Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
/*
 *   (c) 2003 Advanced Micro Devices, Inc.
 *  Your use of this code is subject to the terms and conditions of the
 *  GNU general public license version 2. See "../../../COPYING" or
 *  http://www.gnu.org/licenses/gpl.html
 *
 *  Support : paul.devriendt@amd.com
 *
 *  Based on the powernow-k7.c module written by Dave Jones.
 *  (C) 2003 Dave Jones <davej@codemonkey.ork.uk> on behalf of SuSE Labs
 *  Licensed under the terms of the GNU GPL License version 2.
 *  Based upon datasheets & sample CPUs kindly provided by AMD.
 *
 *  Processor information obtained from Chapter 9 (Power and Thermal Management)
 *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
 *  Opteron Processors", revision 3.03, available for download from www.amd.com
 *
 */

#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>
#include <linux/string.h>

#include <asm/msr.h>
#include <asm/io.h>
#include <asm/delay.h>

#define PFX "powernow-k8: "
#define BFX PFX "BIOS error: "
#define VERSION "version 1.00.08 - September 26, 2003"
#include "powernow-k8.h"

#ifdef CONFIG_PREEMPT
#warning this driver has not been tested on a preempt system
#endif

static u32 vstable;	/* voltage stabalization time, from PSB, units 20 us */
static u32 plllock;	/* pll lock time, from PSB, units 1 us */
static u32 numps;	/* number of p-states, from PSB */
static u32 rvo;		/* ramp voltage offset, from PSB */
static u32 irt;		/* isochronous relief time, from PSB */
static u32 vidmvs;	/* usable value calculated from mvs, from PSB */
struct pst_s *ppst;	/* array of p states, valid for this part */
static u32 currvid;	/* keep track of the current fid / vid */
static u32 currfid;

/*
The PSB table supplied by BIOS allows for the definition of the number of
p-states that can be used when running on a/c, and the number of p-states
that can be used when running on battery. This allows laptop manufacturers
to force the system to save power when running from battery. The relationship 
is :
   1 <= number_of_battery_p_states <= maximum_number_of_p_states

This driver does NOT have the support in it to detect transitions from
a/c power to battery power, and thus trigger the transition to a lower
p-state if required. This is because I need ACPI and the 2.6 kernel to do 
this, and this is a 2.4 kernel driver. Check back for a new improved driver
for the 2.6 kernel soon.

This code therefore assumes it is on battery at all times, and thus
restricts performance to number_of_battery_p_states. For desktops, 
  number_of_battery_p_states == maximum_number_of_pstates, 
so this is not actually a restriction.
*/

static u32 batps;	/* limit on the number of p states when on battery */
			/* - set by BIOS in the PSB/PST                    */

static struct cpufreq_driver cpufreq_amd64_driver = {
	.verify = powernowk8_verify,
	.target = powernowk8_target,
	.init = powernowk8_cpu_init,
	.name = "cpufreq-amd64",
	.owner = THIS_MODULE,
};

#define SEARCH_UP     1
#define SEARCH_DOWN   0

/* Return a frequency in MHz, given an input fid */
u32
find_freq_from_fid(u32 fid)
{
	return 800 + (fid * 100);
}

/* Return a fid matching an input frequency in MHz */
static u32
find_fid_from_freq(u32 freq)
{
	return (freq - 800) / 100;
}

/* Return the vco fid for an input fid */
static u32
convert_fid_to_vco_fid(u32 fid)
{
	if (fid < HI_FID_TABLE_BOTTOM) {
		return 8 + (2 * fid);
	} else {
		return fid;
	}
}

