Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 | /* * (c) 2003 Advanced Micro Devices, Inc. * Your use of this code is subject to the terms and conditions of the * GNU general public license version 2. See "../../../COPYING" or * http://www.gnu.org/licenses/gpl.html * * Support : paul.devriendt@amd.com * * Based on the powernow-k7.c module written by Dave Jones. * (C) 2003 Dave Jones <davej@codemonkey.ork.uk> on behalf of SuSE Labs * Licensed under the terms of the GNU GPL License version 2. * Based upon datasheets & sample CPUs kindly provided by AMD. * * Processor information obtained from Chapter 9 (Power and Thermal Management) * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD * Opteron Processors", revision 3.03, available for download from www.amd.com * */ #include <linux/kernel.h> #include <linux/smp.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/slab.h> #include <linux/string.h> #include <asm/msr.h> #include <asm/io.h> #include <asm/delay.h> #define PFX "powernow-k8: " #define BFX PFX "BIOS error: " #define VERSION "version 1.00.08 - September 26, 2003" #include "powernow-k8.h" #ifdef CONFIG_PREEMPT #warning this driver has not been tested on a preempt system #endif static u32 vstable; /* voltage stabalization time, from PSB, units 20 us */ static u32 plllock; /* pll lock time, from PSB, units 1 us */ static u32 numps; /* number of p-states, from PSB */ static u32 rvo; /* ramp voltage offset, from PSB */ static u32 irt; /* isochronous relief time, from PSB */ static u32 vidmvs; /* usable value calculated from mvs, from PSB */ struct pst_s *ppst; /* array of p states, valid for this part */ static u32 currvid; /* keep track of the current fid / vid */ static u32 currfid; /* The PSB table supplied by BIOS allows for the definition of the number of p-states that can be used when running on a/c, and the number of p-states that can be used when running on battery. This allows laptop manufacturers to force the system to save power when running from battery. The relationship is : 1 <= number_of_battery_p_states <= maximum_number_of_p_states This driver does NOT have the support in it to detect transitions from a/c power to battery power, and thus trigger the transition to a lower p-state if required. This is because I need ACPI and the 2.6 kernel to do this, and this is a 2.4 kernel driver. Check back for a new improved driver for the 2.6 kernel soon. This code therefore assumes it is on battery at all times, and thus restricts performance to number_of_battery_p_states. For desktops, number_of_battery_p_states == maximum_number_of_pstates, so this is not actually a restriction. */ static u32 batps; /* limit on the number of p states when on battery */ /* - set by BIOS in the PSB/PST */ static struct cpufreq_driver cpufreq_amd64_driver = { .verify = powernowk8_verify, .target = powernowk8_target, .init = powernowk8_cpu_init, .name = "cpufreq-amd64", .owner = THIS_MODULE, }; #define SEARCH_UP 1 #define SEARCH_DOWN 0 /* Return a frequency in MHz, given an input fid */ u32 find_freq_from_fid(u32 fid) { return 800 + (fid * 100); } /* Return a fid matching an input frequency in MHz */ static u32 find_fid_from_freq(u32 freq) { return (freq - 800) / 100; } /* Return the vco fid for an input fid */ static u32 convert_fid_to_vco_fid(u32 fid) { if (fid < HI_FID_TABLE_BOTTOM) { return 8 + (2 * fid); } else { return fid; } } /* Sort the fid/vid frequency table into ascending order by fid. The spec */ /* implies that it will be sorted by BIOS, but, it only implies it, and I */ /* prefer not to trust when I can check. */ /* Yes, it is a simple bubble sort, but the PST is really small, so the */ /* choice of algorithm is pretty irrelevant. */ static inline void sort_pst(struct pst_s *ppst, u32 numpstates) { u32 i; u8 tempfid; u8 tempvid; int swaps = 1; while (swaps) { swaps = 0; for (i = 0; i < (numpstates - 1); i++) { if (ppst[i].fid > ppst[i + 1].fid) { swaps = 1; tempfid = ppst[i].fid; tempvid = ppst[i].vid; ppst[i].fid = ppst[i + 1].fid; ppst[i].vid = ppst[i + 1].vid; ppst[i + 1].fid = tempfid; ppst[i + 1].vid = tempvid; } } } return; } /* Return 1 if the pending bit is set. Unless we are actually just told the */ /* processor to transition a state, seeing this bit set is really bad news. */ static inline int pending_bit_stuck(void) { u32 lo; u32 hi; rdmsr(MSR_FIDVID_STATUS, lo, hi); return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; } /* Update the global current fid / vid values from the status msr. Returns 1 */ /* on error. */ static int query_current_values_with_pending_wait(void) { u32 lo; u32 hi; u32 i = 0; lo = MSR_S_LO_CHANGE_PENDING; while (lo & MSR_S_LO_CHANGE_PENDING) { if (i++ > 0x1000000) { printk(KERN_ERR PFX "detected change pending stuck\n"); return 1; } rdmsr(MSR_FIDVID_STATUS, lo, hi); } currvid = hi & MSR_S_HI_CURRENT_VID; currfid = lo & MSR_S_LO_CURRENT_FID; return 0; } /* the isochronous relief time */ static inline void count_off_irt(void) { udelay((1 << irt) * 10); return; } /* the voltage stabalization time */ static inline void count_off_vst(void) { udelay(vstable * VST_UNITS_20US); return; } /* write the new fid value along with the other control fields to the msr */ static int write_new_fid(u32 fid) { u32 lo; u32 savevid = currvid; if ((fid & INVALID_FID_MASK) || (currvid & INVALID_VID_MASK)) { printk(KERN_ERR PFX "internal error - overflow on fid write\n"); return 1; } lo = fid | (currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; dprintk(KERN_DEBUG PFX "writing fid %x, lo %x, hi %x\n", fid, lo, plllock * PLL_LOCK_CONVERSION); wrmsr(MSR_FIDVID_CTL, lo, plllock * PLL_LOCK_CONVERSION); if (query_current_values_with_pending_wait()) return 1; count_off_irt(); if (savevid != currvid) { printk(KERN_ERR PFX "vid changed on fid transition, save %x, currvid %x\n", savevid, currvid); return 1; } if (fid != currfid) { printk(KERN_ERR PFX "fid transition failed, fid %x, currfid %x\n", fid, currfid); return 1; } return 0; } /* Write a new vid to the hardware */ static int write_new_vid(u32 vid) { u32 lo; u32 savefid = currfid; if ((currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { printk(KERN_ERR PFX "internal error - overflow on vid write\n"); return 1; } lo = currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; dprintk(KERN_DEBUG PFX "writing vid %x, lo %x, hi %x\n", vid, lo, STOP_GRANT_5NS); wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); if (query_current_values_with_pending_wait()) { return 1; } if (savefid != currfid) { printk(KERN_ERR PFX "fid changed on vid transition, save %x currfid %x\n", savefid, currfid); return 1; } if (vid != currvid) { printk(KERN_ERR PFX "vid transition