Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
/*  Generic MTRR (Memory Type Range Register) driver.

    Copyright (C) 1997-2000  Richard Gooch
    Copyright (c) 2002	     Patrick Mochel

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
    The postal address is:
      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.

    Source: "Pentium Pro Family Developer's Manual, Volume 3:
    Operating System Writer's Guide" (Intel document number 242692),
    section 11.11.7

    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> 
    on 6-7 March 2002. 
    Source: Intel Architecture Software Developers Manual, Volume 3: 
    System Programming Guide; Section 9.11. (1997 edition - PPro).
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/sort.h>

#include <asm/e820.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/kvm_para.h>
#include "mtrr.h"

u32 num_var_ranges = 0;

unsigned int mtrr_usage_table[MAX_VAR_RANGES];
static DEFINE_MUTEX(mtrr_mutex);

u64 size_or_mask, size_and_mask;

static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};

struct mtrr_ops * mtrr_if = NULL;

static void set_mtrr(unsigned int reg, unsigned long base,
		     unsigned long size, mtrr_type type);

void set_mtrr_ops(struct mtrr_ops * ops)
{
	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
		mtrr_ops[ops->vendor] = ops;
}

/*  Returns non-zero if we have the write-combining memory type  */
static int have_wrcomb(void)
{
	struct pci_dev *dev;
	u8 rev;
	
	if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
		/* ServerWorks LE chipsets < rev 6 have problems with write-combining
		   Don't allow it and leave room for other chipsets to be tagged */
		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
			pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
			if (rev <= 5) {
				printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
				pci_dev_put(dev);
				return 0;
			}
		}
		/* Intel 450NX errata # 23. Non ascending cacheline evictions to
		   write combining memory may resulting in data corruption */
		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
			printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
			pci_dev_put(dev);
			return 0;
		}
		pci_dev_put(dev);
	}		
	return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
}

/*  This function returns the number of variable MTRRs  */
static void __init set_num_var_ranges(void)
{
	unsigned long config = 0, dummy;

	if (use_intel()) {
		rdmsr(MTRRcap_MSR, config, dummy);
	} else if (is_cpu(AMD))
		config = 2;
	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
		config = 8;
	num_var_ranges = config & 0xff;
}

static void __init init_table(void)
{
	int i, max;

	max = num_var_ranges;
	for (i = 0; i < max; i++)
		mtrr_usage_table[i] = 1;
}

struct set_mtrr_data {
	atomic_t	count;
	atomic_t	gate;
	unsigned long	smp_base;
	unsigned long	smp_size;
	unsigned int	smp_reg;
	mtrr_type	smp_type;
};

static void ipi_handler(void *info)
/*  [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
    [RETURNS] Nothing.
*/
{
#ifdef CONFIG_SMP
	struct set_mtrr_data *data = info;
	unsigned long flags;

	local_irq_save(flags);

	atomic_dec(&data->count);
	while(!atomic_read(&data->gate))
		cpu_relax();

	/*  The master has cleared me to execute  */
	if (data->smp_reg != ~0U) 
		mtrr_if->set(data->smp_reg, data->smp_base, 
			     data->smp_size, data->smp_type);
	else
		mtrr_if->set_all();

	atomic_dec(&data->count);
	while(atomic_read(&data->gate))
		cpu_relax();

	atomic_dec(&data->count);
	local_irq_restore(flags);
#endif
}

static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
	return type1 == MTRR_TYPE_UNCACHABLE ||
	       type2 == MTRR_TYPE_UNCACHABLE ||
	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
}

/**
 * set_mtrr - update mtrrs on all processors
 * @reg:	mtrr in question
 * @base:	mtrr base
 * @size:	mtrr size
 * @type:	mtrr type
 *
 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
 * 
 * 1. Send IPI to do the following:
 * 2. Disable Interrupts
 * 3. Wait for all procs to do so 
 * 4. Enter no-fill cache mode
 * 5. Flush caches
 * 6. Clear PGE bit
 * 7. Flush all TLBs
 * 8. Disable all range registers
 * 9. Update the MTRRs
 * 10. Enable all range registers
 * 11. Flush all TLBs and caches again
 * 12. Enter normal cache mode and reenable caching
 * 13. Set PGE 
 * 14. Wait for buddies to catch up
 * 15. Enable interrupts.
 * 
 * What does that mean for us? Well, first we set data.count to the number
 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
 * Meanwhile, they are waiting for that flag to be set. Once it's set, each 
 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it 
 * differently, so we call mtrr_if->set() callback and let them take care of it.
 * When they're done, they again decrement data->count and wait for data.gate to 
 * be reset. 
 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
 * Everyone then enables interrupts and we all continue on.
 *
 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
 * becomes nops.
 */
static void set_mtrr(unsigned int reg, unsigned long base,
		     unsigned long size, mtrr_type type)
{
	struct set_mtrr_data data;
	unsigned long flags;

	data.smp_reg = reg;
	data.smp_base = base;
	data.smp_size = size;
	data.smp_type = type;
	atomic_set(&data.count, num_booting_cpus() - 1);
	/* make sure data.count is visible before unleashing other CPUs */
	smp_wmb();
	atomic_set(&data.gate,0);

	/*  Start the ball rolling on other CPUs  */
	if (smp_call_function(ipi_handler, &data, 0) != 0)
		panic("mtrr: timed out waiting for other CPUs\n");

	local_irq_save(flags);

	while(atomic_read(&data.count))
		cpu_relax();

	/* ok, reset count and toggle gate */
	atomic_set(&data.count, num_booting_cpus() - 1);
	smp_wmb();
	atomic_set(&data.gate,1);