/* Sort the fid/vid frequency table into ascending order by fid. The spec */
/* implies that it will be sorted by BIOS, but, it only implies it, and I */
/* prefer not to trust when I can check.                                  */
/* Yes, it is a simple bubble sort, but the PST is really small, so the   */
/* choice of algorithm is pretty irrelevant.                              */
static inline void
sort_pst(struct pst_s *ppst, u32 numpstates)
{
	u32 i;
	u8 tempfid;
	u8 tempvid;
	int swaps = 1;

	while (swaps) {
		swaps = 0;
		for (i = 0; i < (numpstates - 1); i++) {
			if (ppst[i].fid > ppst[i + 1].fid) {
				swaps = 1;
				tempfid = ppst[i].fid;
				tempvid = ppst[i].vid;
				ppst[i].fid = ppst[i + 1].fid;
				ppst[i].vid = ppst[i + 1].vid;
				ppst[i + 1].fid = tempfid;
				ppst[i + 1].vid = tempvid;
			}
		}
	}

	return;
}

/* Return 1 if the pending bit is set. Unless we are actually just told the */
/* processor to transition a state, seeing this bit set is really bad news. */
static inline int
pending_bit_stuck(void)
{
	u32 lo;
	u32 hi;

	rdmsr(MSR_FIDVID_STATUS, lo, hi);
	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
}

/* Update the global current fid / vid values from the status msr. Returns 1 */
/* on error.                                                                 */
static int
query_current_values_with_pending_wait(void)
{
	u32 lo;
	u32 hi;
	u32 i = 0;

	lo = MSR_S_LO_CHANGE_PENDING;
	while (lo & MSR_S_LO_CHANGE_PENDING) {
		if (i++ > 0x1000000) {
			printk(KERN_ERR PFX "detected change pending stuck\n");
			return 1;
		}
		rdmsr(MSR_FIDVID_STATUS, lo, hi);
	}

	currvid = hi & MSR_S_HI_CURRENT_VID;
	currfid = lo & MSR_S_LO_CURRENT_FID;

	return 0;
}

/* the isochronous relief time */
static inline void
count_off_irt(void)
{
	udelay((1 << irt) * 10);
	return;
}

/* the voltage stabalization time */
static inline void
count_off_vst(void)
{
	udelay(vstable * VST_UNITS_20US);
	return;
}

/* write the new fid value along with the other control fields to the msr */
static int
write_new_fid(u32 fid)
{
	u32 lo;
	u32 savevid = currvid;

	if ((fid & INVALID_FID_MASK) || (currvid & INVALID_VID_MASK)) {
		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
		return 1;
	}

	lo = fid | (currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;

	dprintk(KERN_DEBUG PFX "writing fid %x, lo %x, hi %x\n",
		fid, lo, plllock * PLL_LOCK_CONVERSION);

	wrmsr(MSR_FIDVID_CTL, lo, plllock * PLL_LOCK_CONVERSION);

	if (query_current_values_with_pending_wait())
		return 1;

	count_off_irt();

	if (savevid != currvid) {
		printk(KERN_ERR PFX
		       "vid changed on fid transition, save %x, currvid %x\n",
		       savevid, currvid);
		return 1;
	}

	if (fid != currfid) {
		printk(KERN_ERR PFX
		       "fid transition failed, fid %x, currfid %x\n",
		        fid, currfid);
		return 1;
	}

	return 0;
}

/* Write a new vid to the hardware */
static int
write_new_vid(u32 vid)
{
	u32 lo;
	u32 savefid = currfid;

	if ((currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
		return 1;
	}

	lo = currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;

	dprintk(KERN_DEBUG PFX "writing vid %x, lo %x, hi %x\n",
		vid, lo, STOP_GRANT_5NS);

	wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);

	if (query_current_values_with_pending_wait()) {
		return 1;
	}

	if (savefid != currfid) {
		printk(KERN_ERR PFX
		       "fid changed on vid transition, save %x currfid %x\n",
		       savefid, currfid);
		return 1;
	}

	if (vid != currvid) {
		printk(KERN_ERR PFX
		       "vid transition failed, vid %x, currvid %x\n",
		       vid, currvid);
		return 1;
	}