failed, vid %x, currvid %x\n", vid, currvid); return 1; } return 0; } /* Reduce the vid by the max of step or reqvid. */ /* Decreasing vid codes represent increasing voltages : */ /* vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of 0x1f is off. */ static int decrease_vid_code_by_step(u32 reqvid, u32 step) { if ((currvid - reqvid) > step) reqvid = currvid - step; if (write_new_vid(reqvid)) return 1; count_off_vst(); return 0; } /* Change the fid and vid, by the 3 phases. */ static inline int transition_fid_vid(u32 reqfid, u32 reqvid) { if (core_voltage_pre_transition(reqvid)) return 1; if (core_frequency_transition(reqfid)) return 1; if (core_voltage_post_transition(reqvid)) return 1; if (query_current_values_with_pending_wait()) return 1; if ((reqfid != currfid) || (reqvid != currvid)) { printk(KERN_ERR PFX "failed: req 0x%x 0x%x, curr 0x%x 0x%x\n", reqfid, reqvid, currfid, currvid); return 1; } dprintk(KERN_INFO PFX "transitioned: new fid 0x%x, vid 0x%x\n", currfid, currvid); return 0; } /* Phase 1 - core voltage transition ... setup appropriate voltage for the */ /* fid transition. */ static inline int core_voltage_pre_transition(u32 reqvid) { u32 rvosteps = rvo; u32 savefid = currfid; dprintk(KERN_DEBUG PFX "ph1: start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo %x\n", currfid, currvid, reqvid, rvo); while (currvid > reqvid) { dprintk(KERN_DEBUG PFX "ph1: curr 0x%x, requesting vid 0x%x\n", currvid, reqvid); if (decrease_vid_code_by_step(reqvid, vidmvs)) return 1; } while (rvosteps > 0) { if (currvid == 0) { rvosteps = 0; } else { dprintk(KERN_DEBUG PFX "ph1: changing vid for rvo, requesting 0x%x\n", currvid - 1); if (decrease_vid_code_by_step(currvid - 1, 1)) return 1; rvosteps--; } } if (query_current_values_with_pending_wait()) return 1; if (savefid != currfid) { printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", currfid); return 1; } dprintk(KERN_DEBUG PFX "ph1 complete, currfid 0x%x, currvid 0x%x\n", currfid, currvid); return 0; } /* Phase 2 - core frequency transition */ static inline int core_frequency_transition(u32 reqfid) { u32 vcoreqfid; u32 vcocurrfid; u32 vcofiddiff; u32 savevid = currvid; if ((reqfid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) { printk(KERN_ERR PFX "ph2 illegal lo-lo transition 0x%x 0x%x\n", reqfid, currfid); return 1; } if (currfid == reqfid) { printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", currfid); return 0; } dprintk(KERN_DEBUG PFX "ph2 starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", currfid, currvid, reqfid); vcoreqfid = convert_fid_to_vco_fid(reqfid); vcocurrfid = convert_fid_to_vco_fid(currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; while (vcofiddiff > 2) { if (reqfid > currfid) { if (currfid > LO_FID_TABLE_TOP) { if (write_new_fid(currfid + 2)) { return 1; } } else { if (write_new_fid (2 + convert_fid_to_vco_fid(currfid))) { return 1; } } } else { if (write_new_fid(currfid - 2)) return 1; } vcocurrfid = convert_fid_to_vco_fid(currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; } if (write_new_fid(reqfid)) return 1; if (query_current_values_with_pending_wait()) return 1; if (currfid != reqfid) { printk(KERN_ERR PFX "ph2 mismatch, failed fid transition, curr %x, req %x\n", currfid, reqfid); return 1; } if (savevid != currvid) { printk(KERN_ERR PFX "ph2 