	/* do our MTRR business */

	/* HACK!
	 * We use this same function to initialize the mtrrs on boot.
	 * The state of the boot cpu's mtrrs has been saved, and we want
	 * to replicate across all the APs. 
	 * If we're doing that @reg is set to something special...
	 */
	if (reg != ~0U) 
		mtrr_if->set(reg,base,size,type);

	/* wait for the others */
	while(atomic_read(&data.count))
		cpu_relax();

	atomic_set(&data.count, num_booting_cpus() - 1);
	smp_wmb();
	atomic_set(&data.gate,0);

	/*
	 * Wait here for everyone to have seen the gate change
	 * So we're the last ones to touch 'data'
	 */
	while(atomic_read(&data.count))
		cpu_relax();

	local_irq_restore(flags);
}

/**
 *	mtrr_add_page - Add a memory type region
 *	@base: Physical base address of region in pages (in units of 4 kB!)
 *	@size: Physical size of region in pages (4 kB)
 *	@type: Type of MTRR desired
 *	@increment: If this is true do usage counting on the region
 *
 *	Memory type region registers control the caching on newer Intel and
 *	non Intel processors. This function allows drivers to request an
 *	MTRR is added. The details and hardware specifics of each processor's
 *	implementation are hidden from the caller, but nevertheless the 
 *	caller should expect to need to provide a power of two size on an
 *	equivalent power of two boundary.
 *
 *	If the region cannot be added either because all regions are in use
 *	or the CPU cannot support it a negative value is returned. On success
 *	the register number for this entry is returned, but should be treated
 *	as a cookie only.
 *
 *	On a multiprocessor machine the changes are made to all processors.
 *	This is required on x86 by the Intel processors.
 *
 *	The available types are
 *
 *	%MTRR_TYPE_UNCACHABLE	-	No caching
 *
 *	%MTRR_TYPE_WRBACK	-	Write data back in bursts whenever
 *
 *	%MTRR_TYPE_WRCOMB	-	Write data back soon but allow bursts
 *
 *	%MTRR_TYPE_WRTHROUGH	-	Cache reads but not writes
 *
 *	BUGS: Needs a quiet flag for the cases where drivers do not mind
 *	failures and do not wish system log messages to be sent.
 */

int mtrr_add_page(unsigned long base, unsigned long size, 
		  unsigned int type, bool increment)
{
	int i, replace, error;
	mtrr_type ltype;
	unsigned long lbase, lsize;

	if (!mtrr_if)
		return -ENXIO;
		
	if ((error = mtrr_if->validate_add_page(base,size,type)))
		return error;

	if (type >= MTRR_NUM_TYPES) {
		printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
		return -EINVAL;
	}

	/*  If the type is WC, check that this processor supports it  */
	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
		printk(KERN_WARNING
		       "mtrr: your processor doesn't support write-combining\n");
		return -ENOSYS;
	}

	if (!size) {
		printk(KERN_WARNING "mtrr: zero sized request\n");
		return -EINVAL;
	}

	if (base & size_or_mask || size & size_or_mask) {
		printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
		return -EINVAL;
	}

	error = -EINVAL;
	replace = -1;

	/* No CPU hotplug when we change MTRR entries */
	get_online_cpus();
	/*  Search for existing MTRR  */
	mutex_lock(&mtrr_mutex);
	for (i = 0; i < num_var_ranges; ++i) {
		mtrr_if->get(i, &lbase, &lsize, &ltype);
		if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
			continue;
		/*  At this point we know there is some kind of overlap/enclosure  */
		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
			if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
				/*  New region encloses an existing region  */
				if (type == ltype) {
					replace = replace == -1 ? i : -2;
					continue;
				}
				else if (types_compatible(type, ltype))
					continue;
			}
			printk(KERN_WARNING
			       "mtrr: 0x%lx000,0x%lx000 overlaps existing"
			       " 0x%lx000,0x%lx000\n", base, size, lbase,
			       lsize);
			goto out;
		}
		/*  New region is enclosed by an existing region  */
		if (ltype != type) {
			if (types_compatible(type, ltype))
				continue;
			printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
			     base, size, mtrr_attrib_to_str(ltype),
			     mtrr_attrib_to_str(type));
			goto out;
		}
		if (increment)
			++mtrr_usage_table[i];
		error = i;
		goto out;
	}
	/*  Search for an empty MTRR  */
	i = mtrr_if->get_free_region(base, size, replace);
	if (i >= 0) {
		set_mtrr(i, base, size, type);
		if (likely(replace < 0)) {
			mtrr_usage_table[i] = 1;
		} else {
			mtrr_usage_table[i] = mtrr_usage_table[replace];
			if (increment)
				mtrr_usage_table[i]++;
			if (unlikely(replace != i)) {
				set_mtrr(replace, 0, 0, 0);
				mtrr_usage_table[replace] = 0;
			}
		}
	} else
		printk(KERN_INFO "mtrr: no more MTRRs available\n");
	error = i;
 out:
	mutex_unlock(&mtrr_mutex);
	put_online_cpus();
	return error;
}

static int mtrr_check(unsigned long base, unsigned long size)
{
	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
		printk(KERN_WARNING
			"mtrr: size and base must be multiples of 4 kiB\n");
		printk(KERN_DEBUG
			"mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
		dump_stack();
		return -1;
	}
	return 0;
}