	return 0;
}

/* Reduce the vid by the max of step or reqvid.                   */
/* Decreasing vid codes represent increasing voltages :           */
/* vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of 0x1f is off. */
static int
decrease_vid_code_by_step(u32 reqvid, u32 step)
{
	if ((currvid - reqvid) > step)
		reqvid = currvid - step;

	if (write_new_vid(reqvid))
		return 1;

	count_off_vst();

	return 0;
}

/* Change the fid and vid, by the 3 phases. */
static inline int
transition_fid_vid(u32 reqfid, u32 reqvid)
{
	if (core_voltage_pre_transition(reqvid))
		return 1;

	if (core_frequency_transition(reqfid))
		return 1;

	if (core_voltage_post_transition(reqvid))
		return 1;

	if (query_current_values_with_pending_wait())
		return 1;

	if ((reqfid != currfid) || (reqvid != currvid)) {
		printk(KERN_ERR PFX "failed: req 0x%x 0x%x, curr 0x%x 0x%x\n",
		       reqfid, reqvid, currfid, currvid);
		return 1;
	}

	dprintk(KERN_INFO PFX
		"transitioned: new fid 0x%x, vid 0x%x\n", currfid, currvid);

	return 0;
}

/* Phase 1 - core voltage transition ... setup appropriate voltage for the */
/* fid transition.                                                         */
static inline int
core_voltage_pre_transition(u32 reqvid)
{
	u32 rvosteps = rvo;
	u32 savefid = currfid;

	dprintk(KERN_DEBUG PFX
		"ph1: start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo %x\n",
		currfid, currvid, reqvid, rvo);

	while (currvid > reqvid) {
		dprintk(KERN_DEBUG PFX "ph1: curr 0x%x, requesting vid 0x%x\n",
			currvid, reqvid);
		if (decrease_vid_code_by_step(reqvid, vidmvs))
			return 1;
	}

	while (rvosteps > 0) {
		if (currvid == 0) {
			rvosteps = 0;
		} else {
			dprintk(KERN_DEBUG PFX
				"ph1: changing vid for rvo, requesting 0x%x\n",
				currvid - 1);
			if (decrease_vid_code_by_step(currvid - 1, 1))
				return 1;
			rvosteps--;
		}
	}

	if (query_current_values_with_pending_wait())
		return 1;

	if (savefid != currfid) {
		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", currfid);
		return 1;
	}

	dprintk(KERN_DEBUG PFX "ph1 complete, currfid 0x%x, currvid 0x%x\n",
		currfid, currvid);

	return 0;
}

/* Phase 2 - core frequency transition */
static inline int
core_frequency_transition(u32 reqfid)
{
	u32 vcoreqfid;
	u32 vcocurrfid;
	u32 vcofiddiff;
	u32 savevid = currvid;

	if ((reqfid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) {
		printk(KERN_ERR PFX "ph2 illegal lo-lo transition 0x%x 0x%x\n",
		       reqfid, currfid);
		return 1;
	}

	if (currfid == reqfid) {
		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", currfid);
		return 0;
	}

	dprintk(KERN_DEBUG PFX
		"ph2 starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
		currfid, currvid, reqfid);

	vcoreqfid = convert_fid_to_vco_fid(reqfid);
	vcocurrfid = convert_fid_to_vco_fid(currfid);
	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
	    : vcoreqfid - vcocurrfid;

	while (vcofiddiff > 2) {
		if (reqfid > currfid) {
			if (currfid > LO_FID_TABLE_TOP) {
				if (write_new_fid(currfid + 2)) {
					return 1;
				}
			} else {
				if (write_new_fid
				    (2 + convert_fid_to_vco_fid(currfid))) {
					return 1;
				}
			}
		} else {
			if (write_new_fid(currfid - 2))
				return 1;
		}

		vcocurrfid = convert_fid_to_vco_fid(currfid);
		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
		    : vcoreqfid - vcocurrfid;
	}