vid changed, save %x, curr %x\n", savevid, currvid); return 1; } dprintk(KERN_DEBUG PFX "ph2 complete, currfid 0x%x, currvid 0x%x\n", currfid, currvid); return 0; } /* Phase 3 - core voltage transition flow ... jump to the final vid. */ static inline int core_voltage_post_transition(u32 reqvid) { u32 savefid = currfid; u32 savereqvid = reqvid; dprintk(KERN_DEBUG PFX "ph3 starting, currfid 0x%x, currvid 0x%x\n", currfid, currvid); if (reqvid != currvid) { if (write_new_vid(reqvid)) return 1; if (savefid != currfid) { printk(KERN_ERR PFX "ph3: bad fid change, save %x, curr %x\n", savefid, currfid); return 1; } if (currvid != reqvid) { printk(KERN_ERR PFX "ph3: failed vid transition\n, req %x, curr %x", reqvid, currvid); return 1; } } if (query_current_values_with_pending_wait()) return 1; if (savereqvid != currvid) { dprintk(KERN_ERR PFX "ph3 failed, currvid 0x%x\n", currvid); return 1; } if (savefid != currfid) { dprintk(KERN_ERR PFX "ph3 failed, currfid changed 0x%x\n", currfid); return 1; } dprintk(KERN_DEBUG PFX "ph3 complete, currfid 0x%x, currvid 0x%x\n", currfid, currvid); return 0; } static inline int check_supported_cpu(void) { struct cpuinfo_x86 *c = cpu_data; u32 eax, ebx, ecx, edx; if (num_online_cpus() != 1) { printk(KERN_INFO PFX "multiprocessor systems not supported\n"); return 0; } if (c->x86_vendor != X86_VENDOR_AMD) { printk(KERN_INFO PFX "Not an AMD processor\n"); return 0; } eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); if ((eax & CPUID_XFAM_MOD) == ATHLON64_XFAM_MOD) { dprintk(KERN_DEBUG PFX "AMD Althon 64 Processor found\n"); if ((eax & CPUID_F1_STEP) < ATHLON64_REV_C0) { printk(KERN_INFO PFX "Revision C0 or better " "AMD Athlon 64 processor required\n"); return 0; } } else if ((eax & CPUID_XFAM_MOD) == OPTERON_XFAM_MOD) { dprintk(KERN_DEBUG PFX "AMD Opteron Processor found\n"); } else { printk(KERN_INFO PFX "AMD Athlon 64 or AMD Opteron processor required\n"); return 0; } eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { printk(KERN_INFO PFX "No frequency change capabilities detected\n"); return 0; } cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) { printk(KERN_INFO PFX "Power state transitions not supported\n"); return 0; } printk(KERN_INFO PFX "Found AMD Athlon 64 / Opteron processor " "supporting p-state transitions\n"); return 1; } /* Find and validate the PSB/PST table in BIOS. */ static inline int find_psb_table(void) { struct psb_s *psb; struct pst_s *pst; unsigned i, j; u32 lastfid; u32 mvs; u8 maxvid; for (i = 0xc0000; i < 0xffff0; i += 0x10) { /* Scan BIOS looking for the signature. */ /* It can not be at ffff0 - it is too big. */ psb = phys_to_virt(i); if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) continue; dprintk(KERN_DEBUG PFX "found PSB header at 0x%p\n", psb); dprintk(KERN_DEBUG PFX "table vers: 0x%x\n", psb->tableversion); if (psb->tableversion != PSB_VERSION_1_4) { printk(KERN_INFO BFX "PSB table is not v1.4\n"); return -ENODEV; } dprintk(KERN_DEBUG PFX "flags: 0x%x\n", psb->flags1); if (psb->flags1) { printk(KERN_ERR BFX "unknown flags\n"); return -ENODEV; } vstable = psb->voltagestabilizationtime; printk(KERN_INFO PFX "voltage stable time: %d (units 20us)\n", vstable); dprintk(KERN_DEBUG PFX "flags2: 0x%x\n", psb->flags2); rvo = psb->flags2 & 3; irt = ((psb->flags2) >> 2) & 3; mvs = ((psb->flags2) >> 