Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 | /* * Anticipatory & deadline i/o scheduler. * * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk> * Nick Piggin <nickpiggin@yahoo.com.au> * */ #include <linux/kernel.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/elevator.h> #include <linux/bio.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/interrupt.h> #define REQ_SYNC 1 #define REQ_ASYNC 0 /* * See Documentation/block/as-iosched.txt */ /* * max time before a read is submitted. */ #define default_read_expire (HZ / 8) /* * ditto for writes, these limits are not hard, even * if the disk is capable of satisfying them. */ #define default_write_expire (HZ / 4) /* * read_batch_expire describes how long we will allow a stream of reads to * persist before looking to see whether it is time to switch over to writes. */ #define default_read_batch_expire (HZ / 2) /* * write_batch_expire describes how long we want a stream of writes to run for. * This is not a hard limit, but a target we set for the auto-tuning thingy. * See, the problem is: we can send a lot of writes to disk cache / TCQ in * a short amount of time... */ #define default_write_batch_expire (HZ / 8) /* * max time we may wait to anticipate a read (default around 6ms) */ #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) /* * Keep track of up to 20ms thinktimes. We can go as big as we like here, * however huge values tend to interfere and not decay fast enough. A program * might be in a non-io phase of operation. Waiting on user input for example, * or doing a lengthy computation. A small penalty can be justified there, and * will still catch out those processes that constantly have large thinktimes. */ #define MAX_THINKTIME (HZ/50UL) /* Bits in as_io_context.state */ enum as_io_states { AS_TASK_RUNNING=0, /* Process has not exited */ AS_TASK_IOSTARTED, /* Process has started some IO */ AS_TASK_IORUNNING, /* Process has completed some IO */ }; enum anticipation_status { ANTIC_OFF=0, /* Not anticipating (normal operation) */ ANTIC_WAIT_REQ, /* The last read has not yet completed */ ANTIC_WAIT_NEXT, /* Currently anticipating a request vs last read (which has completed) */ ANTIC_FINISHED, /* Anticipating but have found a candidate * or timed out */ }; struct as_data { /* * run time data */ struct request_queue *q; /* the "owner" queue */ /* * requests (as_rq s) are present on both sort_list and fifo_list */ struct rb_root sort_list[2]; struct list_head fifo_list[2]; struct request *next_rq[2]; /* next in sort order */ sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ unsigned long exit_prob; /* probability a task will exit while being waited on */ unsigned long exit_no_coop; /* probablility an exited task will not be part of a later cooperating request */ unsigned long new_ttime_total; /* mean thinktime on new proc */ unsigned long new_ttime_mean; u64 new_seek_total; /* mean seek on new proc */ sector_t new_seek_mean; unsigned long current_batch_expires; unsigned long last_check_fifo[2]; int changed_batch; /* 1: waiting for old batch to end */ int new_batch; /* 1: waiting on first read complete */ int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ int write_batch_count; /* max # of reqs in a write batch */ int current_write_count; /* how many requests left this batch */ int write_batch_idled; /* has the write batch gone idle? */ enum anticipation_status antic_status; unsigned long antic_start; /* jiffies: when it started */ struct timer_list antic_timer; /* anticipatory scheduling timer */ struct work_struct antic_work; /* Deferred unplugging */ struct io_context *io_context; /* Identify the expected process */ int ioc_finished; /* IO associated with io_context is finished */ int nr_dispatched; /* * settings that change how the i/o scheduler behaves */ unsigned long fifo_expire[2]; unsigned long batch_expire[2]; unsigned long antic_expire; }; /* * per-request data. */ enum arq_state { AS_RQ_NEW=0, /* New - not referenced and not on any lists */ AS_RQ_QUEUED, /* In the request queue. It belongs to the scheduler */ AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the driver now */ AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ AS_RQ_REMOVED, AS_RQ_MERGED, AS_RQ_POSTSCHED, /* when they shouldn't be */ }; #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private) #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2) #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state) static DEFINE_PER_CPU(unsigned long, ioc_count); static