Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 | ftrace - Function Tracer ======================== Copyright 2008 Red Hat Inc. Author: Steven Rostedt <srostedt@redhat.com> License: The GNU Free Documentation License, Version 1.2 (dual licensed under the GPL v2) Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, John Kacur, and David Teigland. Written for: 2.6.27-rc1 Introduction ------------ Ftrace is an internal tracer designed to help out developers and designers of systems to find what is going on inside the kernel. It can be used for debugging or analyzing latencies and performance issues that take place outside of user-space. Although ftrace is the function tracer, it also includes an infrastructure that allows for other types of tracing. Some of the tracers that are currently in ftrace include a tracer to trace context switches, the time it takes for a high priority task to run after it was woken up, the time interrupts are disabled, and more (ftrace allows for tracer plugins, which means that the list of tracers can always grow). The File System --------------- Ftrace uses the debugfs file system to hold the control files as well as the files to display output. To mount the debugfs system: # mkdir /debug # mount -t debugfs nodev /debug (Note: it is more common to mount at /sys/kernel/debug, but for simplicity this document will use /debug) That's it! (assuming that you have ftrace configured into your kernel) After mounting the debugfs, you can see a directory called "tracing". This directory contains the control and output files of ftrace. Here is a list of some of the key files: Note: all time values are in microseconds. current_tracer : This is used to set or display the current tracer that is configured. available_tracers : This holds the different types of tracers that have been compiled into the kernel. The tracers listed here can be configured by echoing their name into current_tracer. tracing_enabled : This sets or displays whether the current_tracer is activated and tracing or not. Echo 0 into this file to disable the tracer or 1 to enable it. trace : This file holds the output of the trace in a human readable format (described below). latency_trace : This file shows the same trace but the information is organized more to display possible latencies in the system (described below). trace_pipe : The output is the same as the "trace" file but this file is meant to be streamed with live tracing. Reads from this file will block until new data is retrieved. Unlike the "trace" and "latency_trace" files, this file is a consumer. This means reading from this file causes sequential reads to display more current data. Once data is read from this file, it is consumed, and will not be read again with a sequential read. The "trace" and "latency_trace" files are static, and if the tracer is not adding more data, they will display the same information every time they are read. iter_ctrl : This file lets the user control the amount of data that is displayed in one of the above output files. trace_max_latency : Some of the tracers record the max latency. For example, the time interrupts are disabled. This time is saved in this file. The max trace will also be stored, and displayed by either "trace" or "latency_trace". A new max trace will only be recorded if the latency is greater than the value in this file. (in microseconds) trace_entries : This sets or displays the number of trace entries each CPU buffer can hold. The tracer buffers are the same size for each CPU. The displayed number is the size of the CPU buffer and not total size. The trace buffers are allocated in pages (blocks of memory that the kernel uses for allocation, usually 4 KB in size). Since each entry is smaller than a page, if the last allocated page has room for more entries than were requested, the rest of the page is used to allocate entries. This can only be updated when the current_tracer is set to "none". NOTE: It is planned on changing the allocated buffers from being the number of possible CPUS to the number of online CPUS. tracing_cpumask : This is a mask that lets the user only trace on specified CPUS. The format is a hex string representing the CPUS. set_ftrace_filter : When dynamic ftrace is configured in (see the section below "dynamic ftrace"), the code is dynamically modified (code text rewrite) to disable calling of the function profiler (mcount). This lets tracing be configured in with practically no overhead in performance. This also has a side effect of enabling or disabling specific functions to be traced. Echoing names of functions into this file will limit the trace to only those functions. set_ftrace_notrace: This has an effect opposite to that of set_ftrace_filter. Any function that is added here will not be traced. If a function exists in both set_ftrace_filter and set_ftrace_notrace, the function will _not_ be traced. available_filter_functions : When a function is encountered the first time by the dynamic tracer, it is recorded and later the call is converted into a nop. This file lists the functions that have been recorded by the dynamic tracer and these functions can be used to set the ftrace filter by the above "set_ftrace_filter" file. (See the section "dynamic ftrace" below for more details). The Tracers ----------- Here is the list of current