/**
 *	mtrr_add - Add a memory type region
 *	@base: Physical base address of region
 *	@size: Physical size of region
 *	@type: Type of MTRR desired
 *	@increment: If this is true do usage counting on the region
 *
 *	Memory type region registers control the caching on newer Intel and
 *	non Intel processors. This function allows drivers to request an
 *	MTRR is added. The details and hardware specifics of each processor's
 *	implementation are hidden from the caller, but nevertheless the 
 *	caller should expect to need to provide a power of two size on an
 *	equivalent power of two boundary.
 *
 *	If the region cannot be added either because all regions are in use
 *	or the CPU cannot support it a negative value is returned. On success
 *	the register number for this entry is returned, but should be treated
 *	as a cookie only.
 *
 *	On a multiprocessor machine the changes are made to all processors.
 *	This is required on x86 by the Intel processors.
 *
 *	The available types are
 *
 *	%MTRR_TYPE_UNCACHABLE	-	No caching
 *
 *	%MTRR_TYPE_WRBACK	-	Write data back in bursts whenever
 *
 *	%MTRR_TYPE_WRCOMB	-	Write data back soon but allow bursts
 *
 *	%MTRR_TYPE_WRTHROUGH	-	Cache reads but not writes
 *
 *	BUGS: Needs a quiet flag for the cases where drivers do not mind
 *	failures and do not wish system log messages to be sent.
 */

int
mtrr_add(unsigned long base, unsigned long size, unsigned int type,
	 bool increment)
{
	if (mtrr_check(base, size))
		return -EINVAL;
	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
			     increment);
}

/**
 *	mtrr_del_page - delete a memory type region
 *	@reg: Register returned by mtrr_add
 *	@base: Physical base address
 *	@size: Size of region
 *
 *	If register is supplied then base and size are ignored. This is
 *	how drivers should call it.
 *
 *	Releases an MTRR region. If the usage count drops to zero the 
 *	register is freed and the region returns to default state.
 *	On success the register is returned, on failure a negative error
 *	code.
 */

int mtrr_del_page(int reg, unsigned long base, unsigned long size)
{
	int i, max;
	mtrr_type ltype;
	unsigned long lbase, lsize;
	int error = -EINVAL;

	if (!mtrr_if)
		return -ENXIO;

	max = num_var_ranges;
	/* No CPU hotplug when we change MTRR entries */
	get_online_cpus();
	mutex_lock(&mtrr_mutex);
	if (reg < 0) {
		/*  Search for existing MTRR  */
		for (i = 0; i < max; ++i) {
			mtrr_if->get(i, &lbase, &lsize, &ltype);
			if (lbase == base && lsize == size) {
				reg = i;
				break;
			}
		}
		if (reg < 0) {
			printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
			       size);
			goto out;
		}
	}
	if (reg >= max) {
		printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
		goto out;
	}
	mtrr_if->get(reg, &lbase, &lsize, &ltype);
	if (lsize < 1) {
		printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
		goto out;
	}
	if (mtrr_usage_table[reg] < 1) {
		printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
		goto out;
	}
	if (--mtrr_usage_table[reg] < 1)
		set_mtrr(reg, 0, 0, 0);
	error = reg;
 out:
	mutex_unlock(&mtrr_mutex);
	put_online_cpus();
	return error;
}
/**
 *	mtrr_del - delete a memory type region
 *	@reg: Register returned by mtrr_add
 *	@base: Physical base address
 *	@size: Size of region
 *
 *	If register is supplied then base and size are ignored. This is
 *	how drivers should call it.
 *
 *	Releases an MTRR region. If the usage count drops to zero the 
 *	register is freed and the region returns to default state.
 *	On success the register is returned, on failure a negative error
 *	code.
 */

int
mtrr_del(int reg, unsigned long base, unsigned long size)
{
	if (mtrr_check(base, size))
		return -EINVAL;
	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
}

EXPORT_SYMBOL(mtrr_add);
EXPORT_SYMBOL(mtrr_del);

/* HACK ALERT!
 * These should be called implicitly, but we can't yet until all the initcall
 * stuff is done...
 */
static void __init init_ifs(void)
{
#ifndef CONFIG_X86_64
	amd_init_mtrr();
	cyrix_init_mtrr();
	centaur_init_mtrr();
#endif
}

/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
 * MTRR driver doesn't require this
 */
struct mtrr_value {
	mtrr_type	ltype;
	unsigned long	lbase;
	unsigned long	lsize;
};

static struct mtrr_value mtrr_state[MAX_VAR_RANGES];

static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
{
	int i;

	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i,
			     &mtrr_state[i].lbase,
			     &mtrr_state[i].lsize,
			     &mtrr_state[i].ltype);
	}
	return 0;
}

static int mtrr_restore(struct sys_device * sysdev)
{
	int i;

	for (i = 0; i < num_var_ranges; i++) {
		if (mtrr_state[i].lsize) 
			set_mtrr(i,
				 mtrr_state[i].lbase,
				 mtrr_state[i].lsize,
				 mtrr_state[i].ltype);
	}
	return 0;
}



static struct sysdev_driver mtrr_sysdev_driver = {
	.suspend	= mtrr_save,
	.resume		= mtrr_restore,
};

/* should be related to MTRR_VAR_RANGES nums */
#define RANGE_NUM 256

struct res_range {
	unsigned long start;
	unsigned long end;
};

static int __init
add_range(struct res_range *range, int nr_range, unsigned long start,
			      unsigned long end)
{
	/* out of slots */
	if (nr_range >= RANGE_NUM)
		return nr_range;

	range[nr_range].start = start;
	range[nr_range].end = end;

	nr_range++;

	return nr_range;
}

static int __init
add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
			      unsigned long end)
{
	int i;