	if (write_new_fid(reqfid))
		return 1;

	if (query_current_values_with_pending_wait())
		return 1;

	if (currfid != reqfid) {
		printk(KERN_ERR PFX
		       "ph2 mismatch, failed fid transition, curr %x, req %x\n",
		       currfid, reqfid);
		return 1;
	}

	if (savevid != currvid) {
		printk(KERN_ERR PFX
		       "ph2 vid changed, save %x, curr %x\n", savevid,
		       currvid);
		return 1;
	}

	dprintk(KERN_DEBUG PFX "ph2 complete, currfid 0x%x, currvid 0x%x\n",
		currfid, currvid);

	return 0;
}

/* Phase 3 - core voltage transition flow ... jump to the final vid. */
static inline int
core_voltage_post_transition(u32 reqvid)
{
	u32 savefid = currfid;
	u32 savereqvid = reqvid;

	dprintk(KERN_DEBUG PFX "ph3 starting, currfid 0x%x, currvid 0x%x\n",
		currfid, currvid);

	if (reqvid != currvid) {
		if (write_new_vid(reqvid))
			return 1;

		if (savefid != currfid) {
			printk(KERN_ERR PFX
			       "ph3: bad fid change, save %x, curr %x\n",
			       savefid, currfid);
			return 1;
		}

		if (currvid != reqvid) {
			printk(KERN_ERR PFX
			       "ph3: failed vid transition\n, req %x, curr %x",
			       reqvid, currvid);
			return 1;
		}
	}

	if (query_current_values_with_pending_wait())
		return 1;

	if (savereqvid != currvid) {
		dprintk(KERN_ERR PFX "ph3 failed, currvid 0x%x\n", currvid);
		return 1;
	}

	if (savefid != currfid) {
		dprintk(KERN_ERR PFX "ph3 failed, currfid changed 0x%x\n",
			currfid);
		return 1;
	}

	dprintk(KERN_DEBUG PFX "ph3 complete, currfid 0x%x, currvid 0x%x\n",
		currfid, currvid);

	return 0;
}

static inline int
check_supported_cpu(void)
{
	struct cpuinfo_x86 *c = cpu_data;
	u32 eax, ebx, ecx, edx;

	if (num_online_cpus() != 1) {
		printk(KERN_INFO PFX "multiprocessor systems not supported\n");
		return 0;
	}

	if (c->x86_vendor != X86_VENDOR_AMD) {
		printk(KERN_INFO PFX "Not an AMD processor\n");
		return 0;
	}

	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
	if ((eax & CPUID_XFAM_MOD) == ATHLON64_XFAM_MOD) {
		dprintk(KERN_DEBUG PFX "AMD Althon 64 Processor found\n");
		if ((eax & CPUID_F1_STEP) < ATHLON64_REV_C0) {
			printk(KERN_INFO PFX "Revision C0 or better "
			       "AMD Athlon 64 processor required\n");
			return 0;
		}
	} else if ((eax & CPUID_XFAM_MOD) == OPTERON_XFAM_MOD) {
		dprintk(KERN_DEBUG PFX "AMD Opteron Processor found\n");
	} else {
		printk(KERN_INFO PFX
		       "AMD Athlon 64 or AMD Opteron processor required\n");
		return 0;
	}

	eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
	if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
		printk(KERN_INFO PFX
		       "No frequency change capabilities detected\n");
		return 0;
	}

	cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
	if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
		printk(KERN_INFO PFX "Power state transitions not supported\n");
		return 0;
	}

	printk(KERN_INFO PFX "Found AMD Athlon 64 / Opteron processor "
	       "supporting p-state transitions\n");

	return 1;
}

/* Find and validate the PSB/PST table in BIOS. */
static inline int
find_psb_table(void)
{
	struct psb_s *psb;
	struct pst_s *pst;
	unsigned i, j;
	u32 lastfid;
	u32 mvs;
	u8 maxvid;