tracers that may be configured. ftrace - function tracer that uses mcount to trace all functions. sched_switch - traces the context switches between tasks. irqsoff - traces the areas that disable interrupts and saves the trace with the longest max latency. See tracing_max_latency. When a new max is recorded, it replaces the old trace. It is best to view this trace via the latency_trace file. preemptoff - Similar to irqsoff but traces and records the amount of time for which preemption is disabled. preemptirqsoff - Similar to irqsoff and preemptoff, but traces and records the largest time for which irqs and/or preemption is disabled. wakeup - Traces and records the max latency that it takes for the highest priority task to get scheduled after it has been woken up. none - This is not a tracer. To remove all tracers from tracing simply echo "none" into current_tracer. Examples of using the tracer ---------------------------- Here are typical examples of using the tracers when controlling them only with the debugfs interface (without using any user-land utilities). Output format: -------------- Here is an example of the output format of the file "trace" -------- # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | bash-4251 [01] 10152.583854: path_put <-path_walk bash-4251 [01] 10152.583855: dput <-path_put bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput -------- A header is printed with the tracer name that is represented by the trace. In this case the tracer is "ftrace". Then a header showing the format. Task name "bash", the task PID "4251", the CPU that it was running on "01", the timestamp in <secs>.<usecs> format, the function name that was traced "path_put" and the parent function that called this function "path_walk". The timestamp is the time at which the function was entered. The sched_switch tracer also includes tracing of task wakeups and context switches. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R Wake ups are represented by a "+" and the context switches are shown as "==>". The format is: Context switches: Previous task Next Task <pid>:<prio>:<state> ==> <pid>:<prio>:<state> Wake ups: Current task Task waking up <pid>:<prio>:<state> + <pid>:<prio>:<state> The prio is the internal kernel priority, which is the inverse of the priority that is usually displayed by user-space tools. Zero represents the highest priority (99). Prio 100 starts the "nice" priorities with 100 being equal to nice -20 and 139 being nice 19. The prio "140" is reserved for the idle task which is the lowest priority thread (pid 0). Latency trace format -------------------- For traces that display latency times, the latency_trace file gives somewhat more information to see why a latency happened. Here is a typical trace. # tracer: irqsoff # irqsoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: apic_timer_interrupt => ended at: do_softirq # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / <idle>-0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt) <idle>-0 0d.s. 97us : __do_softirq (do_softirq) <idle>-0 0d.s1 98us : trace_hardirqs_on (do_softirq) This shows that the current tracer is "irqsoff" tracing the time for which interrupts were disabled. It gives the trace version and the version of the kernel upon which this was executed on (2.6.26-rc8). Then it displays the max latency in microsecs (97 us). The number of trace entries displayed and the total number recorded (both are three: #3/3). The type of preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero and are reserved for later use. #P is the number of online CPUS (#P:2). The task is the process that was running when the latency occurred. (swapper pid: 0). The start and stop (the functions in which the interrupts were disabled and enabled respectively) that caused the latencies: apic_timer_interrupt is where the interrupts were disabled. do_softirq is where they were enabled again. The next lines after the header are the trace itself. The header explains which is which. cmd: The name of the process in the trace. pid: The PID of that process. CPU#: The CPU which the process was running on. irqs-off: 'd' interrupts are disabled. '.' otherwise. need-resched: 'N' task need_resched is set, '.' otherwise. hardirq/softirq: 'H' - hard irq occurred inside a softirq. 'h' - hard irq is running 's' - soft irq is running '.' - normal context. preempt-depth: The level of preempt_disabled The above is mostly meaningful for kernel developers. time: This differs from the trace file output. The trace file output includes an absolute timestamp. The timestamp used by the latency_trace file is relative to the start of the trace. delay: This is just to help catch your eye a bit better. And needs to be fixed to be only relative to the same CPU. The marks are determined by the difference between this current trace and the next trace. '!' - greater than preempt_mark_thresh (default 100) '+' - greater than 1 microsecond ' ' - less than or equal to 1 microsecond. The rest is the same as the 'trace' file. iter_ctrl --------- The iter_ctrl file is used to control what gets printed in the trace output. To see what is available, simply cat the file: cat /debug/tracing/iter_ctrl print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \ noblock nostacktrace nosched-tree To disable one of the options, echo