	/* try to merge it with old one */
	for (i = 0; i < nr_range; i++) {
		unsigned long final_start, final_end;
		unsigned long common_start, common_end;

		if (!range[i].end)
			continue;

		common_start = max(range[i].start, start);
		common_end = min(range[i].end, end);
		if (common_start > common_end + 1)
			continue;

		final_start = min(range[i].start, start);
		final_end = max(range[i].end, end);

		range[i].start = final_start;
		range[i].end =  final_end;
		return nr_range;
	}

	/* need to add that */
	return add_range(range, nr_range, start, end);
}

static void __init
subtract_range(struct res_range *range, unsigned long start, unsigned long end)
{
	int i, j;

	for (j = 0; j < RANGE_NUM; j++) {
		if (!range[j].end)
			continue;

		if (start <= range[j].start && end >= range[j].end) {
			range[j].start = 0;
			range[j].end = 0;
			continue;
		}

		if (start <= range[j].start && end < range[j].end &&
		    range[j].start < end + 1) {
			range[j].start = end + 1;
			continue;
		}


		if (start > range[j].start && end >= range[j].end &&
		    range[j].end > start - 1) {
			range[j].end = start - 1;
			continue;
		}

		if (start > range[j].start && end < range[j].end) {
			/* find the new spare */
			for (i = 0; i < RANGE_NUM; i++) {
				if (range[i].end == 0)
					break;
			}
			if (i < RANGE_NUM) {
				range[i].end = range[j].end;
				range[i].start = end + 1;
			} else {
				printk(KERN_ERR "run of slot in ranges\n");
			}
			range[j].end = start - 1;
			continue;
		}
	}
}

static int __init cmp_range(const void *x1, const void *x2)
{
	const struct res_range *r1 = x1;
	const struct res_range *r2 = x2;
	long start1, start2;

	start1 = r1->start;
	start2 = r2->start;

	return start1 - start2;
}

struct var_mtrr_range_state {
	unsigned long base_pfn;
	unsigned long size_pfn;
	mtrr_type type;
};

struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
static int __initdata debug_print;

static int __init
x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
		       unsigned long extra_remove_base,
		       unsigned long extra_remove_size)
{
	unsigned long i, base, size;
	mtrr_type type;

	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_WRBACK)
			continue;
		base = range_state[i].base_pfn;
		size = range_state[i].size_pfn;
		nr_range = add_range_with_merge(range, nr_range, base,
						base + size - 1);
	}
	if (debug_print) {
		printk(KERN_DEBUG "After WB checking\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* take out UC ranges */
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_UNCACHABLE)
			continue;
		size = range_state[i].size_pfn;
		if (!size)
			continue;
		base = range_state[i].base_pfn;
		subtract_range(range, base, base + size - 1);
	}
	if (extra_remove_size)
		subtract_range(range, extra_remove_base,
				 extra_remove_base + extra_remove_size  - 1);

	/* get new range num */
	nr_range = 0;
	for (i = 0; i < RANGE_NUM; i++) {
		if (!range[i].end)
			continue;
		nr_range++;
	}
	if  (debug_print) {
		printk(KERN_DEBUG "After UC checking\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* sort the ranges */
	sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
	if  (debug_print) {
		printk(KERN_DEBUG "After sorting\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* clear those is not used */
	for (i = nr_range; i < RANGE_NUM; i++)
		memset(&range[i], 0, sizeof(range[i]));

	return nr_range;
}

static struct res_range __initdata range[RANGE_NUM];

#ifdef CONFIG_MTRR_SANITIZER

static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
{
	unsigned long sum;
	int i;

	sum = 0;
	for (i = 0; i < nr_range; i++)
		sum += range[i].end + 1 - range[i].start;

	return sum;
}

static int enable_mtrr_cleanup __initdata =
	CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;

static int __init disable_mtrr_cleanup_setup(char *str)
{
	if (enable_mtrr_cleanup != -1)
		enable_mtrr_cleanup = 0;
	return 0;
}
early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);

static int __init enable_mtrr_cleanup_setup(char *str)
{
	if (enable_mtrr_cleanup != -1)
		enable_mtrr_cleanup = 1;
	return 0;
}
early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);

struct var_mtrr_state {
	unsigned long	range_startk;
	unsigned long	range_sizek;
	unsigned long	chunk_sizek;
	unsigned long	gran_sizek;
	unsigned int	reg;
};

static void __init
set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
		unsigned char type, unsigned int address_bits)
{
	u32 base_lo, base_hi, mask_lo, mask_hi;
	u64 base, mask;

	if (!sizek) {
		fill_mtrr_var_range(reg, 0, 0, 0, 0);
		return;
	}

	mask = (1ULL << address_bits) - 1;
	mask &= ~((((u64)sizek) << 10) - 1);

	base  = ((u64)basek) << 10;

	base |= type;
	mask |= 0x800;

	base_lo = base & ((1ULL<<32) - 1);
	base_hi = base >> 32;

	mask_lo = mask & ((1ULL<<32) - 1);
	mask_hi = mask >> 32;

	fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
}

static void __init
save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
		unsigned char type)
{
	range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
	range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
	range_state[reg].type = type;
}

static void __init
set_var_mtrr_all(unsigned int address_bits)
{
	unsigned long basek, sizek;
	unsigned char type;
	unsigned int reg;

	for (reg = 0; reg < num_var_ranges; reg++) {
		basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
		sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
		type = range_state[reg].type;

		set_var_mtrr(reg, basek, sizek, type, address_bits);
	}
}

static unsigned int __init
range_to_mtrr(unsigned int reg, unsigned long range_startk,
	      unsigned long range_sizek, unsigned char type)
{
	if (!range_sizek || (reg >= num_var_ranges))
		return reg;

	while (range_sizek) {
		unsigned long max_align, align;
		unsigned long sizek;