4) & 3; vidmvs = 1 << mvs; batps = ((psb->flags2) >> 6) & 3; printk(KERN_INFO PFX "p states on battery: %d ", batps); switch (batps) { case 0: printk("- all available\n"); break; case 1: printk("- only the minimum\n"); break; case 2: printk("- only the 2 lowest\n"); break; case 3: printk("- only the 3 lowest\n"); break; } printk(KERN_INFO PFX "ramp voltage offset: %d\n", rvo); printk(KERN_INFO PFX "isochronous relief time: %d\n", irt); printk(KERN_INFO PFX "maximum voltage step: %d\n", mvs); dprintk(KERN_DEBUG PFX "numpst: 0x%x\n", psb->numpst); if (psb->numpst != 1) { printk(KERN_ERR BFX "numpst must be 1\n"); return -ENODEV; } dprintk(KERN_DEBUG PFX "cpuid: 0x%x\n", psb->cpuid); plllock = psb->plllocktime; printk(KERN_INFO PFX "pll lock time: 0x%x\n", plllock); maxvid = psb->maxvid; printk(KERN_INFO PFX "maxfid: 0x%x\n", psb->maxfid); printk(KERN_INFO PFX "maxvid: 0x%x\n", maxvid); numps = psb->numpstates; printk(KERN_INFO PFX "numpstates: 0x%x\n", numps); if (numps < 2) { printk(KERN_ERR BFX "no p states to transition\n"); return -ENODEV; } if (batps == 0) { batps = numps; } else if (batps > numps) { printk(KERN_ERR BFX "batterypstates > numpstates\n"); batps = numps; } else { printk(KERN_ERR PFX "Restricting operation to %d p-states\n", batps); printk(KERN_ERR PFX "Check for an updated driver to access all " "%d p-states\n", numps); } if ((numps <= 1) || (batps <= 1)) { printk(KERN_ERR PFX "only 1 p-state to transition\n"); return -ENODEV; } ppst = kmalloc(sizeof (struct pst_s) * numps, GFP_KERNEL); if (!ppst) { printk(KERN_ERR PFX "ppst memory alloc failure\n"); return -ENOMEM; } pst = (struct pst_s *) (psb + 1); for (j = 0; j < numps; j++) { ppst[j].fid = pst[j].fid; ppst[j].vid = pst[j].vid; printk(KERN_INFO PFX " %d : fid 0x%x, vid 0x%x\n", j, ppst[j].fid, ppst[j].vid); } sort_pst(ppst, numps); lastfid = ppst[0].fid; if (lastfid > LO_FID_TABLE_TOP) printk(KERN_INFO BFX "first fid not in lo freq tbl\n"); if ((lastfid > MAX_FID) || (lastfid & 1) || (ppst[0].vid > LEAST_VID)) { printk(KERN_ERR BFX "first fid/vid bad (0x%x - 0x%x)\n", lastfid, ppst[0].vid); kfree(ppst); return -ENODEV; } for (j = 1; j < numps; j++) { if ((lastfid >= ppst[j].fid) || (ppst[j].fid & 1) || (ppst[j].fid < HI_FID_TABLE_BOTTOM) || (ppst[j].fid > MAX_FID) || (ppst[j].vid > LEAST_VID)) { printk(KERN_ERR BFX "invalid fid/vid in pst(%x %x)\n", ppst[j].fid, ppst[j].vid); kfree(ppst); return -ENODEV; } lastfid = ppst[j].fid; } for (j = 0; j < numps; j++) { if (ppst[j].vid < rvo) { /* vid+rvo >= 0 */ printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j); kfree(ppst); return -ENODEV; } if (ppst[j].vid < maxvid+rvo) { /* vid+rvo >= maxvid */ printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j); kfree(ppst); return -ENODEV; } } if (query_current_values_with_pending_wait()) { kfree(ppst); return -EIO; } printk(KERN_INFO PFX "currfid 0x%x, currvid 0x%x\n", currfid, currvid); for (j = 0; j < numps; j++) if ((ppst[j].fid==currfid) && (ppst[j].vid==currvid)) return 0; printk(KERN_ERR BFX "currfid/vid do not match PST, ignoring\n"); return 0; } printk(KERN_ERR BFX "no PSB\n"); return -ENODEV; } /* Converts a frequency (that might not necessarily be a multiple of 200) */ /* to a fid. */ static u32 find_closest_fid(u32 freq, int searchup) { if (searchup == SEARCH_UP) freq += MIN_FREQ_RESOLUTION - 1; freq = (freq / MIN_FREQ_RESOLUTION) * MIN_FREQ_RESOLUTION; if (freq < MIN_FREQ) freq = MIN_FREQ; else if (freq > MAX_FREQ) freq = MAX_FREQ; return find_fid_from_freq(freq); } static int find_match(u32 * ptargfreq, u32 * pmin, u32 * pmax, int searchup, u32 * pfid, u32 * pvid) { u32 availpstates = batps; u32 targfid = find_closest_fid(*ptargfreq, searchup); u32 minfid = find_closest_fid(*pmin, SEARCH_DOWN); u32 maxfid = find_closest_fid(*pmax, SEARCH_UP); u32 minidx = 0; u32 maxidx = availpstates - 1; u32 targidx = 0xffffffff; int i; dprintk(KERN_DEBUG PFX "find match: freq %d MHz, min %d, max %d\n", *ptargfreq, *pmin, *pmax); /* Restrict values to the frequency choices in the PST */ if (minfid < ppst[0].fid) minfid = ppst[0].fid; if (maxfid > ppst[maxidx].fid) maxfid = ppst[maxidx].fid; /* Find appropriate PST index for the minimim fid */ for (i = 0; i < (int) availpstates; i++) { if (minfid >= ppst[i].fid) minidx = i; } /* Find appropriate PST index for the maximum fid */ for (i = availpstates - 1; i >= 0; i--) { if (maxfid <= ppst[i].fid) maxidx = i; } if (minidx > maxidx) maxidx = minidx; /* Frequency ids are now constrained by limits matching PST entries */ minfid = ppst[minidx].fid; maxfid = ppst[maxidx].fid; /* Limit the target frequency to these limits */ if (targfid < minfid) targfid = minfid; else if (targfid > maxfid) targfid = maxfid; /* Find the best target index into the PST, contrained by the range */ if (searchup == SEARCH_UP) { for (i = maxidx; i >= (int) minidx; i--) { if (targfid <= ppst[i].fid) targidx = i; } } else { for (i = minidx; i <= (int) maxidx; i++) { if (targfid >= ppst[i].fid) targidx = i; } } if (targidx == 0xffffffff) { printk(KERN_ERR PFX "could not find target\n"); return 1; } *pmin = find_freq_from_fid(minfid); *pmax = find_freq_from_fid(maxfid); *ptargfreq = find_freq_from_fid(ppst[targidx].fid); if (pfid) *pfid = ppst[targidx].fid; if (pvid) *pvid = ppst[targidx].vid; return 0; } /* Take a frequency, and issue the fid/vid transition command */ static inline int transition_frequency(u32 * preq, u32 * pmin, u32 * pmax, u32 searchup) { u32 fid; u32 vid; int res; struct cpufreq_freqs freqs; if (find_match(preq, pmin, pmax, searchup, &fid, &vid)) return 1; dprintk(KERN_DEBUG PFX "table matched fid 0x%x, giving vid 0x%x\n", fid, vid); if (query_current_values_with_pending_wait()) return 1; if ((currvid == vid) && (currfid == fid)) { dprintk(KERN_DEBUG PFX "target matches current values (fid 0x%x, vid 0x%x)\n", fid, vid); return 0; } if ((fid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) { printk(KERN_ERR PFX "ignoring illegal change in lo freq table-%x to %x\n", currfid, fid); return 1; } dprintk(KERN_DEBUG PFX "changing to fid 0x%x, vid 0x%x\n", fid, vid); freqs.cpu = 0; /* only true because SMP not supported */ freqs.old = find_freq_from_fid(currfid); freqs.new = find_freq_from_fid(fid); cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); res = transition_fid_vid(fid, vid); freqs.new = find_freq_from_fid(currfid); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); return res; } /* Driver entry point to switch to the target frequency */ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation) { u32 checkfid = currfid; u32 checkvid = currvid; u32 reqfreq = targfreq / 1000; u32 minfreq = pol->min / 1000; u32 maxfreq = pol->max / 