in the option prepended with "no". echo noprint-parent > /debug/tracing/iter_ctrl To enable an option, leave off the "no". echo sym-offset > /debug/tracing/iter_ctrl Here are the available options: print-parent - On function traces, display the calling function as well as the function being traced. print-parent: bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul noprint-parent: bash-4000 [01] 1477.606694: simple_strtoul sym-offset - Display not only the function name, but also the offset in the function. For example, instead of seeing just "ktime_get", you will see "ktime_get+0xb/0x20". sym-offset: bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0 sym-addr - this will also display the function address as well as the function name. sym-addr: bash-4000 [01] 1477.606694: simple_strtoul <c0339346> verbose - This deals with the latency_trace file. bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \ (+0.000ms): simple_strtoul (strict_strtoul) raw - This will display raw numbers. This option is best for use with user applications that can translate the raw numbers better than having it done in the kernel. hex - Similar to raw, but the numbers will be in a hexadecimal format. bin - This will print out the formats in raw binary. block - TBD (needs update) stacktrace - This is one of the options that changes the trace itself. When a trace is recorded, so is the stack of functions. This allows for back traces of trace sites. sched-tree - TBD (any users??) sched_switch ------------ This tracer simply records schedule switches. Here is an example of how to use it. # echo sched_switch > /debug/tracing/current_tracer # echo 1 > /debug/tracing/tracing_enabled # sleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace # tracer: sched_switch # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R <idle>-0 [00] 240.132589: 0:140:R + 4:115:S <idle>-0 [00] 240.132591: 0:140:R ==> 4:115:R ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R <idle>-0 [00] 240.132598: 0:140:R + 4:115:S <idle>-0 [00] 240.132599: 0:140:R ==> 4:115:R ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R [...] As we have discussed previously about this format, the header shows the name of the trace and points to the options. The "FUNCTION" is a misnomer since here it represents the wake ups and context switches. The sched_switch file only lists the wake ups (represented with '+') and context switches ('==>') with the previous task or current task first followed by the next task or task waking up. The format for both of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO is the inverse of the actual priority with zero (0) being the highest priority and the nice values starting at 100 (nice -20). Below is a quick chart to map the kernel priority to user land priorities. Kernel priority: 0 to 99 ==> user RT priority 99 to 0 Kernel priority: 100 to 139 ==> user nice -20 to 19 Kernel priority: 140 ==> idle task priority The task states are: R - running : wants to run, may not actually be running S - sleep : process is waiting to be woken up (handles signals) D - disk sleep (uninterruptible sleep) : process must be woken up (ignores signals) T - stopped : process suspended t - traced : process is being traced (with something like gdb) Z - zombie : process waiting to be cleaned up X - unknown ftrace_enabled -------------- The following tracers (listed below) give different output depending on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled, one can either use the sysctl function or set it via the proc file system interface. sysctl kernel.ftrace_enabled=1 or echo 1 > /proc/sys/kernel/ftrace_enabled To disable ftrace_enabled simply replace the '1' with '0' in the above commands. When ftrace_enabled is set the tracers will also record the functions that are within the trace. The descriptions of the tracers will also show an example with ftrace enabled. irqsoff ------- When interrupts are disabled, the CPU can not react to any other external event (besides NMIs and SMIs). This prevents the timer interrupt from triggering or the mouse interrupt from letting the kernel know of a new mouse event. The result is a latency with the reaction time. The irqsoff tracer tracks the time for which interrupts are disabled. When a new maximum latency is hit, the tracer saves the trace leading up to that latency point so that every time a new maximum is reached, the old saved trace is discarded and the new trace is saved. To reset the maximum, echo 0 into tracing_max_latency. Here is an example: # echo irqsoff > /debug/tracing/current_tracer # echo 0 > /debug/tracing/tracing_max_latency # echo 1 > /debug/tracing/tracing_enabled # ls -ltr [...] # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/latency_trace # tracer: irqsoff # irqsoff latency trace v1.1.5 on 2.6.26 -------------------------------------------------------------------- latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: sys_setpgid => ended at: sys_setpgid # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / bash-3730 1d... 0us : _write_lock_irq (sys_setpgid) bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid) bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid) Here we see that that we had a latency of 12 microsecs (which is very good). The _write_lock_irq in sys_setpgid disabled interrupts. The difference