		/* Compute the maximum size I can make a range */
		if (range_startk)
			max_align = ffs(range_startk) - 1;
		else
			max_align = 32;
		align = fls(range_sizek) - 1;
		if (align > max_align)
			align = max_align;

		sizek = 1 << align;
		if (debug_print)
			printk(KERN_DEBUG "Setting variable MTRR %d, "
				"base: %ldMB, range: %ldMB, type %s\n",
				reg, range_startk >> 10, sizek >> 10,
				(type == MTRR_TYPE_UNCACHABLE)?"UC":
				    ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
				);
		save_var_mtrr(reg++, range_startk, sizek, type);
		range_startk += sizek;
		range_sizek -= sizek;
		if (reg >= num_var_ranges)
			break;
	}
	return reg;
}

static unsigned __init
range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
			unsigned long sizek)
{
	unsigned long hole_basek, hole_sizek;
	unsigned long second_basek, second_sizek;
	unsigned long range0_basek, range0_sizek;
	unsigned long range_basek, range_sizek;
	unsigned long chunk_sizek;
	unsigned long gran_sizek;

	hole_basek = 0;
	hole_sizek = 0;
	second_basek = 0;
	second_sizek = 0;
	chunk_sizek = state->chunk_sizek;
	gran_sizek = state->gran_sizek;

	/* align with gran size, prevent small block used up MTRRs */
	range_basek = ALIGN(state->range_startk, gran_sizek);
	if ((range_basek > basek) && basek)
		return second_sizek;
	state->range_sizek -= (range_basek - state->range_startk);
	range_sizek = ALIGN(state->range_sizek, gran_sizek);

	while (range_sizek > state->range_sizek) {
		range_sizek -= gran_sizek;
		if (!range_sizek)
			return 0;
	}
	state->range_sizek = range_sizek;

	/* try to append some small hole */
	range0_basek = state->range_startk;
	range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
	if (range0_sizek == state->range_sizek) {
		if (debug_print)
			printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
				range0_basek<<10,
				(range0_basek + state->range_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, range0_basek,
				state->range_sizek, MTRR_TYPE_WRBACK);
		return 0;
	}

	range0_sizek -= chunk_sizek;
	if (range0_sizek && sizek) {
	    while (range0_basek + range0_sizek > (basek + sizek)) {
		range0_sizek -= chunk_sizek;
		if (!range0_sizek)
			break;
	    }
	}

	if (range0_sizek) {
		if (debug_print)
			printk(KERN_DEBUG "range0: %016lx - %016lx\n",
				range0_basek<<10,
				(range0_basek + range0_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, range0_basek,
				range0_sizek, MTRR_TYPE_WRBACK);

	}

	range_basek = range0_basek + range0_sizek;
	range_sizek = chunk_sizek;

	if (range_basek + range_sizek > basek &&
	    range_basek + range_sizek <= (basek + sizek)) {
		/* one hole */
		second_basek = basek;
		second_sizek = range_basek + range_sizek - basek;
	}

	/* if last piece, only could one hole near end */
	if ((second_basek || !basek) &&
	    range_sizek - (state->range_sizek - range0_sizek) - second_sizek <
	    (chunk_sizek >> 1)) {
		/*
		 * one hole in middle (second_sizek is 0) or at end
		 * (second_sizek is 0 )
		 */
		hole_sizek = range_sizek - (state->range_sizek - range0_sizek)
				 - second_sizek;
		hole_basek = range_basek + range_sizek - hole_sizek
				 - second_sizek;
	} else {
		/* fallback for big hole, or several holes */
		range_sizek = state->range_sizek - range0_sizek;
		second_basek = 0;
		second_sizek = 0;
	}

	if (debug_print)
		printk(KERN_DEBUG "range: %016lx - %016lx\n", range_basek<<10,
			 (range_basek + range_sizek)<<10);
	state->reg = range_to_mtrr(state->reg, range_basek, range_sizek,
					 MTRR_TYPE_WRBACK);
	if (hole_sizek) {
		if (debug_print)
			printk(KERN_DEBUG "hole: %016lx - %016lx\n",
				 hole_basek<<10, (hole_basek + hole_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, hole_basek, hole_sizek,
						 MTRR_TYPE_UNCACHABLE);

	}

	return second_sizek;
}

static void __init
set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
		   unsigned long size_pfn)
{
	unsigned long basek, sizek;
	unsigned long second_sizek = 0;

	if (state->reg >= num_var_ranges)
		return;

	basek = base_pfn << (PAGE_SHIFT - 10);
	sizek = size_pfn << (PAGE_SHIFT - 10);

	/* See if I can merge with the last range */
	if ((basek <= 1024) ||
	    (state->range_startk + state->range_sizek == basek)) {
		unsigned long endk = basek + sizek;
		state->range_sizek = endk - state->range_startk;
		return;
	}
	/* Write the range mtrrs */
	if (state->range_sizek != 0)
		second_sizek = range_to_mtrr_with_hole(state, basek, sizek);

	/* Allocate an msr */
	state->range_startk = basek + second_sizek;
	state->range_sizek  = sizek - second_sizek;
}

/* mininum size of mtrr block that can take hole */
static u64 mtrr_chunk_size __initdata = (256ULL<<20);

static int __init parse_mtrr_chunk_size_opt(char *p)
{
	if (!p)
		return -EINVAL;
	mtrr_chunk_size = memparse(p, &p);
	return 0;
}
early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);

