_CNTL_RESET) == 0) break; mdelay(1); } if (mii_control & MII_CNTL_RESET) { printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); return -1; } return 0; } int lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) { u16 mii_data; struct au1000_private *aup; if (!dev) { printk(KERN_ERR "lsi_80227_status error: NULL dev\n"); return -1; } aup = (struct au1000_private *) dev->priv; mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); if (mii_data & MII_STAT_LINK) { *link = 1; mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_STAT); if (mii_data & MII_LSI_STAT_SPD) { if (mii_data & MII_LSI_STAT_FDX) { *speed = IF_PORT_100BASEFX; dev->if_port = IF_PORT_100BASEFX; } else { *speed = IF_PORT_100BASETX; dev->if_port = IF_PORT_100BASETX; } } else { *speed = IF_PORT_10BASET; dev->if_port = IF_PORT_10BASET; } } else { *link = 0; *speed = 0; dev->if_port = IF_PORT_UNKNOWN; } return 0; } int am79c901_init(struct net_device *dev, int phy_addr) { printk("am79c901_init\n"); return 0; } int am79c901_reset(struct net_device *dev, int phy_addr) { printk("am79c901_reset\n"); return 0; } int am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) { return 0; } struct phy_ops bcm_5201_ops = { bcm_5201_init, bcm_5201_reset, bcm_5201_status, }; struct phy_ops am79c901_ops = { am79c901_init, am79c901_reset, am79c901_status, }; struct phy_ops lsi_80227_ops = { lsi_80227_init, lsi_80227_reset, lsi_80227_status, }; static struct mii_chip_info { const char * name; u16 phy_id0; u16 phy_id1; struct phy_ops *phy_ops; } mii_chip_table[] = { {"Broadcom BCM5201 10/100 BaseT PHY", 0x0040, 0x6212, &bcm_5201_ops }, {"AMD 79C901 HomePNA PHY", 0x0000, 0x35c8, &am79c901_ops }, {"LSI 80227 10/100 BaseT PHY", 0x0016, 0xf840, &lsi_80227_ops }, {"Broadcom BCM5221 10/100 BaseT PHY", 0x0040, 0x61e4, &bcm_5201_ops }, {0,}, }; static int mdio_read(struct net_device *dev, int phy_id, int reg) { struct au1000_private *aup = (struct au1000_private *) dev->priv; u32 timedout = 20; u32 mii_control; while (aup->mac->mii_control & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: read_MII busy timeout!!\n", dev->name); return -1; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; aup->mac->mii_control = mii_control; timedout = 20; while (aup->mac->mii_control & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_read busy timeout!!\n", dev->name); return -1; } } return (int)aup->mac->mii_data; } static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) { struct au1000_private *aup = (struct au1000_private *) dev->priv; u32 timedout = 20; u32 mii_control; while (aup->mac->mii_control & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_write busy timeout!!\n", dev->name); return; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; aup->mac->mii_data = value; aup->mac->mii_control = mii_control; } static void dump_mii(struct net_device *dev, int phy_id) { int i, val; for (i = 0; i < 7; i++) { if ((val = mdio_read(dev, phy_id, i)) >= 0) printk("%s: MII Reg %d=%x\n", dev->name, i, val); } for (i = 16; i < 25; i++) { if ((val = mdio_read(dev, phy_id, i)) >= 0) printk("%s: MII Reg %d=%x\n", dev->name, i, val); } } static int __init mii_probe (struct net_device * dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; int phy_addr; aup->mii = NULL; /* search for total of 32 possible mii phy addresses */ for (phy_addr = 0; phy_addr < 32; phy_addr++) { u16 mii_status; u16 phy_id0, phy_id1; int i; mii_status = mdio_read(dev, phy_addr, MII_STATUS); if (mii_status == 0xffff || mii_status == 0x0000) /* the mii is not accessible, try next one */ continue; phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); /* search our mii table for the current mii */ for (i = 0; mii_chip_table[i].phy_id1; i++) { if (phy_id0 == mii_chip_table[i].phy_id0 && phy_id1 == mii_chip_table[i].phy_id1) { struct mii_phy * mii_phy; printk(KERN_INFO "%s: %s at phy address %d\n", dev->name, mii_chip_table[i].name, phy_addr); mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); if (mii_phy) { mii_phy->chip_info = mii_chip_table+i; mii_phy->phy_addr = phy_addr; mii_phy->next = aup->mii; aup->phy_ops = mii_chip_table[i].phy_ops; aup->mii = mii_phy; aup->phy_ops->phy_init(dev,phy_addr); } else { printk(KERN_ERR "%s: out of memory\n", dev->name); return -1; } /* the current mii is on our mii_info_table, try next address */ break; } } } if (aup->mii == NULL) { printk(KERN_ERR "%s: No MII transceivers found!