	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
		/* Scan BIOS looking for the signature. */
		/* It can not be at ffff0 - it is too big. */

		psb = phys_to_virt(i);
		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
			continue;

		dprintk(KERN_DEBUG PFX "found PSB header at 0x%p\n", psb);

		dprintk(KERN_DEBUG PFX "table vers: 0x%x\n", psb->tableversion);
		if (psb->tableversion != PSB_VERSION_1_4) {
			printk(KERN_INFO BFX "PSB table is not v1.4\n");
			return -ENODEV;
		}

		dprintk(KERN_DEBUG PFX "flags: 0x%x\n", psb->flags1);
		if (psb->flags1) {
			printk(KERN_ERR BFX "unknown flags\n");
			return -ENODEV;
		}

		vstable = psb->voltagestabilizationtime;
		printk(KERN_INFO PFX "voltage stable time: %d (units 20us)\n",
		       vstable);

		dprintk(KERN_DEBUG PFX "flags2: 0x%x\n", psb->flags2);
		rvo = psb->flags2 & 3;
		irt = ((psb->flags2) >> 2) & 3;
		mvs = ((psb->flags2) >> 4) & 3;
		vidmvs = 1 << mvs;
		batps = ((psb->flags2) >> 6) & 3;
		printk(KERN_INFO PFX "p states on battery: %d ", batps);
		switch (batps) {
		case 0:
			printk("- all available\n");
			break;
		case 1:
			printk("- only the minimum\n");
			break;
		case 2:
			printk("- only the 2 lowest\n");
			break;
		case 3:
			printk("- only the 3 lowest\n");
			break;
		}
		printk(KERN_INFO PFX "ramp voltage offset: %d\n", rvo);
		printk(KERN_INFO PFX "isochronous relief time: %d\n", irt);
		printk(KERN_INFO PFX "maximum voltage step: %d\n", mvs);

		dprintk(KERN_DEBUG PFX "numpst: 0x%x\n", psb->numpst);
		if (psb->numpst != 1) {
			printk(KERN_ERR BFX "numpst must be 1\n");
			return -ENODEV;
		}

		dprintk(KERN_DEBUG PFX "cpuid: 0x%x\n", psb->cpuid);

		plllock = psb->plllocktime;
		printk(KERN_INFO PFX "pll lock time: 0x%x\n", plllock);

		maxvid = psb->maxvid;
		printk(KERN_INFO PFX "maxfid: 0x%x\n", psb->maxfid);
		printk(KERN_INFO PFX "maxvid: 0x%x\n", maxvid);

		numps = psb->numpstates;
		printk(KERN_INFO PFX "numpstates: 0x%x\n", numps);
		if (numps < 2) {
			printk(KERN_ERR BFX "no p states to transition\n");
			return -ENODEV;
		}

		if (batps == 0) {
			batps = numps;
		} else if (batps > numps) {
			printk(KERN_ERR BFX "batterypstates > numpstates\n");
			batps = numps;
		} else {
			printk(KERN_ERR PFX
			       "Restricting operation to %d p-states\n", batps);
			printk(KERN_ERR PFX
			       "Check for an updated driver to access all "
			       "%d p-states\n", numps);
		}

		if ((numps <= 1) || (batps <= 1)) {
			printk(KERN_ERR PFX "only 1 p-state to transition\n");
			return -ENODEV;
		}

		ppst = kmalloc(sizeof (struct pst_s) * numps, GFP_KERNEL);
		if (!ppst) {
			printk(KERN_ERR PFX "ppst memory alloc failure\n");
			return -ENOMEM;
		}

		pst = (struct pst_s *) (psb + 1);
		for (j = 0; j < numps; j++) {
			ppst[j].fid = pst[j].fid;
			ppst[j].vid = pst[j].vid;
			printk(KERN_INFO PFX
			       "   %d : fid 0x%x, vid 0x%x\n", j,
			       ppst[j].fid, ppst[j].vid);
		}
		sort_pst(ppst, numps);