struct completion *ioc_gone; static void as_move_to_dispatch(struct as_data *ad, struct request *rq); static void as_antic_stop(struct as_data *ad); /* * IO Context helper functions */ /* Called to deallocate the as_io_context */ static void free_as_io_context(struct as_io_context *aic) { kfree(aic); elv_ioc_count_dec(ioc_count); if (ioc_gone && !elv_ioc_count_read(ioc_count)) complete(ioc_gone); } static void as_trim(struct io_context *ioc) { spin_lock_irq(&ioc->lock); if (ioc->aic) free_as_io_context(ioc->aic); ioc->aic = NULL; spin_unlock_irq(&ioc->lock); } /* Called when the task exits */ static void exit_as_io_context(struct as_io_context *aic) { WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); clear_bit(AS_TASK_RUNNING, &aic->state); } static struct as_io_context *alloc_as_io_context(void) { struct as_io_context *ret; ret = kmalloc(sizeof(*ret), GFP_ATOMIC); if (ret) { ret->dtor = free_as_io_context; ret->exit = exit_as_io_context; ret->state = 1 << AS_TASK_RUNNING; atomic_set(&ret->nr_queued, 0); atomic_set(&ret->nr_dispatched, 0); spin_lock_init(&ret->lock); ret->ttime_total = 0; ret->ttime_samples = 0; ret->ttime_mean = 0; ret->seek_total = 0; ret->seek_samples = 0; ret->seek_mean = 0; elv_ioc_count_inc(ioc_count); } return ret; } /* * If the current task has no AS IO context then create one and initialise it. * Then take a ref on the task's io context and return it. */ static struct io_context *as_get_io_context(int node) { struct io_context *ioc = get_io_context(GFP_ATOMIC, node); if (ioc && !ioc->aic) { ioc->aic = alloc_as_io_context(); if (!ioc->aic) { put_io_context(ioc); ioc = NULL; } } return ioc; } static void as_put_io_context(struct request *rq) { struct as_io_context *aic; if (unlikely(!RQ_IOC(rq))) return; aic = RQ_IOC(rq)->aic; if (rq_is_sync(rq) && aic) { unsigned long flags; spin_lock_irqsave(&aic->lock, flags); set_bit(AS_TASK_IORUNNING, &aic->state); aic->last_end_request = jiffies; spin_unlock_irqrestore(&aic->lock, flags); } put_io_context(RQ_IOC(rq)); } /* * rb tree support functions */ #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))]) static void as_add_rq_rb(struct as_data *ad, struct request *rq) { struct request *alias; while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) { as_move_to_dispatch(ad, alias); as_antic_stop(ad); } } static inline void as_del_rq_rb(struct as_data *ad, struct request *rq) { elv_rb_del(RQ_RB_ROOT(ad, rq), rq); } /* * IO Scheduler proper */ #define MAXBACK (1024 * 1024) /* * Maximum distance the disk will go backward * for a request. */ #define BACK_PENALTY 2 /* * as_choose_req selects the preferred one of two requests of the same data_dir * ignoring time - eg. timeouts, which is the job of as_dispatch_request */ static struct request * as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2) { int data_dir; sector_t last, s1, s2, d1, d2; int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ const sector_t maxback = MAXBACK; if (rq1 == NULL || rq1 == rq2) return rq2; if (rq2 == NULL) return rq1; data_dir = rq_is_sync(rq1); last = ad->last_sector[data_dir]; s1 = rq1->sector; s2 = rq2->sector; BUG_ON(data_dir != rq_is_sync(rq2)); /* * Strict one way elevator _except_ in the case where we allow * short backward seeks which are biased as twice the cost of a * similar forward seek. */ if (s1 >= last) d1 = s1 - last; else if (s1+maxback >= last) d1 = (last - s1)*BACK_PENALTY; else { r1_wrap = 1; d1 = 0; /* shut up, gcc */ } if (s2 >= last) d2 = s2 - last; else if (s2+maxback >= last) d2 = (last - s2)*BACK_PENALTY; else { r2_wrap = 1; d2 = 0; } /* Found required data */ if (!r1_wrap && r2_wrap) return rq1; else if (!r2_wrap && r1_wrap) return rq2; else if (r1_wrap && r2_wrap) { /* both behind the head */ if (s1 <= s2) return rq1; else return rq2; } /* Both requests in front of the head */ if (d1 < d2) return rq1; else if (d2 < d1) return rq2; else { if (s1 >= s2) return rq1; else return rq2; } } /* * as_find_next_rq finds the next request after @prev in elevator order. * this with as_choose_req form the basis for how the scheduler chooses * what request to process next. Anticipation works on top of this. */ static struct request * as_find_next_rq(struct as_data *ad, struct request *last) { struct rb_node *rbnext = rb_next(&last->rb_node); struct rb_node *rbprev = rb_prev(&last->rb_node); struct request *next = NULL, *prev = NULL; BUG_ON(RB_EMPTY_NODE(&last->rb_node)); if (rbprev) prev = rb_entry_rq(rbprev); if (rbnext) next = rb_entry_rq(rbnext); else { const