Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | #include <stdio.h> #include <stdlib.h> #include <netinet/in.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <string.h> #include <elf.h> #define ElfHeaderSize (64 * 1024) #define ElfPages (ElfHeaderSize / 4096) #define KERNELBASE (0xc000000000000000) #define _ALIGN_UP(addr,size) (((addr)+((size)-1))&(~((size)-1))) struct addr_range { unsigned long long addr; unsigned long memsize; unsigned long offset; }; static int check_elf64(void *p, int size, struct addr_range *r) { Elf64_Ehdr *elf64 = p; Elf64_Phdr *elf64ph; if (elf64->e_ident[EI_MAG0] != ELFMAG0 || elf64->e_ident[EI_MAG1] != ELFMAG1 || elf64->e_ident[EI_MAG2] != ELFMAG2 || elf64->e_ident[EI_MAG3] != ELFMAG3 || elf64->e_ident[EI_CLASS] != ELFCLASS64 || elf64->e_ident[EI_DATA] != ELFDATA2MSB || elf64->e_type != ET_EXEC || elf64->e_machine != EM_PPC64) return 0; if ((elf64->e_phoff + sizeof(Elf64_Phdr)) > size) return 0; elf64ph = (Elf64_Phdr *) ((unsigned long)elf64 + (unsigned long)elf64->e_phoff); r->memsize = (unsigned long)elf64ph->p_memsz; r->offset = (unsigned long)elf64ph->p_offset; r->addr = (unsigned long long)elf64ph->p_vaddr; #ifdef DEBUG printf("PPC64 ELF file, ph:\n"); printf("p_type 0x%08x\n", elf64ph->p_type); printf("p_flags 0x%08x\n", elf64ph->p_flags); printf("p_offset 0x%016llx\n", elf64ph->p_offset); printf("p_vaddr 0x%016llx\n", elf64ph->p_vaddr); printf("p_paddr 0x%016llx\n", elf64ph->p_paddr); printf("p_filesz 0x%016llx\n", elf64ph->p_filesz); printf("p_memsz 0x%016llx\n", elf64ph->p_memsz); printf("p_align 0x%016llx\n", elf64ph->p_align); printf("... skipping 0x%08lx bytes of ELF header\n", (unsigned long)elf64ph->p_offset); #endif return 64; } void get4k(FILE *file, char *buf ) { unsigned j; unsigned num = fread(buf, 1, 4096, file); for ( j=num; j<4096; ++j ) buf[j] = 0; } void put4k(FILE *file, char *buf ) { fwrite(buf, 1, 4096, file); } void death(const char *msg, FILE *fdesc, const char *fname) { fprintf(stderr, msg); fclose(fdesc); unlink(fname); exit(1); } int main(int argc, char **argv) { char inbuf[4096]; struct addr_range vmlinux; FILE *ramDisk; FILE *inputVmlinux; FILE *outputVmlinux; char *rd_name, *lx_name, *out_name; size_t i; unsigned long ramFileLen; unsigned long ramLen; unsigned long roundR; unsigned long offset_end; unsigned long kernelLen; unsigned long actualKernelLen; unsigned long round; unsigned long roundedKernelLen; unsigned long ramStartOffs; unsigned long ramPages; unsigned long roundedKernelPages; unsigned long hvReleaseData; u_int32_t eyeCatcher = 0xc8a5d9c4; unsigned long naca; unsigned long xRamDisk; unsigned long xRamDiskSize; long padPages; if (argc < 2) { fprintf(stderr, "Name of RAM disk file missing.\n"); exit(1); } rd_name = argv[1]; if (argc < 3) { fprintf(stderr, "Name of vmlinux file missing.\n"); exit(1); } lx_name = argv[2]; if (argc < 4) { fprintf(stderr, "Name of vmlinux output file missing.\n"); exit(1); } out_name = argv[3]; ramDisk = fopen(rd_name, "r"); if ( ! ramDisk ) { fprintf(stderr, "RAM disk file \"%s\" failed to open.\n", rd_name); exit(1); } inputVmlinux = fopen(lx_name, "r"); if ( ! inputVmlinux ) { fprintf(stderr, "vmlinux file \"%s\" failed to open.\n", lx_name); exit(1); } outputVmlinux = fopen(out_name, "w+"); if ( ! outputVmlinux ) { fprintf(stderr, "output vmlinux file \"%s\" failed to open.\n", out_name); exit(1); } i = fread(inbuf, 1, sizeof(inbuf), inputVmlinux); if (i != sizeof(inbuf)) { fprintf(stderr, "can not read vmlinux file %s: %u\n", lx_name, i); exit(1); } i = check_elf64(inbuf, sizeof(inbuf), &vmlinux); if (i == 0) { fprintf(stderr, "You must have a linux kernel specified as argv[2]\n"); exit(1); } /* Input Vmlinux file */ fseek(inputVmlinux, 0, SEEK_END); kernelLen = ftell(inputVmlinux); fseek(inputVmlinux, 0, SEEK_SET); printf("kernel file size = %lu\n", kernelLen); actualKernelLen = kernelLen - ElfHeaderSize; printf("actual kernel length (minus ELF header) = %lu\n", actualKernelLen); round = actualKernelLen % 4096; roundedKernelLen = actualKernelLen; if ( round ) roundedKernelLen += (4096 - round); printf("Vmlinux length rounded up to a 4k multiple = %ld/0x%lx \n", roundedKernelLen, roundedKernelLen); roundedKernelPages = roundedKernelLen / 4096; printf("Vmlinux pages to copy = %ld/0x%lx \n", roundedKernelPages, roundedKernelPages); offset_end = _ALIGN_UP(vmlinux.memsize, 4096); /* calc