Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | /* * linux/arch/m68k/atari/time.c * * Atari time and real time clock stuff * * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include <linux/types.h> #include <linux/mc146818rtc.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/rtc.h> #include <linux/bcd.h> #include <asm/atariints.h> void __init atari_sched_init(irqreturn_t (*timer_routine)(int, void *, struct pt_regs *)) { /* set Timer C data Register */ mfp.tim_dt_c = INT_TICKS; /* start timer C, div = 1:100 */ mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60; /* install interrupt service routine for MFP Timer C */ request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, "timer", timer_routine); } /* ++andreas: gettimeoffset fixed to check for pending interrupt */ #define TICK_SIZE 10000 /* This is always executed with interrupts disabled. */ unsigned long atari_gettimeoffset (void) { unsigned long ticks, offset = 0; /* read MFP timer C current value */ ticks = mfp.tim_dt_c; /* The probability of underflow is less than 2% */ if (ticks > INT_TICKS - INT_TICKS / 50) /* Check for pending timer interrupt */ if (mfp.int_pn_b & (1 << 5)) offset = TICK_SIZE; ticks = INT_TICKS - ticks; ticks = ticks * 10000L / INT_TICKS; return ticks + offset; } static void mste_read(struct MSTE_RTC *val) { #define COPY(v) val->v=(mste_rtc.v & 0xf) do { COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; COPY(year_tens) ; /* prevent from reading the clock while it changed */ } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); #undef COPY } static void mste_write(struct MSTE_RTC *val) { #define COPY(v) mste_rtc.v=val->v do { COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; COPY(year_tens) ; /* prevent from writing the clock while it changed */ } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); #undef COPY } #define RTC_READ(reg) \ ({ unsigned char __val; \ (void) atari_writeb(reg,&tt_rtc.regsel); \ __val = tt_rtc.data; \ __val; \ }) #define RTC_WRITE(reg,val) \ do { \ atari_writeb(reg,&tt_rtc.regsel); \ tt_rtc.data = (val); \ } while(0) #define HWCLK_POLL_INTERVAL 5 int atari_mste_hwclk( int op, struct rtc_time *t ) { int hour, year; int hr24=0; struct MSTE_RTC val; mste_rtc.mode=(mste_rtc.mode | 1); hr24=mste_rtc.mon_tens & 1; mste_rtc.mode=(mste_rtc.mode & ~1); if (op) { /* write: prepare values */ val.sec_ones = t->tm_sec % 10; val.sec_tens = t->tm_sec / 10; val.min_ones = t->tm_min % 10; val.min_tens = t->tm_min / 10; hour = t->tm_hour; if (!hr24) { if (hour > 11) hour += 20 - 12; if (hour == 0 || hour == 20) hour += 12; } val.hr_ones = hour % 10; val.hr_tens = hour / 10; val.day_ones = t->tm_mday % 10; val.day_tens = t->tm_mday / 10; val.mon_ones = (t->tm_mon+1) % 10; val.mon_tens = (t->tm_mon+1) / 10; year = t->tm_year - 80; val.year_ones = year % 10; val.year_tens = year / 10; val.weekday = t->tm_wday; mste_write(&val); mste_rtc.mode=(mste_rtc.mode | 1); val.year_ones = (year % 4); /* leap year register */ mste_rtc.mode=(mste_rtc.mode & ~1); } else { mste_read(&val); t->tm_sec = val.sec_ones + val.sec_tens * 10; t->tm_min = val.min_ones + val.min_tens * 10; hour = val.hr_ones + val.hr_tens * 10; if (!hr24) { if (hour == 12 || hour == 12 + 20) hour -= 12; if (hour >= 20) hour += 12 - 20; } t->tm_hour = hour; t->tm_mday = val.day_ones + val.day_tens * 10; t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1; t->tm_year = val.year_ones + val.year_tens * 10 + 80; t->tm_wday = val.weekday; } return 0; } int atari_tt_hwclk( int op, struct rtc_time *t ) { int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; unsigned long flags; unsigned char ctrl; int pm = 0; ctrl = RTC_READ(RTC_CONTROL); /* control registers are * independent from the UIP */ if (op) { /* write: prepare values */ sec = t->tm_sec; min = t->tm_min; hour = t->tm_hour; day = t->tm_mday; mon = t->tm_mon + 1; year = t->tm_year - atari_rtc_year_offset; wday = t->tm_wday + (t->tm_wday >= 0); if (!