int data_dir = rq_is_sync(last); rbnext = rb_first(&ad->sort_list[data_dir]); if (rbnext && rbnext != &last->rb_node) next = rb_entry_rq(rbnext); } return as_choose_req(ad, next, prev); } /* * anticipatory scheduling functions follow */ /* * as_antic_expired tells us when we have anticipated too long. * The funny "absolute difference" math on the elapsed time is to handle * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. */ static int as_antic_expired(struct as_data *ad) { long delta_jif; delta_jif = jiffies - ad->antic_start; if (unlikely(delta_jif < 0)) delta_jif = -delta_jif; if (delta_jif < ad->antic_expire) return 0; return 1; } /* * as_antic_waitnext starts anticipating that a nice request will soon be * submitted. See also as_antic_waitreq */ static void as_antic_waitnext(struct as_data *ad) { unsigned long timeout; BUG_ON(ad->antic_status != ANTIC_OFF && ad->antic_status != ANTIC_WAIT_REQ); timeout = ad->antic_start + ad->antic_expire; mod_timer(&ad->antic_timer, timeout); ad->antic_status = ANTIC_WAIT_NEXT; } /* * as_antic_waitreq starts anticipating. We don't start timing the anticipation * until the request that we're anticipating on has finished. This means we * are timing from when the candidate process wakes up hopefully. */ static void as_antic_waitreq(struct as_data *ad) { BUG_ON(ad->antic_status == ANTIC_FINISHED); if (ad->antic_status == ANTIC_OFF) { if (!ad->io_context || ad->ioc_finished) as_antic_waitnext(ad); else ad->antic_status = ANTIC_WAIT_REQ; } } /* * This is called directly by the functions in this file to stop anticipation. * We kill the timer and schedule a call to the request_fn asap. */ static void as_antic_stop(struct as_data *ad) { int status = ad->antic_status; if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { if (status == ANTIC_WAIT_NEXT) del_timer(&ad->antic_timer); ad->antic_status = ANTIC_FINISHED; /* see as_work_handler */ kblockd_schedule_work(&ad->antic_work); } } /* * as_antic_timeout is the timer function set by as_antic_waitnext. */ static void as_antic_timeout(unsigned long data) { struct request_queue *q = (struct request_queue *)data; struct as_data *ad = q->elevator->elevator_data; unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); if (ad->antic_status == ANTIC_WAIT_REQ || ad->antic_status == ANTIC_WAIT_NEXT) { struct as_io_context *aic; spin_lock(&ad->io_context->lock); aic = ad->io_context->aic; ad->antic_status = ANTIC_FINISHED; kblockd_schedule_work(&ad->antic_work); if (aic->ttime_samples == 0) { /* process anticipated on has exited or timed out*/ ad->exit_prob = (7*ad->exit_prob + 256)/8; } if (!test_bit(AS_TASK_RUNNING, &aic->state)) { /* process not "saved" by a cooperating request */ ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8; } spin_unlock(&ad->io_context->lock); } spin_unlock_irqrestore(q->queue_lock, flags); } static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) { /* fixed point: 1.0 == 1<<8 */ if (aic->ttime_samples == 0) { ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; ad->new_ttime_mean = ad->new_ttime_total / 256; ad->exit_prob = (7*ad->exit_prob)/8; } aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; } static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) { u64 total; if (aic->seek_samples == 0) { ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; ad->new_seek_mean = ad->new_seek_total / 256; } /* * Don't allow the seek distance to get too large from the * odd fragment, pagein, etc */ if (aic->seek_samples <= 60) /* second&third seek */ sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); else sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); aic->seek_samples = (7*aic->seek_samples + 256) / 8; aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; total = aic->seek_total + (aic->seek_samples/2); do_div(total, aic->seek_samples); aic->seek_mean = (sector_t)total; } /* * as_update_iohist keeps a decaying histogram of IO thinktimes, and * updates @aic->ttime_mean based on that. It is called when a new * request is queued. */ static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) { int data_dir = rq_is_sync(rq); unsigned long thinktime = 0; sector_t seek_dist; if (aic == NULL) return; if (data_dir == REQ_SYNC) { unsigned long in_flight = atomic_read(&aic->nr_queued) + atomic_read(&aic->nr_dispatched); spin_lock(&aic->lock); if (test_bit(AS_TASK_IORUNNING, &aic->state) || test_bit(AS_TASK_IOSTARTED, &aic->state)) { /* Calculate read -> read thinktime */ if (test_bit(AS_TASK_IORUNNING, &aic->state) && in_flight == 0) { thinktime = jiffies - aic->last_end_request; thinktime = min(thinktime, MAX_THINKTIME-1); } as_update_thinktime(ad, aic, thinktime); /* Calculate read -> read seek distance */ if (aic->last_request_pos < rq->sector) seek_dist = rq->sector - aic->last_request_pos; else seek_dist = aic->last_request_pos - rq->sector; as_update_seekdist(ad, aic, seek_dist); } aic->last_request_pos = rq->sector + rq->nr_sectors; set_bit(AS_TASK_IOSTARTED, &aic->state); spin_unlock(&aic->lock); } } /* * as_close_req decides if one request is considered "close" to the * previous one issued. */ static int as_close_req(struct as_data *ad, struct as_io_context *aic, struct request *rq) { unsigned long delay; /* jiffies */ sector_t last = ad->last_sector[ad->batch_data_dir]; sector_t next = rq->sector; sector_t delta; /* acceptable close offset (in sectors) */ sector_t s; if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) delay = 0; else delay = jiffies - ad->antic_start; if (delay == 0) delta = 8192; else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire) delta = 8192 << delay; else return 1; if ((last <= next + (delta>>1)) && (next <= last + delta)) return 1; if (last < next) s = next - last; else s = last - next; if (aic->seek_samples == 0) { /* * Process has just started IO. Use past statistics to * gauge success possibility */ if (ad->new_seek_mean > s) { /* this request is better than what we're expecting */ return 1; } } else { if (aic->seek_mean > s) { /* this request is better than what we're expecting */ return 1; } } return 0; } /* * as_can_break_anticipation returns true if we have been anticipating this * request. * * It also returns true if the process against which we are anticipating * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to * dispatch it ASAP, because we know that application will not be submitting * any new reads. * * If the task which has submitted the request has exited, break anticipation. * * If this task has queued some other IO, do not enter enticipation. */ static int as_can_break_anticipation(struct as_data *ad, struct request *rq) { struct io_context *ioc; struct as_io_context *aic; ioc = ad->io_context; BUG_ON(!ioc); spin_lock(&ioc->lock); if (rq && ioc == RQ_IOC(rq)) { /* request from same process */ spin_unlock(&ioc->lock); return 1; } if (ad->ioc_finished && as_antic_expired(ad)) { /* * In this situation status should really be FINISHED, * however the timer hasn't had the chance to run yet. */ spin_unlock(&ioc->lock); return 1; } aic = ioc->aic; if (!aic) { spin_unlock(&ioc->lock); return 0; } if (atomic_read(&aic->nr_queued) > 0) { /* process has more requests queued */ spin_unlock(&ioc->lock); return 1; } if (atomic_read(&aic->nr_dispatched) > 0) { /* process has more requests dispatched */ spin_unlock(&ioc->lock); return 1; } if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) { /* * Found a close request that is not one of ours. * * This makes close requests from another process update * our IO history. Is generally useful when there are * two or more cooperating processes working in the same * area. */ if (!test_bit(AS_TASK_RUNNING, &aic->state)) { if (aic->ttime_samples == 0) ad->exit_prob = (7*ad->exit_prob + 256)/8; ad->exit_no_coop = (7*ad->exit_no_coop)/8; } as_update_iohist(ad, aic, rq); spin_unlock(&ioc->lock); return 1; } if (!test_bit(AS_TASK_RUNNING, &aic->state)) { /* process anticipated on has exited */ if (aic->ttime_samples == 0) ad->exit_prob = (7*ad->exit_prob + 256)/8; if (ad->exit_no_coop > 128) { spin_unlock(&ioc->lock); return 1; } } if (aic->ttime_samples == 0) { if (ad->new_ttime_mean > ad->antic_expire) { spin_unlock(&ioc->lock); return 1; } if (ad->exit_prob * ad->exit_no_coop > 128*256) { spin_unlock(&ioc->lock); return 1; } } else if (aic->ttime_mean > ad->antic_expire) { /* the process thinks too much between requests */ spin_unlock(&ioc->lock); return 1; } spin_unlock(&ioc->lock); return 0; } /* * as_can_anticipate indicates whether we should either run rq * or keep anticipating a better request. */ static int as_can_anticipate(struct as_data *ad, struct request *rq) { if (!ad->io_context) /* * Last request submitted was a write */ return 0; if (ad->antic_status == ANTIC_FINISHED) /* * Don't restart if we have just finished. Run the next request */ return 0; if (as_can_break_anticipation(ad, rq)) /* * This request is a good candidate. Don't keep anticipating, * run it. */ return 0; /* * OK from here, we haven't finished, and don't have