Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /* * drivers/power/process.c - Functions for starting/stopping processes on * suspend transitions. * * Originally from swsusp. */ #undef DEBUG #include <linux/interrupt.h> #include <linux/suspend.h> #include <linux/module.h> #include <linux/syscalls.h> #include <linux/freezer.h> /* * Timeout for stopping processes */ #define TIMEOUT (20 * HZ) #define FREEZER_KERNEL_THREADS 0 #define FREEZER_USER_SPACE 1 static inline int freezeable(struct task_struct * p) { if ((p == current) || (p->flags & PF_NOFREEZE) || (p->exit_state != 0)) return 0; return 1; } /* * freezing is complete, mark current process as frozen */ static inline void frozen_process(void) { if (!unlikely(current->flags & PF_NOFREEZE)) { current->flags |= PF_FROZEN; wmb(); } clear_freeze_flag(current); } /* Refrigerator is place where frozen processes are stored :-). */ void refrigerator(void) { /* Hmm, should we be allowed to suspend when there are realtime processes around? */ long save; task_lock(current); if (freezing(current)) { frozen_process(); task_unlock(current); } else { task_unlock(current); return; } save = current->state; pr_debug("%s entered refrigerator\n", current->comm); spin_lock_irq(¤t->sighand->siglock); recalc_sigpending(); /* We sent fake signal, clean it up */ spin_unlock_irq(¤t->sighand->siglock); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!frozen(current)) break; schedule(); } pr_debug("%s left refrigerator\n", current->comm); __set_current_state(save); } static void fake_signal_wake_up(struct task_struct *p, int resume) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); signal_wake_up(p, resume); spin_unlock_irqrestore(&p->sighand->siglock, flags); } static void send_fake_signal(struct task_struct *p) { if (task_is_stopped(p)) force_sig_specific(SIGSTOP, p); fake_signal_wake_up(p, task_is_stopped(p)); } static int has_mm(struct task_struct *p) { return (p->mm && !(p->flags & PF_BORROWED_MM)); } /** * freeze_task - send a freeze request to given task * @p: task to send the request to * @with_mm_only: if set, the request will only be sent if the task has its * own mm * Return value: 0, if @with_mm_only is set and the task has no mm of its * own or the task is frozen, 1, otherwise * * The freeze request is sent by seting the tasks's TIF_FREEZE flag and * either sending a fake signal to it or waking it up, depending on whether * or not it has its own mm (ie. it is a user land task). If @with_mm_only * is set and the task has no mm of its own (ie. it is a kernel thread), * its TIF_FREEZE flag should not be set. * * The task_lock() is necessary to prevent races with exit_mm() or * use_mm()/unuse_mm() from occuring. */ static int freeze_task(struct task_struct *p, int with_mm_only) { int ret = 1; task_lock(p); if (freezing(p)) { if (has_mm(p)) { if (!signal_pending(p)) fake_signal_wake_up(p, 0); } else { if (with_mm_only) ret = 0; else wake_up_state(p, TASK_INTERRUPTIBLE); } } else { rmb(); if (frozen(p)) { ret = 0; } else { if (has_mm(p)) { set_freeze_flag(p); send_fake_signal(p); } else { if (with_mm_only) { ret = 0; } else { set_freeze_flag(p); wake_up_state(p, TASK_INTERRUPTIBLE); } } } } task_unlock(p); return ret; } static void cancel_freezing(struct task_struct *p) { unsigned long flags; if (freezing(p)) { pr_debug(" clean up: %s\n", p->comm); clear_freeze_flag(p); spin_lock_irqsave(&p->sighand->siglock, flags); recalc_sigpending_and_wake(p); spin_unlock_irqrestore(&p->sighand->siglock, flags); } } static int try_to_freeze_tasks(int freeze_user_space) { struct task_struct *g, *p; unsigned long end_time; unsigned int todo; struct timeval start, end; s64 elapsed_csecs64; unsigned int elapsed_csecs; do_gettimeofday(&start); end_time = jiffies + TIMEOUT; do { todo = 0; read_lock(&tasklist_lock); do_each_thread(g, p) { if (frozen(p) || !freezeable(p)) continue; if (task_is_traced(p) && frozen(p->parent)) { cancel_freezing(p); continue; } if (!freeze_task(p, freeze_user_space)) continue; if (!freezer_should_skip(p)) todo++; } while_each_thread(g, p); read_unlock(&tasklist_lock); yield(); /* Yield is okay here */ if (time_after(jiffies, end_time)) break; } while (todo); do_gettimeofday(&end); elapsed_csecs64 = timeval_to_ns(&end) - timeval_to_ns(&start); do_div(elapsed_csecs64, NSEC_PER_SEC / 100); elapsed_csecs = elapsed_csecs64; if (todo) { /* This does not unfreeze processes that are already frozen * (we have slightly ugly calling convention in that respect, * and caller must call thaw_processes() if something fails), * but it cleans up leftover PF_FREEZE requests. */ printk("\n"); printk(KERN_ERR "Freezing of tasks failed after %d.%02d seconds " "(%d tasks refusing to freeze):\n", elapsed_csecs / 100, elapsed_csecs % 100, todo); show_state(); read_lock(&tasklist_lock); do_each_thread(g, p) { task_lock(p); if (freezing(p) && !freezer_should_skip(p)) printk(KERN_ERR " %s\n", p->comm); cancel_freezing(p); task_unlock(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); } else { printk("(elapsed %d.%02d seconds) ", elapsed_csecs / 100, elapsed_csecs % 100); } return todo ? -EBUSY : 0; } /** * freeze_processes - tell processes to enter the refrigerator */ int freeze_processes(void) { int error; printk("Freezing user space processes ... "); error = try_to_freeze_tasks(FREEZER_USER_SPACE); if (error) goto Exit; printk("done.\n"); printk("Freezing remaining freezable tasks ... "); error = try_to_freeze_tasks(FREEZER_KERNEL_THREADS); if (error) goto Exit; printk("done."); Exit: BUG_ON(in_atomic()); printk("\n"); return error; } static void thaw_tasks(int thaw_user_space) { struct task_struct *g, *p; read_lock(&tasklist_lock); do_each_thread(g, p) { if (!freezeable(p)) continue; if (!p->mm == thaw_user_space) continue; thaw_process(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); } void thaw_processes(void) { printk("Restarting tasks ... "); thaw_tasks(FREEZER_KERNEL_THREADS); thaw_tasks(FREEZER_USER_SPACE); schedule(); printk("done.\n"); } EXPORT_SYMBOL(refrigerator); |