between the 12 and the displayed timestamp 14us occurred because the clock was incremented between the time of recording the max latency and the time of recording the function that had that latency. Note the above example had ftrace_enabled not set. If we set the ftrace_enabled, we get a much larger output: # tracer: irqsoff # irqsoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: __alloc_pages_internal => ended at: __alloc_pages_internal # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal) ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist) ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk) ls-4339 0d..1 4us : add_preempt_count (_spin_lock) ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk) ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue) ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest) ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk) ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue) ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest) ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk) ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue) [...] ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue) ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest) ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk) ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue) ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest) ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk) ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock) ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal) ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal) Here we traced a 50 microsecond latency. But we also see all the functions that were called during that time. Note that by enabling function tracing, we incur an added overhead. This overhead may extend the latency times. But nevertheless, this trace has provided some very helpful debugging information. preemptoff ---------- When preemption is disabled, we may be able to receive interrupts but the task cannot be preempted and a higher priority task must wait for preemption to be enabled again before it can preempt a lower priority task. The preemptoff tracer traces the places that disable preemption. Like the irqsoff tracer, it records the maximum latency for which preemption was disabled. The control of preemptoff tracer is much like the irqsoff tracer. # echo preemptoff > /debug/tracing/current_tracer # echo 0 > /debug/tracing/tracing_max_latency # echo 1 > /debug/tracing/tracing_enabled # ls -ltr [...] # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/latency_trace # tracer: preemptoff # preemptoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: do_IRQ => ended at: __do_softirq # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / sshd-4261 0d.h. 0us+: irq_enter (do_IRQ) sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq) sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq) This has some more changes. Preemption was disabled when an interrupt came in (notice the 'h'), and was enabled while doing a softirq. (notice the 's'). But we also see that interrupts have been disabled when entering the preempt off section and leaving it (the 'd'). We do not know if interrupts were enabled in the mean time. # tracer: preemptoff # preemptoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: remove_wait_queue => ended at: __do_softirq # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue) sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue) sshd-4261 0d..1 2us : do_IRQ (common_interrupt) sshd-4261 0d..1 2us : irq_enter (do_IRQ) sshd-4261 0d..1 2us : idle_cpu (irq_enter) sshd-4261 0d..1 3us : add_preempt_count (irq_enter) sshd-4261 0d.h1 3us : idle_cpu (irq_enter) sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ) [...] sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock) sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq) sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq) sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq) sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock) sshd-4261 0d.h1 14us : irq_exit (do_IRQ) sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit) sshd-4261 0d..2 15us : do_softirq (irq_exit) sshd-4261 0d... 15us : __do_softirq (do_softirq) sshd-4261 0d... 16us : __local_bh_disable (__do_softirq) sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable) sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable) sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable) sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable) [...] sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable) sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable) sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable) sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable) sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip) sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip) sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable) sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable) [...] sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq) sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq) The above is an example of the preemptoff trace with ftrace_enabled set. Here we see that interrupts were disabled the entire time. The irq_enter