a decent request! * Status is either ANTIC_OFF so start waiting, * ANTIC_WAIT_REQ so continue waiting for request to finish * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. */ return 1; } /* * as_update_rq must be called whenever a request (rq) is added to * the sort_list. This function keeps caches up to date, and checks if the * request might be one we are "anticipating" */ static void as_update_rq(struct as_data *ad, struct request *rq) { const int data_dir = rq_is_sync(rq); /* keep the next_rq cache up to date */ ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]); /* * have we been anticipating this request? * or does it come from the same process as the one we are anticipating * for? */ if (ad->antic_status == ANTIC_WAIT_REQ || ad->antic_status == ANTIC_WAIT_NEXT) { if (as_can_break_anticipation(ad, rq)) as_antic_stop(ad); } } /* * Gathers timings and resizes the write batch automatically */ static void update_write_batch(struct as_data *ad) { unsigned long batch = ad->batch_expire[REQ_ASYNC]; long write_time; write_time = (jiffies - ad->current_batch_expires) + batch; if (write_time < 0) write_time = 0; if (write_time > batch && !ad->write_batch_idled) { if (write_time > batch * 3) ad->write_batch_count /= 2; else ad->write_batch_count--; } else if (write_time < batch && ad->current_write_count == 0) { if (batch > write_time * 3) ad->write_batch_count *= 2; else ad->write_batch_count++; } if (ad->write_batch_count < 1) ad->write_batch_count = 1; } /* * as_completed_request is to be called when a request has completed and * returned something to the requesting process, be it an error or data. */ static void as_completed_request(struct request_queue *q, struct request *rq) { struct as_data *ad = q->elevator->elevator_data; WARN_ON(!list_empty(&rq->queuelist)); if (RQ_STATE(rq) != AS_RQ_REMOVED) { printk("rq->state %d\n", RQ_STATE(rq)); WARN_ON(1); goto out; } if (ad->changed_batch && ad->nr_dispatched == 1) { ad->current_batch_expires = jiffies + ad->batch_expire[ad->batch_data_dir]; kblockd_schedule_work(&ad->antic_work); ad->changed_batch = 0; if (ad->batch_data_dir == REQ_SYNC) ad->new_batch = 1; } WARN_ON(ad->nr_dispatched == 0); ad->nr_dispatched--; /* * Start counting the batch from when a request of that direction is * actually serviced. This should help devices with big TCQ windows * and writeback caches */ if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) { update_write_batch(ad); ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; ad->new_batch = 0; } if (ad->io_context == RQ_IOC(rq) && ad->io_context) { ad->antic_start = jiffies; ad->ioc_finished = 1; if (ad->antic_status == ANTIC_WAIT_REQ) { /* * We were waiting on this request, now anticipate * the next one */ as_antic_waitnext(ad); } } as_put_io_context(rq); out: RQ_SET_STATE(rq, AS_RQ_POSTSCHED); } /* * as_remove_queued_request removes a request from the pre dispatch queue * without updating refcounts. It is expected the caller will drop the * reference unless it replaces the request at somepart of the elevator * (ie. the dispatch queue) */ static void as_remove_queued_request(struct request_queue *q, struct request *rq) { const int data_dir = rq_is_sync(rq); struct as_data *ad = q->elevator->elevator_data; struct io_context *ioc; WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); ioc = RQ_IOC(rq); if (ioc && ioc->aic) { BUG_ON(!atomic_read(&ioc->aic->nr_queued)); atomic_dec(&ioc->aic->nr_queued); } /* * Update the "next_rq" cache if we are about to remove its * entry */ if (ad->next_rq[data_dir] == rq) ad->next_rq[data_dir] = as_find_next_rq(ad, rq); rq_fifo_clear(rq); as_del_rq_rb(ad, rq); } /* * as_fifo_expired returns 0 if there are no expired requests on the fifo, * 1 otherwise. It is ratelimited so that we only perform the check once per * `fifo_expire' interval. Otherwise a large number of expired requests * would create a hopeless seekstorm. * * See as_antic_expired comment. */ static int as_fifo_expired(struct as_data *ad, int adir) { struct request *rq; long delta_jif; delta_jif = jiffies - ad->last_check_fifo[adir]; if (unlikely(delta_jif < 0)) delta_jif = -delta_jif; if (delta_jif < ad->fifo_expire[adir]) return 0; ad->last_check_fifo[adir] = jiffies; if (list_empty(&ad->fifo_list[adir])) return 0; rq = rq_entry_fifo(ad->fifo_list[adir].next); return time_after(jiffies, rq_fifo_time(rq)); } /* * as_batch_expired returns true if the current batch has expired. A batch * is a set of reads or a set of writes. */ static inline int