		lastfid = ppst[0].fid;
		if (lastfid > LO_FID_TABLE_TOP)
			printk(KERN_INFO BFX "first fid not in lo freq tbl\n");

		if ((lastfid > MAX_FID) || (lastfid & 1) || (ppst[0].vid > LEAST_VID)) {
			printk(KERN_ERR BFX "first fid/vid bad (0x%x - 0x%x)\n",
			       lastfid, ppst[0].vid);
			kfree(ppst);
			return -ENODEV;
		}

		for (j = 1; j < numps; j++) {
			if ((lastfid >= ppst[j].fid)
			    || (ppst[j].fid & 1)
			    || (ppst[j].fid < HI_FID_TABLE_BOTTOM)
			    || (ppst[j].fid > MAX_FID)
			    || (ppst[j].vid > LEAST_VID)) {
				printk(KERN_ERR BFX
				       "invalid fid/vid in pst(%x %x)\n",
				       ppst[j].fid, ppst[j].vid);
				kfree(ppst);
				return -ENODEV;
			}
			lastfid = ppst[j].fid;
		}

		for (j = 0; j < numps; j++) {
			if (ppst[j].vid < rvo) {	/* vid+rvo >= 0 */
				printk(KERN_ERR BFX
				       "0 vid exceeded with pstate %d\n", j);
				kfree(ppst);
				return -ENODEV;
			}
			if (ppst[j].vid < maxvid+rvo) { /* vid+rvo >= maxvid */
				printk(KERN_ERR BFX
				       "maxvid exceeded with pstate %d\n", j);
				kfree(ppst);
				return -ENODEV;
			}
		}

		if (query_current_values_with_pending_wait()) {
			kfree(ppst);
			return -EIO;
		}

		printk(KERN_INFO PFX "currfid 0x%x, currvid 0x%x\n",
		       currfid, currvid);

		for (j = 0; j < numps; j++)
			if ((ppst[j].fid==currfid) && (ppst[j].vid==currvid))
				return 0;

		printk(KERN_ERR BFX "currfid/vid do not match PST, ignoring\n");
		return 0;
	}

	printk(KERN_ERR BFX "no PSB\n");
	return -ENODEV;
}

/* Converts a frequency (that might not necessarily be a multiple of 200) */
/* to a fid.                                                              */
static u32
find_closest_fid(u32 freq, int searchup)
{
	if (searchup == SEARCH_UP)
		freq += MIN_FREQ_RESOLUTION - 1;

	freq = (freq / MIN_FREQ_RESOLUTION) * MIN_FREQ_RESOLUTION;

	if (freq < MIN_FREQ)
		freq = MIN_FREQ;
	else if (freq > MAX_FREQ)
		freq = MAX_FREQ;

	return find_fid_from_freq(freq);
}

static int
find_match(u32 * ptargfreq, u32 * pmin, u32 * pmax, int searchup, u32 * pfid,
	   u32 * pvid)
{
	u32 availpstates = batps;
	u32 targfid = find_closest_fid(*ptargfreq, searchup);
	u32 minfid = find_closest_fid(*pmin, SEARCH_DOWN);
	u32 maxfid = find_closest_fid(*pmax, SEARCH_UP);
	u32 minidx = 0;
	u32 maxidx = availpstates - 1;
	u32 targidx = 0xffffffff;
	int i;

	dprintk(KERN_DEBUG PFX "find match: freq %d MHz, min %d, max %d\n",
		*ptargfreq, *pmin, *pmax);

	/* Restrict values to the frequency choices in the PST */
	if (minfid < ppst[0].fid)
		minfid = ppst[0].fid;
	if (maxfid > ppst[maxidx].fid)
		maxfid = ppst[maxidx].fid;

	/* Find appropriate PST index for the minimim fid */
	for (i = 0; i < (int) availpstates; i++) {
		if (minfid >= ppst[i].fid)
			minidx = i;
	}

