Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | /* * linux/kernel/profile.c * Simple profiling. Manages a direct-mapped profile hit count buffer, * with configurable resolution, support for restricting the cpus on * which profiling is done, and switching between cpu time and * schedule() calls via kernel command line parameters passed at boot. * * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, * Red Hat, July 2004 * Consolidation of architecture support code for profiling, * William Irwin, Oracle, July 2004 * Amortized hit count accounting via per-cpu open-addressed hashtables * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 */ #include <linux/module.h> #include <linux/profile.h> #include <linux/bootmem.h> #include <linux/notifier.h> #include <linux/mm.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/highmem.h> #include <linux/mutex.h> #include <asm/sections.h> #include <asm/irq_regs.h> #include <asm/ptrace.h> struct profile_hit { u32 pc, hits; }; #define PROFILE_GRPSHIFT 3 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) /* Oprofile timer tick hook */ static int (*timer_hook)(struct pt_regs *) __read_mostly; static atomic_t *prof_buffer; static unsigned long prof_len, prof_shift; int prof_on __read_mostly; EXPORT_SYMBOL_GPL(prof_on); static cpumask_t prof_cpu_mask = CPU_MASK_ALL; #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); static DEFINE_PER_CPU(int, cpu_profile_flip); static DEFINE_MUTEX(profile_flip_mutex); #endif /* CONFIG_SMP */ static int __init profile_setup(char *str) { static char __initdata schedstr[] = "schedule"; static char __initdata sleepstr[] = "sleep"; static char __initdata kvmstr[] = "kvm"; int par; if (!strncmp(str, sleepstr, strlen(sleepstr))) { #ifdef CONFIG_SCHEDSTATS prof_on = SLEEP_PROFILING; if (str[strlen(sleepstr)] == ',') str += strlen(sleepstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel sleep profiling enabled (shift: %ld)\n", prof_shift); #else printk(KERN_WARNING "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); #endif /* CONFIG_SCHEDSTATS */ } else if (!strncmp(str, schedstr, strlen(schedstr))) { prof_on = SCHED_PROFILING; if (str[strlen(schedstr)] == ',') str += strlen(schedstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel schedule profiling enabled (shift: %ld)\n", prof_shift); } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { prof_on = KVM_PROFILING; if (str[strlen(kvmstr)] == ',') str += strlen(kvmstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel KVM profiling enabled (shift: %ld)\n", prof_shift); } else if (get_option(&str, &par)) { prof_shift = par; prof_on = CPU_PROFILING; printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", prof_shift); } return 1; } __setup("profile=", profile_setup); void __init profile_init(void) { if (!prof_on) return; /* only text is profiled */ prof_len = (_etext - _stext) >> prof_shift; prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); } /* Profile event notifications */ static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); static ATOMIC_NOTIFIER_HEAD(task_free_notifier); static BLOCKING_NOTIFIER_HEAD(munmap_notifier); void profile_task_exit(struct task_struct *task) { blocking_notifier_call_chain(&task_exit_notifier, 0, task); } int profile_handoff_task(struct task_struct *task) { int ret; ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); return (ret == NOTIFY_OK) ? 1 : 0; } void profile_munmap(unsigned long addr) { blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); } int task_handoff_register(struct notifier_block *n) { return atomic_notifier_chain_register(&task_free_notifier, n); } EXPORT_SYMBOL_GPL(task_handoff_register); int task_handoff_unregister(struct notifier_block *n) { return atomic_notifier_chain_unregister(&task_free_notifier, n); } EXPORT_SYMBOL_GPL(task_handoff_unregister); int profile_event_register(enum profile_type type, struct notifier_block *n) { int err = -EINVAL; switch (type) { case PROFILE_TASK_EXIT: err = blocking_notifier_chain_register( &task_exit_notifier, n); break; case PROFILE_MUNMAP: err = blocking_notifier_chain_register( &munmap_notifier, n); break; } return err; } EXPORT_SYMBOL_GPL(profile_event_register); int profile_event_unregister(enum profile_type type, struct notifier_block *n) { int err = -EINVAL; switch (type) { case PROFILE_TASK_EXIT: err = blocking_notifier_chain_unregister( &task_exit_notifier, n); break; case PROFILE_MUNMAP: err = blocking_notifier_chain_unregister( &munmap_notifier, n); break; } return err; } EXPORT_SYMBOL_GPL(profile_event_unregister); int register_timer_hook(int (*hook)(struct pt_regs *)) { if (timer_hook) return -EBUSY; timer_hook = hook; return 0; } EXPORT_SYMBOL_GPL(register_timer_hook); void unregister_timer_hook(int (*hook)(struct pt_regs *)) { WARN_ON(hook != timer_hook); timer_hook = NULL; /* make sure all CPUs see the NULL hook */ synchronize_sched(); /* Allow ongoing interrupts to complete. */ } EXPORT_SYMBOL_GPL(unregister_timer_hook); #ifdef CONFIG_SMP /* * Each cpu has a pair of open-addressed hashtables for pending * profile hits. read_profile() IPI's all cpus to request them * to flip buffers and flushes their contents to prof_buffer itself. * Flip requests are serialized by the profile_flip_mutex. The sole * use of having a second hashtable is for avoiding cacheline * contention that would otherwise happen during flushes of pending * profile hits required for the accuracy of reported profile hits * and so resurrect the interrupt livelock issue. * * The open-addressed hashtables are indexed by profile buffer slot * and hold the number of pending hits to that profile buffer slot on * a cpu in an entry. When the hashtable overflows, all pending hits * are accounted to their corresponding profile buffer slots with * atomic_add() and the hashtable emptied. As numerous pending hits * may be accounted to a profile buffer slot in a hashtable entry, * this amortizes a number of atomic profile buffer increments likely * to be far larger than the number of entries in the hashtable, * particularly given that the number of distinct profile buffer * positions to which hits are accounted during short intervals (e.g. * several seconds) is usually very small. Exclusion from buffer * flipping is provided by interrupt disablement (note that for * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from * process context). * The hash function is meant to be lightweight as opposed to strong, * and was vaguely inspired by ppc64 firmware-supported inverted * pagetable hash functions, but uses a full hashtable full of finite * collision chains, not just pairs of them. * * -- wli */ static void __profile_flip_buffers(void *unused) { int cpu = smp_processor_id(); per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); } static void profile_flip_buffers(void) { int i, j, cpu; mutex_lock(&profile_flip_mutex); j = per_cpu(cpu_profile_flip, get_cpu()); put_cpu(); on_each_cpu(__profile_flip_buffers, NULL, 1); for_each_online_cpu(cpu) { struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; for (i = 0; i < NR_PROFILE_HIT; ++i) { if (!hits[i].hits) { if (hits[i].pc) hits[i].pc = 0; continue; } atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); hits[i].hits = hits[i].pc = 0; } } mutex_unlock(&profile_flip_mutex); } static void profile_discard_flip_buffers(void) { int i, cpu; mutex_lock(&profile_flip_mutex); i = per_cpu(cpu_profile_flip, get_cpu()); put_cpu(); on_each_cpu(__profile_flip_buffers, NULL, 1); for_each_online_cpu(cpu) { struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); } mutex_unlock(&profile_flip_mutex); } void profile_hits(int type, void *__pc, unsigned int nr_hits) { unsigned long primary, secondary, flags, pc = (unsigned long)__pc; int i, j, cpu; struct profile_hit *hits; if (prof_on != type || !prof_buffer) return; pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; cpu = get_cpu(); hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; if (!hits) { put_cpu(); return; } /* * We buffer the global profiler buffer into a per-CPU * queue and thus reduce the number of global (and possibly * NUMA-alien) accesses. The write-queue is self-coalescing: */ local_irq_save(flags); do { for (j = 0; j < PROFILE_GRPSZ; ++j) { if (hits[i + j].pc == pc) { hits[i + j].hits += nr_hits; goto out; } else if (!hits[i + j].hits) { hits[i + j].pc = pc; hits[i + j].hits = nr_hits; goto out; } } i = (i + secondary) & (NR_PROFILE_HIT - 1); } while (i != primary); /* * Add the current hit(s) and flush the write-queue out * to the global buffer: */ atomic_add(nr_hits, &prof_buffer[pc]); for (i = 0; i < NR_PROFILE_HIT; ++i) { atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); hits[i].pc = hits[i].hits = 0; } out: local_irq_restore(flags); put_cpu(); } static int __devinit profile_cpu_callback(struct notifier_block *info, unsigned long action, void *__cpu) { int node, cpu = (unsigned long)__cpu; struct page *page; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: node = cpu_to_node(cpu); per_cpu(cpu_profile_flip, cpu) = 0; if (!per_cpu(cpu_profile_hits, cpu)[1]) { page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); if (!page) return NOTIFY_BAD; per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); } if (!per_cpu(cpu_profile_hits, cpu)[0]) { page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); if (!page) goto out_free; per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); } break; out_free: page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); return NOTIFY_BAD; case CPU_ONLINE: case CPU_ONLINE_FROZEN: cpu_set(cpu, prof_cpu_mask); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: cpu_clear(cpu, prof_cpu_mask); if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } break; } return NOTIFY_OK; } #else /* !CONFIG_SMP */ #define profile_flip_buffers() do { } while (0) #define profile_discard_flip_buffers() do { } while (0) #define profile_cpu_callback NULL void profile_hits(int type, void *__pc, unsigned int nr_hits) { unsigned long pc; if (prof_on != type || !prof_buffer) return; pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); } #endif /* !CONFIG_SMP */ EXPORT_SYMBOL_GPL(profile_hits); void profile_tick(int type) { struct pt_regs *regs = get_irq_regs(); if (type == CPU_PROFILING && timer_hook) timer_hook(regs); if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) profile_hit(type, (void *)profile_pc(regs)); } #ifdef CONFIG_PROC_FS #include <linux/proc_fs.h> #include <asm/uaccess.h> #include <asm/ptrace.h> static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); if (count - len < 2) return -EINVAL; len += sprintf(page + len, "\n"); return len; } static int prof_cpu_mask_write_proc(struct file *file, const char __user *buffer, unsigned long count, void *data) { cpumask_t *mask = (cpumask_t *)data; unsigned long full_count = count, err; cpumask_t new_value; err = cpumask_parse_user(buffer, count, new_value); if (err) return err; *mask = new_value; return full_count; } void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) { struct proc_dir_entry *entry; /* create /proc/irq/prof_cpu_mask */ entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); if (!entry) return; entry->data = (void *)&prof_cpu_mask; entry->read_proc = prof_cpu_mask_read_proc; entry->write_proc = prof_cpu_mask_write_proc; } /* * This function accesses profiling information. The returned data is * binary: the sampling step and the actual contents of the profile * buffer. Use of the program readprofile is recommended in order to * get meaningful info out of these data. */ static ssize_t read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned long p = *ppos; ssize_t read; char *pnt; unsigned int sample_step = 1 << prof_shift; profile_flip_buffers(); if (p >= (prof_len+1)*sizeof(unsigned int)) return 0; if (count > (prof_len+1)*sizeof(unsigned int) - p) count = (prof_len+1)*sizeof(unsigned int) - p; read = 0; while (p < sizeof(unsigned int) && count > 0) { if (put_user(*((char *)(&sample_step)+p), buf)) return -EFAULT; buf++; p++; count--; read++; } pnt = (char *)prof_buffer + p - sizeof(atomic_t); if (copy_to_user(buf, (void *)pnt, count)) return -EFAULT; read += count; *ppos += read; return read; } /* * Writing to /proc/profile resets the counters * * Writing a 'profiling multiplier' value into it also re-sets the profiling * interrupt frequency, on architectures that support this. */ static ssize_t write_profile(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_SMP extern int setup_profiling_timer(unsigned int multiplier); if (count == sizeof(int)) { unsigned int multiplier; if (copy_from_user(&multiplier, buf, sizeof(int))) return -EFAULT; if (setup_profiling_timer(multiplier)) return -EINVAL; } #endif profile_discard_flip_buffers(); memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); return count; } static const struct file_operations proc_profile_operations = { .read = read_profile, .write = write_profile, }; #ifdef CONFIG_SMP static void __init profile_nop(void *unused) { } static int __init create_hash_tables(void) { int cpu; for_each_online_cpu(cpu) { int node = cpu_to_node(cpu); struct page *page; page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[1] = (struct profile_hit *)page_address(page); page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[0] = (struct profile_hit *)page_address(page); } return 0; out_cleanup: prof_on = 0; smp_mb(); on_each_cpu(profile_nop, NULL, 1); for_each_online_cpu(cpu) { struct page *page; if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } } return -1; } #else #define create_hash_tables() ({ 0; }) #endif static int __init create_proc_profile(void) { struct proc_dir_entry *entry; if (!prof_on) return 0; if (create_hash_tables()) return -1; entry = proc_create("profile", S_IWUSR | S_IRUGO, NULL, &proc_profile_operations); if (!entry) return 0; entry->size = (1+prof_len) * sizeof(atomic_t); hotcpu_notifier(profile_cpu_callback, 0); return 0; } module_init(create_proc_profile); #endif /* CONFIG_PROC_FS */ |