as_batch_expired(struct as_data *ad) { if (ad->changed_batch || ad->new_batch) return 0; if (ad->batch_data_dir == REQ_SYNC) /* TODO! add a check so a complete fifo gets written? */ return time_after(jiffies, ad->current_batch_expires); return time_after(jiffies, ad->current_batch_expires) || ad->current_write_count == 0; } /* * move an entry to dispatch queue */ static void as_move_to_dispatch(struct as_data *ad, struct request *rq) { const int data_dir = rq_is_sync(rq); BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); as_antic_stop(ad); ad->antic_status = ANTIC_OFF; /* * This has to be set in order to be correctly updated by * as_find_next_rq */ ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; if (data_dir == REQ_SYNC) { struct io_context *ioc = RQ_IOC(rq); /* In case we have to anticipate after this */ copy_io_context(&ad->io_context, &ioc); } else { if (ad->io_context) { put_io_context(ad->io_context); ad->io_context = NULL; } if (ad->current_write_count != 0) ad->current_write_count--; } ad->ioc_finished = 0; ad->next_rq[data_dir] = as_find_next_rq(ad, rq); /* * take it off the sort and fifo list, add to dispatch queue */ as_remove_queued_request(ad->q, rq); WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); elv_dispatch_sort(ad->q, rq); RQ_SET_STATE(rq, AS_RQ_DISPATCHED); if (RQ_IOC(rq) && RQ_IOC(rq)->aic) atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); ad->nr_dispatched++; } /* * as_dispatch_request selects the best request according to * read/write expire, batch expire, etc, and moves it to the dispatch * queue. Returns 1 if a request was found, 0 otherwise. */ static int as_dispatch_request(struct request_queue *q, int force) { struct as_data *ad = q->elevator->elevator_data; const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); struct request *rq; if (unlikely(force)) { /* * Forced dispatch, accounting is useless. Reset * accounting states and dump fifo_lists. Note that * batch_data_dir is reset to REQ_SYNC to avoid * screwing write batch accounting as write batch * accounting occurs on W->R transition. */ int dispatched = 0; ad->batch_data_dir = REQ_SYNC; ad->changed_batch = 0; ad->new_batch = 0; while (ad->next_rq[REQ_SYNC]) { as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]); dispatched++; } ad->last_check_fifo[REQ_SYNC] = jiffies; while (ad->next_rq[REQ_ASYNC]) { as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]); dispatched++; } ad->last_check_fifo[REQ_ASYNC] = jiffies; return dispatched; } /* Signal that the write batch was uncontended, so we can't time it */ if (ad->batch_data_dir == REQ_ASYNC && !reads) { if (ad->current_write_count == 0 || !writes) ad->write_batch_idled = 1; } if (!(reads || writes) || ad->antic_status == ANTIC_WAIT_REQ || ad->antic_status == ANTIC_WAIT_NEXT || ad->changed_batch) return 0; if (!(reads && writes && as_batch_expired(ad))) { /* * batch is still running or no reads or no writes */ rq = ad->next_rq[ad->batch_data_dir]; if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { if (as_fifo_expired(ad, REQ_SYNC)) goto fifo_expired; if (as_can_anticipate(ad, rq)) { as_antic_waitreq(ad); return 0; } } if (rq) { /* we have a "next request" */ if (reads && !writes) ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; goto dispatch_request; } } /* * at this point we are not running a batch. select the appropriate * data direction (read / write) */ if (reads) { BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC])); if (writes && ad->batch_data_dir == REQ_SYNC) /* * Last batch was a read, switch to writes */ goto dispatch_writes; if (ad->batch_data_dir == REQ_ASYNC) { WARN_ON(ad->new_batch); ad->changed_batch = 1; } ad->batch_data_dir = REQ_SYNC; rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next); ad->last_check_fifo[ad->batch_data_dir] = jiffies; goto dispatch_request; } /* * the last batch was a read */ if (writes) { dispatch_writes: BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC])); if (ad->batch_data_dir == REQ_SYNC) { ad->changed_batch = 1; /* * new_batch might be 1 when the queue runs out of * reads. A subsequent submission of a write might * cause a change of batch before the read is finished. */ ad->new_batch = 0; } ad->batch_data_dir = REQ_ASYNC; ad->current_write_count = ad->write_batch_count; ad->write_batch_idled = 0; rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next); ad->last_check_fifo[REQ_ASYNC] = jiffies; goto dispatch_request; } BUG(); return 0; dispatch_request: /* * If a request has expired, service