/* granity of mtrr of block */
static u64 mtrr_gran_size __initdata;

static int __init parse_mtrr_gran_size_opt(char *p)
{
	if (!p)
		return -EINVAL;
	mtrr_gran_size = memparse(p, &p);
	return 0;
}
early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);

static int nr_mtrr_spare_reg __initdata =
				 CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;

static int __init parse_mtrr_spare_reg(char *arg)
{
	if (arg)
		nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
	return 0;
}

early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);

static int __init
x86_setup_var_mtrrs(struct res_range *range, int nr_range,
		    u64 chunk_size, u64 gran_size)
{
	struct var_mtrr_state var_state;
	int i;
	int num_reg;

	var_state.range_startk	= 0;
	var_state.range_sizek	= 0;
	var_state.reg		= 0;
	var_state.chunk_sizek	= chunk_size >> 10;
	var_state.gran_sizek	= gran_size >> 10;

	memset(range_state, 0, sizeof(range_state));

	/* Write the range etc */
	for (i = 0; i < nr_range; i++)
		set_var_mtrr_range(&var_state, range[i].start,
				   range[i].end - range[i].start + 1);

	/* Write the last range */
	if (var_state.range_sizek != 0)
		range_to_mtrr_with_hole(&var_state, 0, 0);

	num_reg = var_state.reg;
	/* Clear out the extra MTRR's */
	while (var_state.reg < num_var_ranges) {
		save_var_mtrr(var_state.reg, 0, 0, 0);
		var_state.reg++;
	}

	return num_reg;
}

struct mtrr_cleanup_result {
	unsigned long gran_sizek;
	unsigned long chunk_sizek;
	unsigned long lose_cover_sizek;
	unsigned int num_reg;
	int bad;
};

/*
 * gran_size: 1M, 2M, ..., 2G
 * chunk size: gran_size, ..., 4G
 * so we need (2+13)*6
 */
#define NUM_RESULT	90
#define PSHIFT		(PAGE_SHIFT - 10)

static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
static struct res_range __initdata range_new[RANGE_NUM];
static unsigned long __initdata min_loss_pfn[RANGE_NUM];

static int __init mtrr_cleanup(unsigned address_bits)
{
	unsigned long extra_remove_base, extra_remove_size;
	unsigned long i, base, size, def, dummy;
	mtrr_type type;
	int nr_range, nr_range_new;
	u64 chunk_size, gran_size;
	unsigned long range_sums, range_sums_new;
	int index_good;
	int num_reg_good;

	/* extra one for all 0 */
	int num[MTRR_NUM_TYPES + 1];

	if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
		return 0;
	rdmsr(MTRRdefType_MSR, def, dummy);
	def &= 0xff;
	if (def != MTRR_TYPE_UNCACHABLE)
		return 0;

	/* get it and store it aside */
	memset(range_state, 0, sizeof(range_state));
	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i, &base, &size, &type);
		range_state[i].base_pfn = base;
		range_state[i].size_pfn = size;
		range_state[i].type = type;
	}

	/* check entries number */
	memset(num, 0, sizeof(num));
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		size = range_state[i].size_pfn;
		if (type >= MTRR_NUM_TYPES)
			continue;
		if (!size)
			type = MTRR_NUM_TYPES;
		num[type]++;
	}

	/* check if we got UC entries */
	if (!num[MTRR_TYPE_UNCACHABLE])
		return 0;

	/* check if we only had WB and UC */
	if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
		num_var_ranges - num[MTRR_NUM_TYPES])
		return 0;

	memset(range, 0, sizeof(range));
	extra_remove_size = 0;
	if (mtrr_tom2) {
		extra_remove_base = 1 << (32 - PAGE_SHIFT);
		extra_remove_size =
			(mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
	}
	nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
					  extra_remove_size);
	range_sums = sum_ranges(range, nr_range);
	printk(KERN_INFO "total RAM coverred: %ldM\n",
	       range_sums >> (20 - PAGE_SHIFT));

	if (mtrr_chunk_size && mtrr_gran_size) {
		int num_reg;

		debug_print = 1;
		/* convert ranges to var ranges state */
		num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
					      mtrr_gran_size);

		/* we got new setting in range_state, check it */
		memset(range_new, 0, sizeof(range_new));
		nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
						      extra_remove_base,
						      extra_remove_size);
		range_sums_new = sum_ranges(range_new, nr_range_new);

		i = 0;
		result[i].chunk_sizek = mtrr_chunk_size >> 10;
		result[i].gran_sizek = mtrr_gran_size >> 10;
		result[i].num_reg = num_reg;
		if (range_sums < range_sums_new) {
			result[i].lose_cover_sizek =
				(range_sums_new - range_sums) << PSHIFT;
			result[i].bad = 1;
		} else
			result[i].lose_cover_sizek =
				(range_sums - range_sums_new) << PSHIFT;

		printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
			 result[i].bad?"*BAD*":" ", result[i].gran_sizek >> 10,
			 result[i].chunk_sizek >> 10);
		printk(KERN_CONT "num_reg: %d  \tlose cover RAM: %s%ldM \n",
			 result[i].num_reg, result[i].bad?"-":"",
			 result[i].lose_cover_sizek >> 10);
		if (!result[i].bad) {
			set_var_mtrr_all(address_bits);
			return 1;
		}
		printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
		       "will find optimal one\n");
		debug_print = 0;
		memset(result, 0, sizeof(result[0]));
	}

	i = 0;
	memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
	memset(result, 0, sizeof(result));
	for (gran_size = (1ULL<<20); gran_size < (1ULL<<32); gran_size <<= 1) {
		for (chunk_size = gran_size; chunk_size < (1ULL<<33);
		     chunk_size <<= 1) {
			int num_reg;

			if (debug_print)
				printk(KERN_INFO
			       "\ngran_size: %lldM   chunk_size_size: %lldM\n",
				       gran_size >> 20, chunk_size >> 20);
			if (i >= NUM_RESULT)
				continue;