\n", dev->name); return -1; } /* use last PHY */ aup->phy_addr = aup->mii->phy_addr; printk(KERN_INFO "%s: Using %s as default\n", dev->name, aup->mii->chip_info->name); return 0; } /* * Buffer allocation/deallocation routines. The buffer descriptor returned * has the virtual and dma address of a buffer suitable for * both, receive and transmit operations. */ static db_dest_t *GetFreeDB(struct au1000_private *aup) { db_dest_t *pDB; pDB = aup->pDBfree; if (pDB) { aup->pDBfree = pDB->pnext; } //printk("GetFreeDB: %x\n", pDB); return pDB; } void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) { db_dest_t *pDBfree = aup->pDBfree; if (pDBfree) pDBfree->pnext = pDB; aup->pDBfree = pDB; } /* DMA memory allocation, derived from pci_alloc_consistent. However, the Au1000 data cache is coherent (when programmed so), therefore we return KSEG0 address, not KSEG1. */ static void *dma_alloc(size_t size, dma_addr_t * dma_handle) { void *ret; int gfp = GFP_ATOMIC | GFP_DMA; ret = (void *) __get_free_pages(gfp, get_order(size)); if (ret != NULL) { memset(ret, 0, size); *dma_handle = virt_to_bus(ret); ret = (void *)KSEG0ADDR(ret); } return ret; } static void dma_free(void *vaddr, size_t size) { vaddr = (void *)KSEG0ADDR(vaddr); free_pages((unsigned long) vaddr, get_order(size)); } static void enable_rx_tx(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void hard_stop(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk(KERN_INFO "%s: hard stop\n", dev->name); aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void reset_mac(struct net_device *dev) { u32 flags; struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk(KERN_INFO "%s: reset mac, aup %x\n", dev->name, (unsigned)aup); spin_lock_irqsave(&aup->lock, flags); del_timer(&aup->timer); hard_stop(dev); *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = 0; au_sync_delay(2); aup->tx_full = 0; spin_unlock_irqrestore(&aup->lock, flags); } /* * Setup the receive and transmit "rings". These pointers are the addresses * of the rx and tx MAC DMA registers so they are fixed by the hardware -- * these are not descriptors sitting in memory. */ static void setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) { int i; for (i=0; i<NUM_RX_DMA; i++) { aup->rx_dma_ring[i] = (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); } for (i=0; i<NUM_TX_DMA; i++) { aup->tx_dma_ring[i] = (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); } } static int __init au1000_init_module(void) { int i; int prid; int base_addr, irq; prid = read_c0_prid(); for (i=0; i<NUM_INTERFACES; i++) { if ( (prid & 0xffff0000) == 0x00030000 ) { base_addr = au1000_iflist[i].port; irq = au1000_iflist[i].irq; } else if ( (prid & 0xffff0000) == 0x01030000 ) { base_addr = au1500_iflist[i].port; irq = au1500_iflist[i].irq; } else if ( (prid & 0xffff0000) == 0x02030000 ) { base_addr = au1100_iflist[i].port; irq = au1100_iflist[i].irq; } else { printk(KERN_ERR "au1000 eth: unknown Processor ID\n"); return -ENODEV; } // check for valid entries, au1100 only has one entry if (base_addr && irq) { if (au1000_probe1(base_addr, irq, i) != 0) return -ENODEV; } } return 0; } static int __init au1000_probe1(long ioaddr, int irq, int port_num) { struct net_device *dev; static unsigned version_printed = 0; struct au1000_private *aup = NULL; int i, retval = 0; db_dest_t *pDB, *pDBfree; char *pmac, *argptr; char ethaddr[6]; if (!request_region(PHYSADDR(ioaddr), MAC_IOSIZE, "Au1000 ENET")) return -ENODEV; if (version_printed++ == 0) printk(version); retval = -ENOMEM; dev = alloc_etherdev(sizeof(struct au1000_private)); if (!dev) { printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n"); goto