it. */ if (as_fifo_expired(ad, ad->batch_data_dir)) { fifo_expired: rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); } if (ad->changed_batch) { WARN_ON(ad->new_batch); if (ad->nr_dispatched) return 0; if (ad->batch_data_dir == REQ_ASYNC) ad->current_batch_expires = jiffies + ad->batch_expire[REQ_ASYNC]; else ad->new_batch = 1; ad->changed_batch = 0; } /* * rq is the selected appropriate request. */ as_move_to_dispatch(ad, rq); return 1; } /* * add rq to rbtree and fifo */ static void as_add_request(struct request_queue *q, struct request *rq) { struct as_data *ad = q->elevator->elevator_data; int data_dir; RQ_SET_STATE(rq, AS_RQ_NEW); data_dir = rq_is_sync(rq); rq->elevator_private = as_get_io_context(q->node); if (RQ_IOC(rq)) { as_update_iohist(ad, RQ_IOC(rq)->aic, rq); atomic_inc(&RQ_IOC(rq)->aic->nr_queued); } as_add_rq_rb(ad, rq); /* * set expire time and add to fifo list */ rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]); list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]); as_update_rq(ad, rq); /* keep state machine up to date */ RQ_SET_STATE(rq, AS_RQ_QUEUED); } static void as_activate_request(struct request_queue *q, struct request *rq) { WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED); RQ_SET_STATE(rq, AS_RQ_REMOVED); if (RQ_IOC(rq) && RQ_IOC(rq)->aic) atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched); } static void as_deactivate_request(struct request_queue *q, struct request *rq) { WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED); RQ_SET_STATE(rq, AS_RQ_DISPATCHED); if (RQ_IOC(rq) && RQ_IOC(rq)->aic) atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); } /* * as_queue_empty tells us if there are requests left in the device. It may * not be the case that a driver can get the next request even if the queue * is not empty - it is used in the block layer to check for plugging and * merging opportunities */ static int as_queue_empty(struct request_queue *q) { struct as_data *ad = q->elevator->elevator_data; return list_empty(&ad->fifo_list[REQ_ASYNC]) && list_empty(&ad->fifo_list[REQ_SYNC]); } static int as_merge(struct request_queue *q, struct request **req, struct bio *bio) { struct as_data *ad = q->elevator->elevator_data; sector_t rb_key = bio->bi_sector + bio_sectors(bio); struct request *__rq; /* * check for front merge */ __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key); if (__rq && elv_rq_merge_ok(__rq, bio)) { *req = __rq; return ELEVATOR_FRONT_MERGE; } return ELEVATOR_NO_MERGE; } static void as_merged_request(struct request_queue *q, struct request *req, int type) { struct as_data *ad = q->elevator->elevator_data; /* * if the merge was a front merge, we need to reposition request */ if (type == ELEVATOR_FRONT_MERGE) { as_del_rq_rb(ad, req); as_add_rq_rb(ad, req); /* * Note! At this stage of this and the next function, our next * request may not be optimal - eg the request may have "grown" * behind the disk head. We currently don't bother adjusting. */ } } static void as_merged_requests(struct request_queue *q, struct request *req, struct request *next) { /* * if next expires before rq, assign its expire time to arq * and move into next position (next will be deleted) in fifo */ if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { if (time_before(rq_fifo_time(next), rq_fifo_time(req))) { list_move(&req->queuelist, &next->queuelist); rq_set_fifo_time(req, rq_fifo_time(next)); } } /* * kill knowledge of next, this one is a goner */ as_remove_queued_request(q, next); as_put_io_context(next); RQ_SET_STATE(next, AS_RQ_MERGED); } /* * This is executed in a "deferred" process context, by kblockd. It calls the * driver's request_fn so the driver can submit that request. * * IMPORTANT! This guy will reenter the elevator, so set up all queue global * state before calling, and don't rely on any state over calls. * * FIXME! dispatch queue is not a queue at all! */ static void as_work_handler(struct work_struct *work) { struct as_data *ad = container_of(work, struct as_data, antic_work); struct request_queue *q = ad->q; unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); blk_start_queueing(q); spin_unlock_irqrestore(q->queue_lock, flags); } static int as_may_queue(struct request_queue *q, int rw) { int ret = ELV_MQUEUE_MAY; struct as_data *ad = q->elevator->elevator_data; struct io_context *ioc; if (ad->antic_status == ANTIC_WAIT_REQ || ad->antic_status == ANTIC_WAIT_NEXT) { ioc = as_get_io_context(q->node); if (ad->io_context == ioc) ret = ELV_MQUEUE_MUST; put_io_context(ioc); } return ret; } static void as_exit_queue(elevator_t *e) { struct as_data *ad = e->elevator_data; del_timer_sync(&ad->antic_timer); kblockd_flush_work(&ad->antic_work); BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); put_io_context(ad->io_context); kfree(ad); } /* * initialize elevator private data (as_data). */ static void *as_init_queue(struct request_queue *q) { struct as_data *ad; ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node); if (!ad) return NULL; ad->q = q; /* Identify what queue the data belongs to */ /* anticipatory scheduling helpers */ ad->antic_timer.function = as_antic_timeout; ad->antic_timer.data = (unsigned long)q; init_timer(&ad->antic_timer); INIT_WORK(&ad->antic_work, as_work_handler); INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); ad->sort_list[REQ_SYNC] = RB_ROOT; ad->sort_list[REQ_ASYNC] = RB_ROOT; ad->fifo_expire[REQ_SYNC] = default_read_expire; ad->fifo_expire[REQ_ASYNC] = default_write_expire; ad->antic_expire = default_antic_expire; ad->batch_expire[REQ_SYNC] = default_read_batch_expire; ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; if (ad->write_batch_count < 2) ad->write_batch_count = 2; return ad; } /* * sysfs parts below */ static ssize_t as_var_show(unsigned int var, char *page) { return sprintf(page, "%d\n", var); } static ssize_t as_var_store(unsigned long *var, const char *page, size_t count) { char *p = (char *) page; *var = simple_strtoul(p, &p, 10); return count; } static ssize_t est_time_show(elevator_t *e, char *page) { struct as_data *ad = e->elevator_data; int pos = 0; pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); pos += sprintf(page+pos, "%lu %% probability of exiting without a " "cooperating process submitting IO\n", 100*ad->exit_no_coop/256); pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); return pos; } #define SHOW_FUNCTION(__FUNC, __VAR) \ static ssize_t __FUNC(elevator_t *e, char *page) \ { \ struct as_data *ad = e->elevator_data; \ return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ } SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]); SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]); SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire); SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]); SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]); #undef SHOW_FUNCTION #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \ { \ struct as_data *ad = e->elevator_data; \ int ret = as_var_store(__PTR, (page), count); \ if (*(__PTR) < (MIN)) \ *(__PTR) = (MIN); \ else if (*(__PTR) > (MAX)) \ *(__PTR) = (MAX); \ *(__PTR) = msecs_to_jiffies(*(__PTR)); \ return ret; \ } STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX); STORE_FUNCTION(as_read_batch_expire_store, &ad->batch_expire[REQ_SYNC], 0, INT_MAX); STORE_FUNCTION(as_write_batch_expire_store, &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); #undef STORE_FUNCTION #define AS_ATTR(name) \ __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store) static struct elv_fs_entry as_attrs[] = { __ATTR_RO(est_time), AS_ATTR(read_expire), AS_ATTR(write_expire), AS_ATTR(antic_expire), AS_ATTR(read_batch_expire), AS_ATTR(write_batch_expire), __ATTR_NULL }; static struct elevator_type iosched_as = { .ops = { .elevator_merge_fn = as_merge, .elevator_merged_fn = as_merged_request, .elevator_merge_req_fn = as_merged_requests, .elevator_dispatch_fn = as_dispatch_request, .elevator_add_req_fn = as_add_request, .elevator_activate_req_fn = as_activate_request, .elevator_deactivate_req_fn = as_deactivate_request, .elevator_queue_empty_fn = as_queue_empty, .elevator_completed_req_fn = as_completed_request, .elevator_former_req_fn = elv_rb_former_request, .elevator_latter_req_fn = elv_rb_latter_request, .elevator_may_queue_fn = as_may_queue, .elevator_init_fn = as_init_queue, .elevator_exit_fn = as_exit_queue, .trim = as_trim, }, .elevator_attrs = as_attrs, .elevator_name = "anticipatory", .elevator_owner = THIS_MODULE, }; static int __init as_init(void) { elv_register(&iosched_as); return 0; } static void __exit as_exit(void) { DECLARE_COMPLETION_ONSTACK(all_gone); elv_unregister(&iosched_as); ioc_gone = &all_gone; /* ioc_gone's update must be visible before reading ioc_count */ smp_wmb(); if (elv_ioc_count_read(ioc_count)) wait_for_completion(ioc_gone); synchronize_rcu(); } module_init(as_init); module_exit(as_exit); MODULE_AUTHOR("Nick Piggin"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("anticipatory IO scheduler"); |