			/* convert ranges to var ranges state */
			num_reg = x86_setup_var_mtrrs(range, nr_range,
							 chunk_size, gran_size);

			/* we got new setting in range_state, check it */
			memset(range_new, 0, sizeof(range_new));
			nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
					 extra_remove_base, extra_remove_size);
			range_sums_new = sum_ranges(range_new, nr_range_new);

			result[i].chunk_sizek = chunk_size >> 10;
			result[i].gran_sizek = gran_size >> 10;
			result[i].num_reg = num_reg;
			if (range_sums < range_sums_new) {
				result[i].lose_cover_sizek =
					(range_sums_new - range_sums) << PSHIFT;
				result[i].bad = 1;
			} else
				result[i].lose_cover_sizek =
					(range_sums - range_sums_new) << PSHIFT;

			/* double check it */
			if (!result[i].bad && !result[i].lose_cover_sizek) {
				if (nr_range_new != nr_range ||
					memcmp(range, range_new, sizeof(range)))
						result[i].bad = 1;
			}

			if (!result[i].bad && (range_sums - range_sums_new <
					       min_loss_pfn[num_reg])) {
				min_loss_pfn[num_reg] =
					range_sums - range_sums_new;
			}
			i++;
		}
	}

	/* print out all */
	for (i = 0; i < NUM_RESULT; i++) {
		printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
		       result[i].bad?"*BAD* ":" ", result[i].gran_sizek >> 10,
		       result[i].chunk_sizek >> 10);
		printk(KERN_CONT "num_reg: %d \tlose RAM: %s%ldM\n",
		       result[i].num_reg, result[i].bad?"-":"",
		       result[i].lose_cover_sizek >> 10);
	}

	/* try to find the optimal index */
	if (nr_mtrr_spare_reg >= num_var_ranges)
		nr_mtrr_spare_reg = num_var_ranges - 1;
	num_reg_good = -1;
	for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
		if (!min_loss_pfn[i]) {
			num_reg_good = i;
			break;
		}
	}

	index_good = -1;
	if (num_reg_good != -1) {
		for (i = 0; i < NUM_RESULT; i++) {
			if (!result[i].bad &&
			    result[i].num_reg == num_reg_good &&
			    !result[i].lose_cover_sizek) {
				index_good = i;
				break;
			}
		}
	}

	if (index_good != -1) {
		printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
		i = index_good;
		printk(KERN_INFO "gran_size: %ldM \tchunk_size: %ldM \t",
				result[i].gran_sizek >> 10,
				result[i].chunk_sizek >> 10);
		printk(KERN_CONT "num_reg: %d \tlose RAM: %ldM\n",
				result[i].num_reg,
				result[i].lose_cover_sizek >> 10);
		/* convert ranges to var ranges state */
		chunk_size = result[i].chunk_sizek;
		chunk_size <<= 10;
		gran_size = result[i].gran_sizek;
		gran_size <<= 10;
		debug_print = 1;
		x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
		set_var_mtrr_all(address_bits);
		return 1;
	}

	printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
	printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");

	return 0;
}
#else
static int __init mtrr_cleanup(unsigned address_bits)
{
	return 0;
}
#endif

static int __initdata changed_by_mtrr_cleanup;

static int disable_mtrr_trim;

static int __init disable_mtrr_trim_setup(char *str)
{
	disable_mtrr_trim = 1;
	return 0;
}
early_param("disable_mtrr_trim", disable_mtrr_trim_setup);

/*
 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
 * for memory >4GB. Check for that here.
 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
 * apply to are wrong, but so far we don't know of any such case in the wild.
 */
#define Tom2Enabled (1U << 21)
#define Tom2ForceMemTypeWB (1U << 22)

int __init amd_special_default_mtrr(void)
{
	u32 l, h;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
		return 0;
	if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
		return 0;
	/* In case some hypervisor doesn't pass SYSCFG through */
	if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
		return 0;
	/*
	 * Memory between 4GB and top of mem is forced WB by this magic bit.
	 * Reserved before K8RevF, but should be zero there.
	 */
	if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
		 (Tom2Enabled | Tom2ForceMemTypeWB))
		return 1;
	return 0;
}

static u64 __init real_trim_memory(unsigned long start_pfn,
				   unsigned long limit_pfn)
{
	u64 trim_start, trim_size;
	trim_start = start_pfn;
	trim_start <<= PAGE_SHIFT;
	trim_size = limit_pfn;
	trim_size <<= PAGE_SHIFT;
	trim_size -= trim_start;

	return e820_update_range(trim_start, trim_size, E820_RAM,
				E820_RESERVED);
}
/**
 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
 * @end_pfn: ending page frame number
 *
 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
 * memory configurations.  This routine checks that the highest MTRR matches
 * the end of memory, to make sure the MTRRs having a write back type cover
 * all of the memory the kernel is intending to use. If not, it'll trim any
 * memory off the end by adjusting end_pfn, removing it from the kernel's
 * allocation pools, warning the user with an obnoxious message.
 */
int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
{
	unsigned long i, base, size, highest_pfn = 0, def, dummy;
	mtrr_type type;
	int nr_range;
	u64 total_trim_size;

	/* extra one for all 0 */
	int num[MTRR_NUM_TYPES + 1];
	/*
	 * Make sure we only trim uncachable memory on machines that
	 * support the Intel MTRR architecture:
	 */
	if (!is_cpu(INTEL) || disable_mtrr_trim)
		return 0;
	rdmsr(MTRRdefType_MSR, def, dummy);
	def &= 0xff;
	if (def != MTRR_TYPE_UNCACHABLE)
		return 0;

	/* get it and store it aside */
	memset(range_state, 0, sizeof(range_state));
	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i, &base, &size, &type);
		range_state[i].base_pfn = base;
		range_state[i].size_pfn = size;
		range_state[i].type = type;
	}