out; } SET_MODULE_OWNER(dev); printk("%s: Au1xxx ethernet found at 0x%lx, irq %d\n", dev->name, ioaddr, irq); aup = dev->priv; /* Allocate the data buffers */ aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr); if (!aup->vaddr) goto out1; /* aup->mac is the base address of the MAC's registers */ aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr); /* Setup some variables for quick register address access */ switch (ioaddr) { case AU1000_ETH0_BASE: case AU1500_ETH0_BASE: /* check env variables first */ if (!get_ethernet_addr(ethaddr)) { memcpy(au1000_mac_addr, ethaddr, sizeof(dev->dev_addr)); } else { /* Check command line */ argptr = prom_getcmdline(); if ((pmac = strstr(argptr, "ethaddr=")) == NULL) { printk(KERN_INFO "%s: No mac address found\n", dev->name); /* use the hard coded mac addresses */ } else { str2eaddr(ethaddr, pmac + strlen("ethaddr=")); memcpy(au1000_mac_addr, ethaddr, sizeof(dev->dev_addr)); } } if (ioaddr == AU1000_ETH0_BASE) aup->enable = (volatile u32 *) ((unsigned long)AU1000_MAC0_ENABLE); else aup->enable = (volatile u32 *) ((unsigned long)AU1500_MAC0_ENABLE); memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr)); setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); break; case AU1000_ETH1_BASE: case AU1500_ETH1_BASE: if (ioaddr == AU1000_ETH1_BASE) aup->enable = (volatile u32 *) ((unsigned long)AU1000_MAC1_ENABLE); else aup->enable = (volatile u32 *) ((unsigned long)AU1500_MAC1_ENABLE); memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr)); dev->dev_addr[4] += 0x10; setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); break; default: printk(KERN_ERR "%s: bad ioaddr\n", dev->name); break; } aup->phy_addr = PHY_ADDRESS; /* bring the device out of reset, otherwise probing the mii * will hang */ *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; au_sync_delay(2); retval = mii_probe(dev); if (retval) goto out2; retval = -EINVAL; pDBfree = NULL; /* setup the data buffer descriptors and attach a buffer to each one */ pDB = aup->db; for (i=0; i<(NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { pDB->pnext = pDBfree; pDBfree = pDB; pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); pDB++; } aup->pDBfree = pDBfree; for (i=0; i<NUM_RX_DMA; i++) { pDB = GetFreeDB(aup); if (!pDB) goto out2; aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->rx_db_inuse[i] = pDB; } for (i=0; i<NUM_TX_DMA; i++) { pDB = GetFreeDB(aup); if (!pDB) goto out2; aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->tx_dma_ring[i]->len = 0; aup->tx_db_inuse[i] = pDB; } spin_lock_init(&aup->lock); dev->base_addr = ioaddr; dev->irq = irq; dev->open = au1000_open; dev->hard_start_xmit = au1000_tx; dev->stop = au1000_close; dev->get_stats = au1000_get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &au1000_ioctl; dev->set_config = &au1000_set_config; dev->tx_timeout = au1000_tx_timeout; dev->watchdog_timeo = ETH_TX_TIMEOUT; /* * The boot code uses the ethernet controller, so reset it to start * fresh. au1000_init() expects that the device is in reset state. */ reset_mac(dev); retval = register_netdev(dev); if (retval) goto out2; return 0; out2: dma_free(aup->vaddr, MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS)); out1: free_netdev(dev); out: release_region(PHYSADDR(ioaddr), MAC_IOSIZE); printk(KERN_ERR "%s: au1000_probe1 failed. Returns %d\n", dev->name, retval); return retval; } /* * Initialize the interface. * * When the device powers up, the clocks are disabled and the * mac is in reset state. When the interface is closed, we * do the same -- reset the device and disable the clocks to * conserve power. Thus, whenever au1000_init() is called, * the device should already be in reset state. */ static int au1000_init(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; u32 flags; int i; u32 control; u16 link, speed; if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name); spin_lock_irqsave(&aup->lock, flags); /* bring the device out of reset */ *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; au_sync_delay(20); aup->mac->control = 0; aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->tx_tail = aup->tx_head; aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | dev->dev_addr[1]<<8 | dev->dev_addr[0]; for (i=0; i<NUM_RX_DMA; i++) { aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; } au_sync(); aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE; #ifndef CONFIG_CPU_LITTLE_ENDIAN control |= MAC_BIG_ENDIAN; #endif if (link && (dev->if_port == IF_PORT_100BASEFX)) { control |= MAC_FULL_DUPLEX; } aup->mac->control = control; au_sync(); spin_unlock_irqrestore(&aup->lock, flags); return 0; } static void au1000_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct au1000_private *aup = (struct au1000_private *) dev->priv; unsigned char if_port; u16 link, speed; if (!dev) { /* fatal error, don't restart the timer */ printk(KERN_ERR "au1000_timer error: NULL dev\n"); return; } if_port = dev->if_port; if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { if (link) { if (!(dev->flags & IFF_RUNNING)) { netif_carrier_on(dev); dev->flags |= IFF_RUNNING; printk(KERN_INFO "%s: link up\n", dev->name); } } else { if (dev->flags & IFF_RUNNING) { netif_carrier_off(dev); dev->flags &= ~IFF_RUNNING; dev->if_port = 0; printk(KERN_INFO "%s: link down\n", dev->name); } } } if (link && (dev->if_port != if_port) && (dev->if_port != IF_PORT_UNKNOWN)) { hard_stop(dev); if (dev->if_port == IF_PORT_100BASEFX) { printk(KERN_INFO "%s: going to full duplex\n", dev->name); aup->mac->control |= MAC_FULL_DUPLEX; au_sync_delay(1); } else { aup->mac->control &= ~MAC_FULL_DUPLEX; au_sync_delay(1); } enable_rx_tx(dev); } aup->timer.expires = RUN_AT((1*HZ)); aup->timer.data = (unsigned long)dev; aup->timer.function = &au1000_timer; /* timer handler */ add_timer(&aup->timer); } static int au1000_open(struct net_device *dev) { int retval; struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: open: dev=%p\n", dev->name, dev); if ((retval = au1000_init(dev))) { printk(KERN_ERR "%s: error in au1000_init\n", dev->name); free_irq(dev->irq, dev); return retval; } netif_start_queue(dev); if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, dev->name, dev))) { printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq); return retval; } aup->timer.expires = RUN_AT((3*HZ)); aup->timer.data = (unsigned long)dev; aup->timer.function = &au1000_timer; /* timer handler */ add_timer(&aup->timer); if (au1000_debug > 4) printk("%s: open: Initialization done.\n", dev->name); return 0; } static int au1000_close(struct net_device *dev) { u32 flags; struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: close: dev=%p\n", dev->name, dev); spin_lock_irqsave(&aup->lock, flags); /* stop the device */ if (netif_device_present(dev)) netif_stop_queue(dev); /* disable the interrupt */ free_irq(dev->irq, dev); spin_unlock_irqrestore(&aup->lock, flags); reset_mac(dev); return 0; } static void __exit au1000_cleanup_module(void) { } static inline void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct net_device_stats *ps = &aup->stats; ps->tx_packets++; ps->tx_bytes += pkt_len; if (status & TX_FRAME_ABORTED) { if (dev->if_port == IF_PORT_100BASEFX) { if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { /* any other tx errors are only valid * in half duplex mode */ ps->tx_errors++; ps->tx_aborted_errors++; } } else { ps->tx_errors++; ps->tx_aborted_errors++; if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) ps->tx_carrier_errors++; } } } /* * Called from the interrupt service routine to acknowledge * the TX DONE bits. This is a must if the irq is setup as * edge triggered. */ static void au1000_tx_ack(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; volatile tx_dma_t *ptxd; ptxd = aup->tx_dma_ring[aup->tx_tail]; while (ptxd->buff_stat & TX_T_DONE) { update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_tail] & 0x3ff); ptxd->buff_stat &= ~TX_T_DONE; aup->tx_len[aup->tx_tail] = 0; ptxd->len = 0; au_sync(); aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); ptxd = aup->tx_dma_ring[aup->tx_tail]; if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } } } /* * Au1000 transmit routine. */ static int au1000_tx(struct sk_buff *skb, struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; volatile tx_dma_t *ptxd; u32 buff_stat; db_dest_t *pDB; int i; if (au1000_debug > 4) printk("%s: tx: aup %x len=%d, data=%p, head %d\n", dev->name, (unsigned)aup, skb->len, skb->data, aup->tx_head); ptxd = aup->tx_dma_ring[aup->tx_head]; buff_stat = ptxd->buff_stat; if (buff_stat & TX_DMA_ENABLE) { /* We've wrapped around and the transmitter is still busy */ netif_stop_queue(dev); aup->tx_full = 1; return 1; } else if (buff_stat & TX_T_DONE) { update_tx_stats(dev, ptxd->status, aup->tx_len[aup->tx_head] & 0x3ff); aup->tx_len[aup->tx_head] = 0; ptxd->len = 0; } if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } pDB = aup->tx_db_inuse[aup->tx_head]; memcpy((void *)pDB->vaddr, skb->data, skb->len); if (skb->len < MAC_MIN_PKT_SIZE) { for (i=skb->len; i<MAC_MIN_PKT_SIZE; i++) { ((char *)pDB->vaddr)[i] = 0; } aup->tx_len[aup->tx_head] = MAC_MIN_PKT_SIZE; ptxd->len = MAC_MIN_PKT_SIZE; } else { aup->tx_len[aup->tx_head] = skb->len; ptxd->len = skb->len; } ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; au_sync(); dev_kfree_skb(skb); aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); dev->trans_start = jiffies; return 0; } static inline void update_rx_stats(struct net_device *dev, u32 status) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct net_device_stats *ps = &aup->stats; ps->rx_packets++; if (status & RX_MCAST_FRAME) ps->multicast++; if (status & RX_ERROR) { ps->rx_errors++; if (status & RX_MISSED_FRAME) ps->rx_missed_errors++; if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) ps->rx_length_errors++; if (status & RX_CRC_ERROR) ps->rx_crc_errors++; if (status & RX_COLL) ps->collisions++; } else ps->rx_bytes += status & RX_FRAME_LEN_MASK; } /* * Au1000 receive routine. */ static int au1000_rx(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct sk_buff *skb; volatile rx_dma_t *prxd; u32 buff_stat, status; db_dest_t *pDB; if (au1000_debug > 4) printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; while (buff_stat & RX_T_DONE) { status = prxd->status; pDB = aup->rx_db_inuse[aup->rx_head]; update_rx_stats(dev, status); if (!(status & RX_ERROR)) { /* good frame */ skb = dev_alloc_skb((status & RX_FRAME_LEN_MASK) + 2); if (skb == NULL) { printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name); aup->stats.rx_dropped++; continue; } skb->dev = dev; skb_reserve(skb, 2); /* 16 byte IP header align */ eth_copy_and_sum(skb, (unsigned char *)pDB->vaddr, status & RX_FRAME_LEN_MASK, 0); skb_put(skb, status & RX_FRAME_LEN_MASK); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* pass the packet to upper layers */ } else { if (au1000_debug > 4) { if (status & RX_MISSED_FRAME) printk("rx miss\n"); if (status & RX_WDOG_TIMER) printk("rx wdog\n"); if (status & RX_RUNT) printk("rx runt\n"); if (status & RX_OVERLEN) printk("rx overlen\n"); if (status & RX_COLL) printk("rx coll\n"); if (status & RX_MII_ERROR) printk("rx mii error\n"); if (status & RX_CRC_ERROR) printk("rx crc error\n"); if (status & RX_LEN_ERROR) printk("rx len error\n"); if (status & RX_U_CNTRL_FRAME) printk("rx u control frame\n"); if (status & RX_MISSED_FRAME) printk("rx miss\n"); } } prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); au_sync(); /* next descriptor */ prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; dev->last_rx = jiffies; } return 0; } /* * Au1000 interrupt service routine. */ irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; if (dev == NULL) { printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); return IRQ_NONE; } au1000_tx_ack(dev); au1000_rx(dev); return IRQ_HANDLED; } /* * The Tx ring has been full longer than the watchdog timeout * value. The transmitter must be hung? */ static void au1000_tx_timeout(struct net_device *dev) { printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); reset_mac(dev); au1000_init(dev); dev->trans_start = jiffies; netif_wake_queue(dev); } static void set_rx_mode(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ aup->mac->control |= MAC_PROMISCUOUS; printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > MULTICAST_FILTER_LIMIT) { aup->mac->control |= MAC_PASS_ALL_MULTI; aup->mac->control &= ~MAC_PROMISCUOUS; printk(KERN_INFO "%s: Pass all multicast\n", dev->name); } else { int i; struct dev_mc_list *mclist; u32 mc_filter[2]; /* Multicast hash filter */ mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr)>>26, mc_filter); } aup->mac->multi_hash_high = mc_filter[1]; aup->mac->multi_hash_low = mc_filter[0]; aup->mac->control &= ~MAC_PROMISCUOUS; aup->mac->control |= MAC_HASH_MODE; } } static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { u16 *data = (u16 *)&rq->ifr_data; /* fixme */ switch(cmd) { case SIOCGMIIPHY: /* Get the address of the PHY in use. */ data[0] = PHY_ADDRESS; return 0; case SIOCGMIIREG: /* Read the specified MII register. */ //data[3] = mdio_read(ioaddr, data[0], data[1]); return 0; case SIOCSMIIREG: /* Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; //mdio_write(ioaddr, data[0], data[1], data[2]); return 0; default: return -EOPNOTSUPP; } } static int au1000_set_config(struct net_device *dev, struct ifmap *map) { struct au1000_private *aup = (struct au1000_private *) dev->priv; u16 control; if (au1000_debug > 4) { printk("%s: set_config called: dev->if_port %d map->port %x\n", dev->name, dev->if_port, map->port); } switch(map->port){ case IF_PORT_UNKNOWN: /* use auto here */ printk(KERN_INFO "%s: config phy for aneg\n", dev->name); dev->if_port = map->port; /* Link Down: the timer will bring it up */ netif_carrier_off(dev); /* read current control */ control = mdio_read(dev, aup->phy_addr, MII_CONTROL); control &= ~(MII_CNTL_FDX | MII_CNTL_F100); /* enable auto negotiation and reset the negotiation */ mdio_write(dev, aup->phy_addr, MII_CONTROL, control | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); break; case IF_PORT_10BASET: /* 10BaseT */ printk(KERN_INFO "%s: config phy for 10BaseT\n", dev->name); dev->if_port = map->port; /* Link Down: the timer will bring it up */ netif_carrier_off(dev); /* set Speed to 10Mbps, Half Duplex */ control = mdio_read(dev, aup->phy_addr, MII_CONTROL); control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_FDX); /* disable auto negotiation and force 10M/HD mode*/ mdio_write(dev, aup->phy_addr, MII_CONTROL, control); break; case IF_PORT_100BASET: /* 100BaseT */ case IF_PORT_100BASETX: /* 100BaseTx */ printk(KERN_INFO "%s: config phy for 100BaseTX\n", dev->name); dev->if_port = map->port; /* Link Down: the timer will bring it up */ netif_carrier_off(dev); /* set Speed to 100Mbps, Half Duplex */ /* disable auto negotiation and enable 100MBit Mode */ control = mdio_read(dev, aup->phy_addr, MII_CONTROL); printk("read control %x\n", control); control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX); control |= MII_CNTL_F100; mdio_write(dev, aup->phy_addr, MII_CONTROL, control); break; case IF_PORT_100BASEFX: /* 100BaseFx */ printk(KERN_INFO "%s: config phy for 100BaseFX\n", dev->name); dev->if_port = map->port; /* Link Down: the timer will bring it up */ netif_carrier_off(dev); /* set Speed to 100Mbps, Full Duplex */ /* disable auto negotiation and enable 100MBit Mode */ control = mdio_read(dev, aup->phy_addr, MII_CONTROL); control &= ~MII_CNTL_AUTO; control |= MII_CNTL_F100 | MII_CNTL_FDX; mdio_write(dev, aup->phy_addr, MII_CONTROL, control); break; case IF_PORT_10BASE2: /* 10Base2 */ case IF_PORT_AUI: /* AUI */ /* These Modes are not supported (are they?)*/ printk(KERN_ERR "%s: 10Base2/AUI not supported", dev->name); return -EOPNOTSUPP; break; default: printk(KERN_ERR "%s: Invalid media selected", dev->name); return -EINVAL; } return 0; } static struct net_device_stats *au1000_get_stats(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev); if (netif_device_present(dev)) { return &aup->stats; } return 0; } module_init(au1000_init_module); module_exit(au1000_cleanup_module); |