code lets us know that we entered an interrupt 'h'. Before that, the functions being traced still show that it is not in an interrupt, but we can see from the functions themselves that this is not the case. Notice that __do_softirq when called does not have a preempt_count. It may seem that we missed a preempt enabling. What really happened is that the preempt count is held on the thread's stack and we switched to the softirq stack (4K stacks in effect). The code does not copy the preempt count, but because interrupts are disabled, we do not need to worry about it. Having a tracer like this is good for letting people know what really happens inside the kernel. preemptirqsoff -------------- Knowing the locations that have interrupts disabled or preemption disabled for the longest times is helpful. But sometimes we would like to know when either preemption and/or interrupts are disabled. Consider the following code: local_irq_disable(); call_function_with_irqs_off(); preempt_disable(); call_function_with_irqs_and_preemption_off(); local_irq_enable(); call_function_with_preemption_off(); preempt_enable(); The irqsoff tracer will record the total length of call_function_with_irqs_off() and call_function_with_irqs_and_preemption_off(). The preemptoff tracer will record the total length of call_function_with_irqs_and_preemption_off() and call_function_with_preemption_off(). But neither will trace the time that interrupts and/or preemption is disabled. This total time is the time that we can not schedule. To record this time, use the preemptirqsoff tracer. Again, using this trace is much like the irqsoff and preemptoff tracers. # echo preemptirqsoff > /debug/tracing/current_tracer # echo 0 > /debug/tracing/tracing_max_latency # echo 1 > /debug/tracing/tracing_enabled # ls -ltr [...] # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/latency_trace # tracer: preemptirqsoff # preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: apic_timer_interrupt => ended at: __do_softirq # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt) ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq) ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq) The trace_hardirqs_off_thunk is called from assembly on x86 when interrupts are disabled in the assembly code. Without the function tracing, we do not know if interrupts were enabled within the preemption points. We do see that it started with preemption enabled. Here is a trace with ftrace_enabled set: # tracer: preemptirqsoff # preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: write_chan => ended at: __do_softirq # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / ls-4473 0.N.. 0us : preempt_schedule (write_chan) ls-4473 0dN.1 1us : _spin_lock (schedule) ls-4473 0dN.1 2us : add_preempt_count (_spin_lock) ls-4473 0d..2 2us : put_prev_task_fair (schedule) [...] ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts) ls-4473 0d..2 13us : __switch_to (schedule) sshd-4261 0d..2 14us : finish_task_switch (schedule) sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch) sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave) sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set) sshd-4261 0d..2 16us : do_IRQ (common_interrupt) sshd-4261 0d..2 17us : irq_enter (do_IRQ) sshd-4261 0d..2 17us : idle_cpu (irq_enter) sshd-4261 0d..2 18us : add_preempt_count (irq_enter) sshd-4261 0d.h2 18us : idle_cpu (irq_enter) sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ) sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq) sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock) sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq) sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock) [...] sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq) sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock) sshd-4261 0d.h2 29us : irq_exit (do_IRQ) sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit) sshd-4261 0d..3 30us : do_softirq (irq_exit) sshd-4261 0d... 30us : __do_softirq (do_softirq) sshd-4261 0d... 31us : __local_bh_disable (__do_softirq) sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable) sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable) [...] sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip) sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip) sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt) sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt) sshd-4261 0d.s3 45us : idle_cpu (irq_enter) sshd-4261 0d.s3 46us : add_preempt_count (irq_enter) sshd-4261 0d.H3 46us : idle_cpu (irq_enter) sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt) sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt) [...] sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt) sshd-4261 0d.H3 82us : ktime_get (tick_program_event) sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get) sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts) sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts) sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event) sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event) sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt) sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit) sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit) sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable) [...] sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action) sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq) sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq) sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq) sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable) sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq) sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq) This