	/* Find highest cached pfn */
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_WRBACK)
			continue;
		base = range_state[i].base_pfn;
		size = range_state[i].size_pfn;
		if (highest_pfn < base + size)
			highest_pfn = base + size;
	}

	/* kvm/qemu doesn't have mtrr set right, don't trim them all */
	if (!highest_pfn) {
		printk(KERN_INFO "CPU MTRRs all blank - virtualized system.\n");
		return 0;
	}

	/* check entries number */
	memset(num, 0, sizeof(num));
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type >= MTRR_NUM_TYPES)
			continue;
		size = range_state[i].size_pfn;
		if (!size)
			type = MTRR_NUM_TYPES;
		num[type]++;
	}

	/* no entry for WB? */
	if (!num[MTRR_TYPE_WRBACK])
		return 0;

	/* check if we only had WB and UC */
	if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
		num_var_ranges - num[MTRR_NUM_TYPES])
		return 0;

	memset(range, 0, sizeof(range));
	nr_range = 0;
	if (mtrr_tom2) {
		range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
		range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
		if (highest_pfn < range[nr_range].end + 1)
			highest_pfn = range[nr_range].end + 1;
		nr_range++;
	}
	nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);

	total_trim_size = 0;
	/* check the head */
	if (range[0].start)
		total_trim_size += real_trim_memory(0, range[0].start);
	/* check the holes */
	for (i = 0; i < nr_range - 1; i++) {
		if (range[i].end + 1 < range[i+1].start)
			total_trim_size += real_trim_memory(range[i].end + 1,
							    range[i+1].start);
	}
	/* check the top */
	i = nr_range - 1;
	if (range[i].end + 1 < end_pfn)
		total_trim_size += real_trim_memory(range[i].end + 1,
							 end_pfn);

	if (total_trim_size) {
		printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
			" all of memory, losing %lluMB of RAM.\n",
			total_trim_size >> 20);

		if (!changed_by_mtrr_cleanup)
			WARN_ON(1);

		printk(KERN_INFO "update e820 for mtrr\n");
		update_e820();

		return 1;
	}

	return 0;
}

/**
 * mtrr_bp_init - initialize mtrrs on the boot CPU
 *
 * This needs to be called early; before any of the other CPUs are 
 * initialized (i.e. before smp_init()).
 * 
 */
void __init mtrr_bp_init(void)
{
	u32 phys_addr;
	init_ifs();

	phys_addr = 32;

	if (cpu_has_mtrr) {
		mtrr_if = &generic_mtrr_ops;
		size_or_mask = 0xff000000;	/* 36 bits */
		size_and_mask = 0x00f00000;
		phys_addr = 36;

		/* This is an AMD specific MSR, but we assume(hope?) that
		   Intel will implement it to when they extend the address
		   bus of the Xeon. */
		if (cpuid_eax(0x80000000) >= 0x80000008) {
			phys_addr = cpuid_eax(0x80000008) & 0xff;
			/* CPUID workaround for Intel 0F33/0F34 CPU */
			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
			    boot_cpu_data.x86 == 0xF &&
			    boot_cpu_data.x86_model == 0x3 &&
			    (boot_cpu_data.x86_mask == 0x3 ||
			     boot_cpu_data.x86_mask == 0x4))
				phys_addr = 36;

			size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
			   boot_cpu_data.x86 == 6) {
			/* VIA C* family have Intel style MTRRs, but
			   don't support PAE */
			size_or_mask = 0xfff00000;	/* 32 bits */
			size_and_mask = 0;
			phys_addr = 32;
		}
	} else {
		switch (boot_cpu_data.x86_vendor) {
		case X86_VENDOR_AMD:
			if (cpu_has_k6_mtrr) {
				/* Pre-Athlon (K6) AMD CPU MTRRs */
				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		case X86_VENDOR_CENTAUR:
			if (cpu_has_centaur_mcr) {
				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		case X86_VENDOR_CYRIX:
			if (cpu_has_cyrix_arr) {
				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		default:
			break;
		}
	}

	if (mtrr_if) {
		set_num_var_ranges();
		init_table();
		if (use_intel()) {
			get_mtrr_state();

			if (mtrr_cleanup(phys_addr)) {
				changed_by_mtrr_cleanup = 1;
				mtrr_if->set_all();
			}

		}
	}
}

void mtrr_ap_init(void)
{
	unsigned long flags;

	if (!mtrr_if || !use_intel())
		return;
	/*
	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
	 * but this routine will be called in cpu boot time, holding the lock
	 * breaks it. This routine is called in two cases: 1.very earily time
	 * of software resume, when there absolutely isn't mtrr entry changes;
	 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
	 * prevent mtrr entry changes
	 */
	local_irq_save(flags);

	mtrr_if->set_all();

	local_irq_restore(flags);
}

/**
 * Save current fixed-range MTRR state of the BSP
 */
void mtrr_save_state(void)
{
	smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
}

static int __init mtrr_init_finialize(void)
{
	if (!mtrr_if)
		return 0;
	if (use_intel()) {
		if (!changed_by_mtrr_cleanup)
			mtrr_state_warn();
	} else {
		/* The CPUs haven't MTRR and seem to not support SMP. They have
		 * specific drivers, we use a tricky method to support
		 * suspend/resume for them.
		 * TBD: is there any system with such CPU which supports
		 * suspend/resume?  if no, we should remove the code.
		 */
		sysdev_driver_register(&cpu_sysdev_class,
			&mtrr_sysdev_driver);
	}
	return 0;
}
subsys_initcall(mtrr_init_finialize);