1000; if (ppst == 0) { printk(KERN_ERR PFX "targ: ppst 0\n"); return -ENODEV; } if (pending_bit_stuck()) { printk(KERN_ERR PFX "drv targ fail: change pending bit set\n"); return -EIO; } dprintk(KERN_DEBUG PFX "targ: %d kHz, min %d, max %d, relation %d\n", targfreq, pol->min, pol->max, relation); if (query_current_values_with_pending_wait()) return -EIO; dprintk(KERN_DEBUG PFX "targ: curr fid 0x%x, vid 0x%x\n", currfid, currvid); if ((checkvid != currvid) || (checkfid != currfid)) { printk(KERN_ERR PFX "error - out of sync, fid 0x%x 0x%x, vid 0x%x 0x%x\n", checkfid, currfid, checkvid, currvid); } if (transition_frequency(&reqfreq, &minfreq, &maxfreq, relation == CPUFREQ_RELATION_H ? SEARCH_UP : SEARCH_DOWN)) { printk(KERN_ERR PFX "transition frequency failed\n"); return 1; } pol->cur = 1000 * find_freq_from_fid(currfid); return 0; } /* Driver entry point to verify the policy and range of frequencies */ static int powernowk8_verify(struct cpufreq_policy *pol) { u32 min = pol->min / 1000; u32 max = pol->max / 1000; u32 targ = min; int res; if (ppst == 0) { printk(KERN_ERR PFX "verify - ppst 0\n"); return -ENODEV; } if (pending_bit_stuck()) { printk(KERN_ERR PFX "failing verify, change pending bit set\n"); return -EIO; } dprintk(KERN_DEBUG PFX "ver: cpu%d, min %d, max %d, cur %d, pol %d\n", pol->cpu, pol->min, pol->max, pol->cur, pol->policy); if (pol->cpu != 0) { printk(KERN_ERR PFX "verify - cpu not 0\n"); return -ENODEV; } res = find_match(&targ, &min, &max, SEARCH_DOWN, 0, 0); if (!res) { pol->min = min * 1000; pol->max = max * 1000; } return res; } /* per CPU init entry point to the driver */ static int __init powernowk8_cpu_init(struct cpufreq_policy *pol) { if (pol->cpu != 0) { printk(KERN_ERR PFX "init not cpu 0\n"); return -ENODEV; } pol->governor = CPUFREQ_DEFAULT_GOVERNOR; /* Take a crude guess here. * That guess was in microseconds, so multply with 1000 */ pol->cpuinfo.transition_latency = (((rvo + 8) * vstable * VST_UNITS_20US) + (3 * (1 << irt) * 10)) * 1000; if (query_current_values_with_pending_wait()) return -EIO; pol->cur = 1000 * find_freq_from_fid(currfid); dprintk(KERN_DEBUG PFX "policy current frequency %d kHz\n", pol->cur); /* min/max the cpu is capable of */ pol->cpuinfo.min_freq = 1000 * find_freq_from_fid(ppst[0].fid); pol->cpuinfo.max_freq = 1000 * find_freq_from_fid(ppst[numps-1].fid); pol->min = 1000 * find_freq_from_fid(ppst[0].fid); pol->max = 1000 * find_freq_from_fid(ppst[batps - 1].fid); printk(KERN_INFO PFX "cpu_init done, current fid 0x%x, vid 0x%x\n", currfid, currvid); return 0; } /* driver entry point for init */ static int __init powernowk8_init(void) { int rc; printk(KERN_INFO PFX VERSION "\n"); if (check_supported_cpu() == 0) return -ENODEV; rc = find_psb_table(); if (rc) return rc; if (pending_bit_stuck()) { printk(KERN_ERR PFX "powernowk8_init fail, change pending bit set\n"); kfree(ppst); return -EIO; } return cpufreq_register_driver(&cpufreq_amd64_driver); } /* driver entry point for term */ static void __exit powernowk8_exit(void) { dprintk(KERN_INFO PFX "powernowk8_exit\n"); cpufreq_unregister_driver(&cpufreq_amd64_driver); kfree(ppst); } MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>"); MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); MODULE_LICENSE("GPL"); module_init(powernowk8_init); module_exit(powernowk8_exit); |