how many pages we need to insert between the vmlinux and the start of the ram disk */ padPages = offset_end/4096 - roundedKernelPages; /* Check and see if the vmlinux is already larger than _end in System.map */ if (padPages < 0) { /* vmlinux is larger than _end - adjust the offset to the start of the embedded ram disk */ offset_end = roundedKernelLen; printf("vmlinux is larger than _end indicates it needs to be - offset_end = %lx \n", offset_end); padPages = 0; printf("will insert %lx pages between the vmlinux and the start of the ram disk \n", padPages); } else { /* _end is larger than vmlinux - use the offset to _end that we calculated from the system map */ printf("vmlinux is smaller than _end indicates is needed - offset_end = %lx \n", offset_end); printf("will insert %lx pages between the vmlinux and the start of the ram disk \n", padPages); } /* Input Ram Disk file */ // Set the offset that the ram disk will be started at. ramStartOffs = offset_end; /* determined from the input vmlinux file and the system map */ printf("Ram Disk will start at offset = 0x%lx \n", ramStartOffs); fseek(ramDisk, 0, SEEK_END); ramFileLen = ftell(ramDisk); fseek(ramDisk, 0, SEEK_SET); printf("%s file size = %ld/0x%lx \n", rd_name, ramFileLen, ramFileLen); ramLen = ramFileLen; roundR = 4096 - (ramLen % 4096); if ( roundR ) { printf("Rounding RAM disk file up to a multiple of 4096, adding %ld/0x%lx \n", roundR, roundR); ramLen += roundR; } printf("Rounded RAM disk size is %ld/0x%lx \n", ramLen, ramLen); ramPages = ramLen / 4096; printf("RAM disk pages to copy = %ld/0x%lx\n", ramPages, ramPages); // Copy 64K ELF header for (i=0; i<(ElfPages); ++i) { get4k( inputVmlinux, inbuf ); put4k( outputVmlinux, inbuf ); } /* Copy the vmlinux (as full pages). */ fseek(inputVmlinux, ElfHeaderSize, SEEK_SET); for ( i=0; i<roundedKernelPages; ++i ) { get4k( inputVmlinux, inbuf ); put4k( outputVmlinux, inbuf ); } /* Insert pad pages (if appropriate) that are needed between */ /* | the end of the vmlinux and the ram disk. */ for (i=0; i<padPages; ++i) { memset(inbuf, 0, 4096); put4k(outputVmlinux, inbuf); } /* Copy the ram disk (as full pages). */ for ( i=0; i<ramPages; ++i ) { get4k( ramDisk, inbuf ); put4k( outputVmlinux, inbuf ); } /* Close the input files */ fclose(ramDisk); fclose(inputVmlinux); /* And flush the written output file */ fflush(outputVmlinux); /* Fixup the new vmlinux to contain the ram disk starting offset (xRamDisk) and the ram disk size (xRamDiskSize) */ /* fseek to the hvReleaseData pointer */ fseek(outputVmlinux, ElfHeaderSize + 0x24, SEEK_SET); if (fread(&hvReleaseData, 4, 1, outputVmlinux) != 1) { death("Could not read hvReleaseData pointer\n", outputVmlinux, out_name); } hvReleaseData = ntohl(hvReleaseData); /* Convert to native int */ printf("hvReleaseData is at %08lx\n", hvReleaseData); /* fseek to the hvReleaseData */ fseek(outputVmlinux, ElfHeaderSize + hvReleaseData, SEEK_SET); if (fread(inbuf, 0x40, 1, outputVmlinux) != 1) { death("Could not read hvReleaseData\n", outputVmlinux, out_name); } /* Check hvReleaseData sanity */ if (memcmp(inbuf, &eyeCatcher, 4) != 0) { death("hvReleaseData is invalid\n", outputVmlinux, out_name); } /* Get the naca pointer */ naca = ntohl(*((u_int32_t*) &inbuf[0x0C])) - KERNELBASE; printf("Naca is at offset 0x%lx \n", naca); /* fseek to the naca */ fseek(outputVmlinux, ElfHeaderSize + naca, SEEK_SET); if (fread(inbuf, 0x18, 1, outputVmlinux) != 1) { death("Could not read naca\n", outputVmlinux, out_name); } xRamDisk = ntohl(*((u_int32_t *) &inbuf[0x0c])); xRamDiskSize = ntohl(*((u_int32_t *) &inbuf[0x14])); /* Make sure a RAM disk isn't already present */ if ((xRamDisk != 0) || (xRamDiskSize != 0)) { death("RAM disk is already attached to this kernel\n", outputVmlinux, out_name); } /* Fill in the values */ *((u_int32_t *) &inbuf[0x0c]) = htonl(ramStartOffs); *((u_int32_t *) &inbuf[0x14]) = htonl(ramPages); /* Write out the new naca */ fflush(outputVmlinux); fseek(outputVmlinux, ElfHeaderSize + naca, SEEK_SET); if (fwrite(inbuf, 0x18, 1, outputVmlinux) != 1) { death("Could not write naca\n", outputVmlinux, out_name); } printf("Ram Disk of 0x%lx pages is attached to the kernel at offset 0x%08lx\n", ramPages, ramStartOffs); /* Done */ fclose(outputVmlinux); /* Set permission to executable */ chmod(out_name, S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH); return 0; } |