	/* Find appropriate PST index for the maximum fid */
	for (i = availpstates - 1; i >= 0; i--) {
		if (maxfid <= ppst[i].fid)
			maxidx = i;
	}

	if (minidx > maxidx)
		maxidx = minidx;

	/* Frequency ids are now constrained by limits matching PST entries */
	minfid = ppst[minidx].fid;
	maxfid = ppst[maxidx].fid;

	/* Limit the target frequency to these limits */
	if (targfid < minfid)
		targfid = minfid;
	else if (targfid > maxfid)
		targfid = maxfid;

	/* Find the best target index into the PST, contrained by the range */
	if (searchup == SEARCH_UP) {
		for (i = maxidx; i >= (int) minidx; i--) {
			if (targfid <= ppst[i].fid)
				targidx = i;
		}
	} else {
		for (i = minidx; i <= (int) maxidx; i++) {
			if (targfid >= ppst[i].fid)
				targidx = i;
		}
	}

	if (targidx == 0xffffffff) {
		printk(KERN_ERR PFX "could not find target\n");
		return 1;
	}

	*pmin = find_freq_from_fid(minfid);
	*pmax = find_freq_from_fid(maxfid);
	*ptargfreq = find_freq_from_fid(ppst[targidx].fid);

	if (pfid)
		*pfid = ppst[targidx].fid;
	if (pvid)
		*pvid = ppst[targidx].vid;

	return 0;
}

/* Take a frequency, and issue the fid/vid transition command */
static inline int
transition_frequency(u32 * preq, u32 * pmin, u32 * pmax, u32 searchup)
{
	u32 fid;
	u32 vid;
	int res;
	struct cpufreq_freqs freqs;

	if (find_match(preq, pmin, pmax, searchup, &fid, &vid))
		return 1;

	dprintk(KERN_DEBUG PFX "table matched fid 0x%x, giving vid 0x%x\n",
		fid, vid);

	if (query_current_values_with_pending_wait())
		return 1;

	if ((currvid == vid) && (currfid == fid)) {
		dprintk(KERN_DEBUG PFX
			"target matches current values (fid 0x%x, vid 0x%x)\n",
			fid, vid);
		return 0;
	}

	if ((fid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) {
		printk(KERN_ERR PFX
		       "ignoring illegal change in lo freq table-%x to %x\n",
		       currfid, fid);
		return 1;
	}

	dprintk(KERN_DEBUG PFX "changing to fid 0x%x, vid 0x%x\n", fid, vid);

	freqs.cpu = 0;	/* only true because SMP not supported */

	freqs.old = find_freq_from_fid(currfid);
	freqs.new = find_freq_from_fid(fid);
	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);

	res = transition_fid_vid(fid, vid);

	freqs.new = find_freq_from_fid(currfid);
	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);

	return res;
}

/* Driver entry point to switch to the target frequency */
static int
powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
{
	u32 checkfid = currfid;
	u32 checkvid = currvid;
	u32 reqfreq = targfreq / 1000;
	u32 minfreq = pol->min / 1000;
	u32 maxfreq = pol->max / 1000;

	if (ppst == 0) {
		printk(KERN_ERR PFX "targ: ppst 0\n");
		return -ENODEV;
	}

	if (pending_bit_stuck()) {
		printk(KERN_ERR PFX "drv targ fail: change pending bit set\n");
		return -EIO;
	}

	dprintk(KERN_DEBUG PFX "targ: %d kHz, min %d, max %d, relation %d\n",
		targfreq, pol->min, pol->max, relation);

	if (query_current_values_with_pending_wait())
		return -EIO;

	dprintk(KERN_DEBUG PFX "targ: curr fid 0x%x, vid 0x%x\n",
		currfid, currvid);

