Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | /* CPU control. * (C) 2001, 2002, 2003, 2004 Rusty Russell * * This code is licenced under the GPL. */ #include <linux/proc_fs.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/notifier.h> #include <linux/sched.h> #include <linux/unistd.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/stop_machine.h> #include <linux/mutex.h> /* * Represents all cpu's present in the system * In systems capable of hotplug, this map could dynamically grow * as new cpu's are detected in the system via any platform specific * method, such as ACPI for e.g. */ cpumask_t cpu_present_map __read_mostly; EXPORT_SYMBOL(cpu_present_map); #ifndef CONFIG_SMP /* * Represents all cpu's that are currently online. */ cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; EXPORT_SYMBOL(cpu_online_map); cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; EXPORT_SYMBOL(cpu_possible_map); #else /* CONFIG_SMP */ /* Serializes the updates to cpu_online_map, cpu_present_map */ static DEFINE_MUTEX(cpu_add_remove_lock); static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. * Should always be manipulated under cpu_add_remove_lock */ static int cpu_hotplug_disabled; static struct { struct task_struct *active_writer; struct mutex lock; /* Synchronizes accesses to refcount, */ /* * Also blocks the new readers during * an ongoing cpu hotplug operation. */ int refcount; } cpu_hotplug; void __init cpu_hotplug_init(void) { cpu_hotplug.active_writer = NULL; mutex_init(&cpu_hotplug.lock); cpu_hotplug.refcount = 0; } cpumask_t cpu_active_map; #ifdef CONFIG_HOTPLUG_CPU void get_online_cpus(void) { might_sleep(); if (cpu_hotplug.active_writer == current) return; mutex_lock(&cpu_hotplug.lock); cpu_hotplug.refcount++; mutex_unlock(&cpu_hotplug.lock); } EXPORT_SYMBOL_GPL(get_online_cpus); void put_online_cpus(void) { if (cpu_hotplug.active_writer == current) return; mutex_lock(&cpu_hotplug.lock); if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) wake_up_process(cpu_hotplug.active_writer); mutex_unlock(&cpu_hotplug.lock); } EXPORT_SYMBOL_GPL(put_online_cpus); #endif /* CONFIG_HOTPLUG_CPU */ /* * The following two API's must be used when attempting * to serialize the updates to cpu_online_map, cpu_present_map. */ void cpu_maps_update_begin(void) { mutex_lock(&cpu_add_remove_lock); } void cpu_maps_update_done(void) { mutex_unlock(&cpu_add_remove_lock); } /* * This ensures that the hotplug operation can begin only when the * refcount goes to zero. * * Note that during a cpu-hotplug operation, the new readers, if any, * will be blocked by the cpu_hotplug.lock * * Since cpu_hotplug_begin() is always called after invoking * cpu_maps_update_begin(), we can be sure that only one writer is active. * * Note that theoretically, there is a possibility of a livelock: * - Refcount goes to zero, last reader wakes up the sleeping * writer. * - Last reader unlocks the cpu_hotplug.lock. * - A new reader arrives at this moment, bumps up the refcount. * - The writer acquires the cpu_hotplug.lock finds the refcount * non zero and goes to sleep again. * * However, this is very difficult to achieve in practice since * get_online_cpus() not an api which is called all that often. * */ static void cpu_hotplug_begin(void) { cpu_hotplug.active_writer = current; for (;;) { mutex_lock(&cpu_hotplug.lock); if (likely(!cpu_hotplug.refcount)) break; __set_current_state(TASK_UNINTERRUPTIBLE); mutex_unlock(&cpu_hotplug.lock); schedule(); } } static void cpu_hotplug_done(void) { cpu_hotplug.active_writer = NULL; mutex_unlock(&cpu_hotplug.lock); } /* Need to know about CPUs going up/down? */ int __ref register_cpu_notifier(struct notifier_block *nb) { int ret; cpu_maps_update_begin(); ret = raw_notifier_chain_register(&cpu_chain, nb); cpu_maps_update_done(); return ret; } #ifdef CONFIG_HOTPLUG_CPU EXPORT_SYMBOL(register_cpu_notifier); void __ref unregister_cpu_notifier(struct notifier_block *nb) { cpu_maps_update_begin(); raw_notifier_chain_unregister(&cpu_chain, nb); cpu_maps_update_done(); } EXPORT_SYMBOL(unregister_cpu_notifier); static inline void check_for_tasks(int cpu) { struct task_struct *p; write_lock_irq(&tasklist_lock); for_each_process(p) { if (task_cpu(p) == cpu && (!cputime_eq(p->utime, cputime_zero) || !cputime_eq(p->stime, cputime_zero))) printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d\ (state = %ld, flags = %x) \n", p->comm, task_pid_nr(p), cpu, p->state, p->flags); } write_unlock_irq(&tasklist_lock); } struct take_cpu_down_param { unsigned long mod; void *hcpu; }; /* Take this CPU down. */ static int __ref take_cpu_down(void *_param) { struct take_cpu_down_param *param = _param; int err; raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, param->hcpu); /* Ensure this CPU doesn't handle any more interrupts. */ err = __cpu_disable(); if (err < 0) return err; /* Force idle task to run as soon as we yield: it should immediately notice cpu is offline and die quickly. */ sched_idle_next(); return 0; } /* Requires cpu_add_remove_lock to be held */ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) { int err, nr_calls = 0; cpumask_t old_allowed, tmp; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; struct take_cpu_down_param tcd_param = { .mod = mod, .hcpu = hcpu, }; if (num_online_cpus() == 