is a very interesting trace. It started with the preemption of the ls task. We see that the task had the "need_resched" bit set via the 'N' in the trace. Interrupts were disabled before the spin_lock at the beginning of the trace. We see that a schedule took place to run sshd. When the interrupts were enabled, we took an interrupt. On return from the interrupt handler, the softirq ran. We took another interrupt while running the softirq as we see from the capital 'H'. wakeup ------ In a Real-Time environment it is very important to know the wakeup time it takes for the highest priority task that is woken up to the time that it executes. This is also known as "schedule latency". I stress the point that this is about RT tasks. It is also important to know the scheduling latency of non-RT tasks, but the average schedule latency is better for non-RT tasks. Tools like LatencyTop are more appropriate for such measurements. Real-Time environments are interested in the worst case latency. That is the longest latency it takes for something to happen, and not the average. We can have a very fast scheduler that may only have a large latency once in a while, but that would not work well with Real-Time tasks. The wakeup tracer was designed to record the worst case wakeups of RT tasks. Non-RT tasks are not recorded because the tracer only records one worst case and tracing non-RT tasks that are unpredictable will overwrite the worst case latency of RT tasks. Since this tracer only deals with RT tasks, we will run this slightly differently than we did with the previous tracers. Instead of performing an 'ls', we will run 'sleep 1' under 'chrt' which changes the priority of the task. # echo wakeup > /debug/tracing/current_tracer # echo 0 > /debug/tracing/tracing_max_latency # echo 1 > /debug/tracing/tracing_enabled # chrt -f 5 sleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/latency_trace # tracer: wakeup # wakeup latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5) ----------------- # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / <idle>-0 1d.h4 0us+: try_to_wake_up (wake_up_process) <idle>-0 1d..4 4us : schedule (cpu_idle) Running this on an idle system, we see that it only took 4 microseconds to perform the task switch. Note, since the trace marker in the schedule is before the actual "switch", we stop the tracing when the recorded task is about to schedule in. This may change if we add a new marker at the end of the scheduler. Notice that the recorded task is 'sleep' with the PID of 4901 and it has an rt_prio of 5. This priority is user-space priority and not the internal kernel priority. The policy is 1 for SCHED_FIFO and 2 for SCHED_RR. Doing the same with chrt -r 5 and ftrace_enabled set. # tracer: wakeup # wakeup latency trace v1.1.5 on 2.6.26-rc8 -------------------------------------------------------------------- latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5) ----------------- # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| / # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process) ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb) ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up) ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup) ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr) ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup) ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up) ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up) [...] ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt) ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit) ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit) ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq) [...] ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks) ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq) ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable) ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd) ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd) ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched) ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched) ksoftirq-7 1.N.2 33us : schedule (__cond_resched) ksoftirq-7 1.N.2 33us : add_preempt_count (schedule) ksoftirq-7 1.N.3 34us : hrtick_clear (schedule) ksoftirq-7 1dN.3 35us : _spin_lock (schedule) ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock) ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule) ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair) [...] ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline) ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock) ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline) ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock) ksoftirq-7 1d..4 50us : schedule (__cond_resched) The interrupt went off while running ksoftirqd. This task runs at SCHED_OTHER. Why did not we see the 'N' set early? This may be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks configured, the interrupt and softirq run with their own stack. Some information is held on the top of the task's stack (need_resched and preempt_count are both stored there). The setting of the NEED_RESCHED bit is done directly to the task's stack, but the reading of the NEED_RESCHED is done by looking at the current stack, which in this case is the stack for the hard interrupt. This hides the fact that NEED_RESCHED has been set. We do not see the 'N' until we switch back to the task's assigned stack. ftrace ------ ftrace is not only the name of the tracing infrastructure, but it is also a name of one of the tracers. The tracer is the function tracer. Enabling the function tracer can be done from the debug file system. Make sure the ftrace_enabled is set otherwise this tracer is a nop. # sysctl kernel.ftrace_enabled=1 # echo ftrace > /debug/tracing/current_tracer # echo 1 > /debug/tracing/tracing_enabled # usleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | bash-4003 [00] 123.638713: finish_task_switch <-schedule bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq bash-4003 [00] 123.638715: hrtick_set <-schedule bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set bash-4003 [00] 123.638718: sub_preempt_count <-schedule bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq [...] Note: ftrace uses ring buffers to store the above entries. The newest data may overwrite the oldest data. Sometimes using echo to stop the trace is not sufficient because the tracing could have overwritten the data that you wanted to record. For this reason, it is sometimes better to disable tracing directly from a program. This allows you to stop the tracing at the point that you hit the part that you are interested in. To disable the tracing directly from a C program, something like following code snippet can be used: int trace_fd; [...] int main(int argc, char *argv[]) { [...] trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY); [...] if (condition_hit()) { write(trace_fd, "0", 1); } [...] } Note: Here we hard coded the path name. The debugfs mount is not guaranteed to be at /debug (and is more commonly at /sys/kernel/debug). For simple one time traces, the above is sufficent. For anything else, a search through /proc/mounts may be needed to find where the debugfs file-system is mounted. dynamic ftrace -------------- If CONFIG_DYNAMIC_FTRACE is set, the system will run with virtually no overhead when function tracing is disabled. The way this works is the mcount function call (placed at the start of every kernel function, produced by the -pg switch in gcc), starts of pointing to a simple return. (Enabling FTRACE will include the -pg switch in the compiling of the kernel.) When dynamic ftrace is initialized, it calls kstop_machine to make the machine act like a uniprocessor so that it can freely modify code without worrying about other processors executing that same code. At initialization, the mcount calls are changed to call a "record_ip" function. After this, the first time a kernel function is called, it has the calling address saved in a hash table. Later on the ftraced kernel thread is awoken and will again call kstop_machine if new functions have been recorded. The ftraced thread will change all calls to mcount to "nop". Just calling mcount and having mcount return has shown a 10% overhead. By converting it to a nop, there is no measurable overhead to the system. One special side-effect to the recording of the functions being traced is that we can now selectively choose which functions we wish to trace and which ones we want the mcount calls to remain as nops. Two files are used, one for enabling and one for disabling the tracing of specified functions. They are: set_ftrace_filter and set_ftrace_notrace A list of available functions that you can add to these files is listed in: available_filter_functions # cat /debug/tracing/available_filter_functions put_prev_task_idle kmem_cache_create pick_next_task_rt get_online_cpus pick_next_task_fair mutex_lock [...] If I am only interested in sys_nanosleep and hrtimer_interrupt: # echo sys_nanosleep hrtimer_interrupt \ > /debug/tracing/set_ftrace_filter # echo ftrace > /debug/tracing/current_tracer # echo 1 > /debug/tracing/tracing_enabled # usleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call <idle>-0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt To see which functions are being traced, you can cat the file: # cat /debug/tracing/set_ftrace_filter hrtimer_interrupt sys_nanosleep Perhaps this is not enough. The filters also allow simple wild cards. Only the following are currently available <match>* - will match functions that begin with <match> *<match> - will match functions that end with <match> *<match>* - will match functions that have <match> in it These are the only wild cards which are supported. <match>*<match> will not work. # echo hrtimer_* > /debug/tracing/set_ftrace_filter Produces: # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | bash-4003 [00] 1480.611794: hrtimer_init <-copy_process bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel <idle>-0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt <idle>-0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt <idle>-0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt <idle>-0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt <idle>-0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt Notice that we lost the sys_nanosleep. # cat /debug/tracing/set_ftrace_filter hrtimer_run_queues hrtimer_run_pending hrtimer_init hrtimer_cancel hrtimer_try_to_cancel hrtimer_forward hrtimer_start hrtimer_reprogram hrtimer_force_reprogram hrtimer_get_next_event hrtimer_interrupt hrtimer_nanosleep hrtimer_wakeup hrtimer_get_remaining hrtimer_get_res hrtimer_init_sleeper This is because the '>' and '>>' act just like they do in bash. To rewrite the filters, use '>' To append to the filters, use '>>' To clear out a filter so that all functions will be recorded again: # echo > /debug/tracing/set_ftrace_filter # cat /debug/tracing/set_ftrace_filter # Again, now we want to append. # echo sys_nanosleep > /debug/tracing/set_ftrace_filter # cat /debug/tracing/set_ftrace_filter sys_nanosleep # echo hrtimer_* >> /debug/tracing/set_ftrace_filter # cat /debug/tracing/set_ftrace_filter hrtimer_run_queues hrtimer_run_pending hrtimer_init hrtimer_cancel hrtimer_try_to_cancel hrtimer_forward hrtimer_start hrtimer_reprogram hrtimer_force_reprogram hrtimer_get_next_event hrtimer_interrupt sys_nanosleep hrtimer_nanosleep hrtimer_wakeup hrtimer_get_remaining hrtimer_get_res hrtimer_init_sleeper The set_ftrace_notrace prevents those functions from being traced. # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace Produces: # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | bash-4043 [01] 115.281644: finish_task_switch <-schedule bash-4043 [01] 115.281645: hrtick_set <-schedule bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop bash-4043 [01] 115.281648: wake_up_process <-kthread_stop bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process We can see that there's no more lock or preempt tracing. ftraced ------- As mentioned above, when dynamic ftrace is configured in, a kernel thread wakes up once a second and checks to see if there are mcount calls that need to be converted into nops. If there are not any, then it simply goes back to sleep. But if there are some, it will call kstop_machine to convert the calls to nops. There may be a case in which you do not want this added latency. Perhaps you are doing some audio recording and this activity might cause skips in the playback. There is an interface to disable and enable the "ftraced" kernel thread. # echo 0 > /debug/tracing/ftraced_enabled This will disable the calling of kstop_machine to update the mcount calls to nops. Remember that there is a large overhead to calling mcount. Without this kernel thread, that overhead will exist. If there are recorded calls to mcount, any write to the ftraced_enabled file will cause the kstop_machine to run. This means that a user can manually perform the updates when they want to by simply echoing a '0' into the ftraced_enabled file. The updates are also done at the beginning of enabling a tracer that uses ftrace function recording. trace_pipe ---------- The trace_pipe outputs the same content as the trace file, but the effect on the tracing is different. Every read from trace_pipe is consumed. This means that subsequent reads will be different. The trace is live. # echo ftrace > /debug/tracing/current_tracer # cat /debug/tracing/trace_pipe > /tmp/trace.out & [1] 4153 # echo 1 > /debug/tracing/tracing_enabled # usleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace # tracer: ftrace # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | # # cat /tmp/trace.out bash-4043 [00] 41.267106: finish_task_switch <-schedule bash-4043 [00] 41.267106: hrtick_set <-schedule bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop bash-4043 [00] 41.267110: wake_up_process <-kthread_stop bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up Note, reading the trace_pipe file will block until more input is added. By changing the tracer, trace_pipe will issue an EOF. We needed to set the ftrace tracer _before_ cating the trace_pipe file. trace entries ------------- Having too much or not enough data can be troublesome in diagnosing an issue in the kernel. The file trace_entries is used to modify the size of the internal trace buffers. The number listed is the number of entries that can be recorded per CPU. To know the full size, multiply the number of possible CPUS with the number of entries. # cat /debug/tracing/trace_entries 65620 Note, to modify this, you must have tracing completely disabled. To do that, echo "none" into the current_tracer. If the current_tracer is not set to "none", an EINVAL error will be returned. # echo none > /debug/tracing/current_tracer # echo 100000 > /debug/tracing/trace_entries # cat /debug/tracing/trace_entries 100045 Notice that we echoed in 100,000 but the size is 100,045. The entries are held in individual pages. It allocates the number of pages it takes to fulfill the request. If more entries may fit on the last page then they will be added. # echo 1 > /debug/tracing/trace_entries # cat /debug/tracing/trace_entries 85 This shows us that 85 entries can fit in a single page. The number of pages which will be allocated is limited to a percentage of available memory. Allocating too much will produce an error. # echo 1000000000000 > /debug/tracing/trace_entries -bash: echo: write error: Cannot allocate memory # cat /debug/tracing/trace_entries 85 |