	if ((checkvid != currvid) || (checkfid != currfid)) {
		printk(KERN_ERR PFX
		       "error - out of sync, fid 0x%x 0x%x, vid 0x%x 0x%x\n",
		       checkfid, currfid, checkvid, currvid);
	}

	if (transition_frequency(&reqfreq, &minfreq, &maxfreq,
				 relation ==
				 CPUFREQ_RELATION_H ? SEARCH_UP : SEARCH_DOWN))
	{
		printk(KERN_ERR PFX "transition frequency failed\n");
		return 1;
	}

	pol->cur = 1000 * find_freq_from_fid(currfid);

	return 0;
}

/* Driver entry point to verify the policy and range of frequencies */
static int
powernowk8_verify(struct cpufreq_policy *pol)
{
	u32 min = pol->min / 1000;
	u32 max = pol->max / 1000;
	u32 targ = min;
	int res;

	if (ppst == 0) {
		printk(KERN_ERR PFX "verify - ppst 0\n");
		return -ENODEV;
	}

	if (pending_bit_stuck()) {
		printk(KERN_ERR PFX "failing verify, change pending bit set\n");
		return -EIO;
	}

	dprintk(KERN_DEBUG PFX
		"ver: cpu%d, min %d, max %d, cur %d, pol %d\n", pol->cpu,
		pol->min, pol->max, pol->cur, pol->policy);

	if (pol->cpu != 0) {
		printk(KERN_ERR PFX "verify - cpu not 0\n");
		return -ENODEV;
	}

	res = find_match(&targ, &min, &max, SEARCH_DOWN, 0, 0);
	if (!res) {
		pol->min = min * 1000;
		pol->max = max * 1000;
	}
	return res;
}

/* per CPU init entry point to the driver */
static int __init
powernowk8_cpu_init(struct cpufreq_policy *pol)
{
	if (pol->cpu != 0) {
		printk(KERN_ERR PFX "init not cpu 0\n");
		return -ENODEV;
	}

	pol->governor = CPUFREQ_DEFAULT_GOVERNOR;

	/* Take a crude guess here. 
	 * That guess was in microseconds, so multply with 1000 */
	pol->cpuinfo.transition_latency = (((rvo + 8) * vstable * VST_UNITS_20US)
	    + (3 * (1 << irt) * 10)) * 1000;

	if (query_current_values_with_pending_wait())
		return -EIO;

	pol->cur = 1000 * find_freq_from_fid(currfid);
	dprintk(KERN_DEBUG PFX "policy current frequency %d kHz\n", pol->cur);

	/* min/max the cpu is capable of */
	pol->cpuinfo.min_freq = 1000 * find_freq_from_fid(ppst[0].fid);
	pol->cpuinfo.max_freq = 1000 * find_freq_from_fid(ppst[numps-1].fid);
	pol->min = 1000 * find_freq_from_fid(ppst[0].fid);
	pol->max = 1000 * find_freq_from_fid(ppst[batps - 1].fid);

	printk(KERN_INFO PFX "cpu_init done, current fid 0x%x, vid 0x%x\n",
	       currfid, currvid);

	return 0;
}

/* driver entry point for init */
static int __init
powernowk8_init(void)
{
	int rc;

	printk(KERN_INFO PFX VERSION "\n");

	if (check_supported_cpu() == 0)
		return -ENODEV;

	rc = find_psb_table();
	if (rc)
		return rc;

	if (pending_bit_stuck()) {
		printk(KERN_ERR PFX "powernowk8_init fail, change pending bit set\n");
		kfree(ppst);
		return -EIO;
	}

	return cpufreq_register_driver(&cpufreq_amd64_driver);
}

/* driver entry point for term */
static void __exit
powernowk8_exit(void)
{
	dprintk(KERN_INFO PFX "powernowk8_exit\n");

	cpufreq_unregister_driver(&cpufreq_amd64_driver);
	kfree(ppst);
}

MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");

module_init(powernowk8_init);
module_exit(powernowk8_exit);