Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | /* * ECC algorithm for M-systems disk on chip. We use the excellent Reed * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the * GNU GPL License. The rest is simply to convert the disk on chip * syndrom into a standard syndom. * * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright (C) 2000 Netgem S.A. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/module.h> #include <asm/errno.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/miscdevice.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/types.h> #include <linux/mtd/compatmac.h> /* for min() in older kernels */ #include <linux/mtd/mtd.h> #include <linux/mtd/doc2000.h> #define DEBUG_ECC 0 /* need to undef it (from asm/termbits.h) */ #undef B0 #define MM 10 /* Symbol size in bits */ #define KK (1023-4) /* Number of data symbols per block */ #define B0 510 /* First root of generator polynomial, alpha form */ #define PRIM 1 /* power of alpha used to generate roots of generator poly */ #define NN ((1 << MM) - 1) typedef unsigned short dtype; /* 1+x^3+x^10 */ static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; /* This defines the type used to store an element of the Galois Field * used by the code. Make sure this is something larger than a char if * if anything larger than GF(256) is used. * * Note: unsigned char will work up to GF(256) but int seems to run * faster on the Pentium. */ typedef int gf; /* No legal value in index form represents zero, so * we need a special value for this purpose */ #define A0 (NN) /* Compute x % NN, where NN is 2**MM - 1, * without a slow divide */ static inline gf modnn(int x) { while (x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } #define CLEAR(a,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = 0;\ } #define COPY(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define COPYDOWN(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define Ldec 1 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ static void generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) { register int i, mask; mask = 1; Alpha_to[MM] = 0; for (i = 0; i < MM; i++) { Alpha_to[i] = mask; Index_of[Alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if (Pp[i] != 0) Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } Index_of[Alpha_to[MM]] = MM; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for (i = MM + 1; i < NN; i++) { if (Alpha_to[i - 1] >= mask) Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); else Alpha_to[i] = Alpha_to[i - 1] << 1; Index_of[Alpha_to[i]] = i; } Index_of[0] = A0; Alpha_to[NN] = 0; } /* * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content * of the feedback shift register after having processed the data and * the ECC. * * Return number of symbols corrected, or -1 if codeword is illegal * or uncorrectable. If eras_pos is non-null, the detected error locations * are written back. NOTE! This array must be at least NN-KK elements long. * The corrected data are written in eras_val[]. They must be xor with the data * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . * * First "no_eras" erasures are declared by the calling program. Then, the * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). * If the number of channel errors is not greater than "t_after_eras" the * transmitted codeword will be recovered. Details of algorithm can be found * in R. Blahut's "Theory ... of Error-Correcting Codes". * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure * will result. The decoder *could* check for this condition, but it would involve * extra time on every decoding operation. * */ static int eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], int no_eras) { int deg_lambda, el, deg_omega; int i, j, r,k; gf u,q,tmp,num1,num2,den,discr_r; gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly * and syndrome poly */ gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; int syn_error, count; syn_error = 0; for(i=0;i<NN-KK;i++) syn_error |= bb[i]; if (!syn_error) { /* if remainder is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ count = 0; goto finish; } for(i=1;i<=NN-KK;i++){ s[i] = bb[0]; } for(j=1;j<NN-KK;j++){ if(bb[j] == 0) continue; tmp = Index_of[bb[j]]; for(i=1;i<=NN-KK;i++) s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; } /* undo the feedback register implicit multiplication and convert syndromes to index form */ for(i=1;i<=NN-KK;i++) { tmp = Index_of[s[i]]; if (tmp != A0) tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); s[i] = tmp; } CLEAR(&lambda[1],NN-KK); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; for (i = 1; i < no_eras; i++) { u = modnn(PRIM*eras_pos[i]); for (j = i+1; j > 0; j--) { tmp = Index_of[lambda[j - 1]]; if(tmp != A0) lambda[j] ^= Alpha_to[modnn(u + tmp)]; } } #if DEBUG_ECC >= 1 /* Test code that verifies the erasure locator polynomial just constructed Needed only for decoder debugging. */ /* find roots of the erasure location polynomial */ for(i=1;i<=no_eras;i++) reg[i] = Index_of[lambda[i]]; count = 0; for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { q = 1; for (j = 1; j <= no_eras; j++) if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if (q != 0) continue; /* store root and error location number indices */ root[count] = i; loc[count] = k; count++; } if (count != no_eras) { printf("\n lambda(x) is WRONG\n"); count = -1; goto finish; } #if DEBUG_ECC >= 2 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); #endif #endif } for(i=0;i<NN-KK+1;i++) b[i] = Index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= NN-KK) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++){ if ((lambda[i] != 0) && (s[r - i] != A0)) { discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; } } discr_r = Index_of[discr_r]; /* Index form */ if (discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0 ; i < NN-KK; i++) { if(b[i] != A0) t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; else t[i+1] = lambda[i+1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= NN-KK; i++) b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); } else { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } COPY(lambda,t,NN-KK+1); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for(i=0;i<NN-KK+1;i++){ lambda[i] = Index_of[lambda[i]]; if(lambda[i] != A0) deg_lambda = i; } /* * Find roots of the error+erasure locator polynomial by Chien * Search */ COPY(®[1],&lambda[1],NN-KK); count = 0; /* Number of roots of lambda(x) */ for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { q = 1; for (j = deg_lambda; j > 0; j--){ if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } } if (q != 0) continue; /* store root (index-form) and error location number */ root[count] = i; loc[count] = k; /* If we've already found max possible roots, * abort the search to save time */ if(++count == deg_lambda) break; } if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ count = -1; goto finish; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ deg_omega = 0; for (i = 0; i < NN-KK;i++){ tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(;j >= 0; j--){ if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; } if(tmp != 0) deg_omega = i; omega[i] = Index_of[tmp]; } omega[NN-KK] = A0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; } num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != A0) den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; } if (den == 0) { #if DEBUG_ECC >= 1 printf("\n ERROR: denominator = 0\n"); #endif /* Convert to dual- basis */ count = -1; goto finish; } /* Apply error to data */ if (num1 != 0) { eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; } else { eras_val[j] = 0; } } finish: for(i=0;i<count;i++) eras_pos[i] = loc[i]; return count; } /***************************************************************************/ /* The DOC specific code begins here */ #define SECTOR_SIZE 512 /* The sector bytes are packed into NB_DATA MM bits words */ #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) /* * Correct the errors in 'sector[]' by using 'ecc1[]' which is the * content of the feedback shift register applyied to the sector and * the ECC. Return the number of errors corrected (and correct them in * sector), or -1 if error */ int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) { int parity, i, nb_errors; gf bb[NN - KK + 1]; gf error_val[NN-KK]; int error_pos[NN-KK], pos, bitpos, index, val; dtype *Alpha_to, *Index_of; /* init log and exp tables here to save memory. However, it is slower */ Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); if (!Alpha_to) return -1; Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); if (!Index_of) { kfree(Alpha_to); return -1; } generate_gf(Alpha_to, Index_of); parity = ecc1[1]; bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, error_val, error_pos, 0); if (nb_errors <= 0) goto the_end; /* correct the errors */ for(i=0;i<nb_errors;i++) { pos = error_pos[i]; if (pos >= NB_DATA && pos < KK) { nb_errors = -1; goto the_end; } if (pos < NB_DATA) { /* extract bit position (MSB first) */ pos = 10 * (NB_DATA - 1 - pos) - 6; /* now correct the following 10 bits. At most two bytes can be modified since pos is even */ index = (pos >> 3) ^ 1; bitpos = pos & 7; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = error_val[i] >> (2 + bitpos); parity ^= val; if (index < SECTOR_SIZE) sector[index] ^= val; } index = ((pos >> 3) + 1) ^ 1; bitpos = (bitpos + 10) & 7; if (bitpos == 0) bitpos = 8; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = error_val[i] << (8 - bitpos); parity ^= val; if (index < SECTOR_SIZE) sector[index] ^= val; } } } /* use parity to test extra errors */ if ((parity & 0xff) != 0) nb_errors = -1; the_end: kfree(Alpha_to); kfree(Index_of); return nb_errors; } EXPORT_SYMBOL_GPL(doc_decode_ecc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); |