(ctrl & RTC_24H)) { if (hour > 11) { pm = 0x80; if (hour != 12) hour -= 12; } else if (hour == 0) hour = 12; } if (!(ctrl & RTC_DM_BINARY)) { BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hour); BIN_TO_BCD(day); BIN_TO_BCD(mon); BIN_TO_BCD(year); if (wday >= 0) BIN_TO_BCD(wday); } } /* Reading/writing the clock registers is a bit critical due to * the regular update cycle of the RTC. While an update is in * progress, registers 0..9 shouldn't be touched. * The problem is solved like that: If an update is currently in * progress (the UIP bit is set), the process sleeps for a while * (50ms). This really should be enough, since the update cycle * normally needs 2 ms. * If the UIP bit reads as 0, we have at least 244 usecs until the * update starts. This should be enough... But to be sure, * additionally the RTC_SET bit is set to prevent an update cycle. */ while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(HWCLK_POLL_INTERVAL); } local_irq_save(flags); RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET ); if (!op) { sec = RTC_READ( RTC_SECONDS ); min = RTC_READ( RTC_MINUTES ); hour = RTC_READ( RTC_HOURS ); day = RTC_READ( RTC_DAY_OF_MONTH ); mon = RTC_READ( RTC_MONTH ); year = RTC_READ( RTC_YEAR ); wday = RTC_READ( RTC_DAY_OF_WEEK ); } else { RTC_WRITE( RTC_SECONDS, sec ); RTC_WRITE( RTC_MINUTES, min ); RTC_WRITE( RTC_HOURS, hour + pm); RTC_WRITE( RTC_DAY_OF_MONTH, day ); RTC_WRITE( RTC_MONTH, mon ); RTC_WRITE( RTC_YEAR, year ); if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday ); } RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET ); local_irq_restore(flags); if (!op) { /* read: adjust values */ if (hour & 0x80) { hour &= ~0x80; pm = 1; } if (!(ctrl & RTC_DM_BINARY)) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); BCD_TO_BIN(wday); } if (!(ctrl & RTC_24H)) { if (!pm && hour == 12) hour = 0; else if (pm && hour != 12) hour += 12; } t->tm_sec = sec; t->tm_min = min; t->tm_hour = hour; t->tm_mday = day; t->tm_mon = mon - 1; t->tm_year = year + atari_rtc_year_offset; t->tm_wday = wday - 1; } return( 0 ); } int atari_mste_set_clock_mmss (unsigned long nowtime) { short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; struct MSTE_RTC val; unsigned char rtc_minutes; mste_read(&val); rtc_minutes= val.min_ones + val.min_tens * 10; if ((rtc_minutes < real_minutes ? real_minutes - rtc_minutes : rtc_minutes - real_minutes) < 30) { val.sec_ones = real_seconds % 10; val.sec_tens = real_seconds / 10; val.min_ones = real_minutes % 10; val.min_tens = real_minutes / 10; mste_write(&val); } else return -1; return 0; } int atari_tt_set_clock_mmss (unsigned long nowtime) { int retval = 0; short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; unsigned char save_control, save_freq_select, rtc_minutes; save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */ RTC_WRITE (RTC_CONTROL, save_control | RTC_SET); save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */ RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2); rtc_minutes = RTC_READ (RTC_MINUTES); if (!(save_control & RTC_DM_BINARY)) BCD_TO_BIN (rtc_minutes); /* Since we're only adjusting minutes and seconds, don't interfere with hour overflow. This avoids messing with unknown time zones but requires your RTC not to be off by more than 30 minutes. */ if ((rtc_minutes < real_minutes ? real_minutes - rtc_minutes : rtc_minutes - real_minutes) < 30) { if (!(save_control & RTC_DM_BINARY)) { BIN_TO_BCD (real_seconds); BIN_TO_BCD (real_minutes); } RTC_WRITE (RTC_SECONDS, real_seconds); RTC_WRITE (RTC_MINUTES, real_minutes); } else retval = -1; RTC_WRITE (RTC_FREQ_SELECT, save_freq_select); RTC_WRITE (RTC_CONTROL, save_control); return retval; } /* * Local variables: * c-indent-level: 4 * tab-width: 8 * End: */ |