1) return -EBUSY; if (!cpu_online(cpu)) return -EINVAL; cpu_hotplug_begin(); err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); if (err == NOTIFY_BAD) { nr_calls--; __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); printk("%s: attempt to take down CPU %u failed\n", __func__, cpu); err = -EINVAL; goto out_release; } /* Ensure that we are not runnable on dying cpu */ old_allowed = current->cpus_allowed; cpus_setall(tmp); cpu_clear(cpu, tmp); set_cpus_allowed_ptr(current, &tmp); tmp = cpumask_of_cpu(cpu); err = __stop_machine(take_cpu_down, &tcd_param, &tmp); if (err) { /* CPU didn't die: tell everyone. Can't complain. */ if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, hcpu) == NOTIFY_BAD) BUG(); goto out_allowed; } BUG_ON(cpu_online(cpu)); /* Wait for it to sleep (leaving idle task). */ while (!idle_cpu(cpu)) yield(); /* This actually kills the CPU. */ __cpu_die(cpu); /* CPU is completely dead: tell everyone. Too late to complain. */ if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod, hcpu) == NOTIFY_BAD) BUG(); check_for_tasks(cpu); out_allowed: set_cpus_allowed_ptr(current, &old_allowed); out_release: cpu_hotplug_done(); if (!err) { if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod, hcpu) == NOTIFY_BAD) BUG(); } return err; } int __ref cpu_down(unsigned int cpu) { int err = 0; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } cpu_clear(cpu, cpu_active_map); /* * Make sure the all cpus did the reschedule and are not * using stale version of the cpu_active_map. * This is not strictly necessary becuase stop_machine() * that we run down the line already provides the required * synchronization. But it's really a side effect and we do not * want to depend on the innards of the stop_machine here. */ synchronize_sched(); err = _cpu_down(cpu, 0); if (cpu_online(cpu)) cpu_set(cpu, cpu_active_map); out: cpu_maps_update_done(); return err; } EXPORT_SYMBOL(cpu_down); #endif /*CONFIG_HOTPLUG_CPU*/ /* Requires cpu_add_remove_lock to be held */ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) { int ret, nr_calls = 0; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; if (cpu_online(cpu) || !cpu_present(cpu)) return -EINVAL; cpu_hotplug_begin(); ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); if (ret == NOTIFY_BAD) { nr_calls--; printk("%s: attempt to bring up CPU %u failed\n", __func__, cpu); ret = -EINVAL; goto out_notify; } /* Arch-specific enabling code. */ ret = __cpu_up(cpu); if (ret != 0) goto out_notify; BUG_ON(!cpu_online(cpu)); cpu_set(cpu, cpu_active_map); /* Now call notifier in preparation. */ raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); out_notify: if (ret != 0) __raw_notifier_call_chain(&cpu_chain, CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); cpu_hotplug_done(); return ret; } int __cpuinit cpu_up(unsigned int cpu) { int err = 0; if (!cpu_isset(cpu, cpu_possible_map)) { printk(KERN_ERR "can't online cpu %d because it is not " "configured as may-hotadd at boot time\n", cpu); #if defined(CONFIG_IA64) || defined(CONFIG_X86_64) printk(KERN_ERR "please check additional_cpus= boot " "parameter\n"); #endif return -EINVAL; } cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } err = _cpu_up(cpu, 0); out: cpu_maps_update_done(); return err; } #ifdef CONFIG_PM_SLEEP_SMP static cpumask_t frozen_cpus; int disable_nonboot_cpus(void) { int cpu, first_cpu, error = 0; cpu_maps_update_begin(); first_cpu = first_cpu(cpu_online_map); /* We take down all of the non-boot CPUs in one shot to avoid races * with the userspace trying to use the CPU hotplug at the same time */ cpus_clear(frozen_cpus); printk("Disabling non-boot CPUs ...\n"); for_each_online_cpu(cpu) { if (cpu == first_cpu) continue; error = _cpu_down(cpu, 1); if (!error) { cpu_set(cpu, frozen_cpus); printk("CPU%d is down\n", cpu); } else { printk(KERN_ERR "Error taking CPU%d down: %d\n", cpu, error); break; } } if (!error) { BUG_ON(num_online_cpus() > 1); /* Make sure the CPUs won't be enabled by someone else */ cpu_hotplug_disabled = 1; } else { printk(KERN_ERR "Non-boot CPUs are not disabled\n"); } cpu_maps_update_done(); return error; } void __ref enable_nonboot_cpus(void) { int cpu, error; /* Allow everyone to use the CPU hotplug again */ cpu_maps_update_begin(); cpu_hotplug_disabled = 0; if (cpus_empty(frozen_cpus)) goto out; printk("Enabling non-boot CPUs ...\n"); for_each_cpu_mask_nr(cpu, frozen_cpus) { error = _cpu_up(cpu, 1); if (!error) { printk("CPU%d is up\n", cpu); continue; } printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); } cpus_clear(frozen_cpus); out: cpu_maps_update_done(); } #endif /* CONFIG_PM_SLEEP_SMP */ #endif /* CONFIG_SMP */ /* * cpu_bit_bitmap[] is a special, "compressed" data structure that * represents all NR_CPUS bits binary values of 1<<nr. * * It is used by cpumask_of_cpu() to get a constant address to a CPU * mask value that has a single bit set only. */ /* cpu_bit_bitmap[0] is empty - so we can back into it */ #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x) #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { MASK_DECLARE_8(0), MASK_DECLARE_8(8), MASK_DECLARE_8(16), MASK_DECLARE_8(24), #if BITS_PER_LONG > 32 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56), #endif }; EXPORT_SYMBOL_GPL(cpu_bit_bitmap); |