Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | /* * core routines for the asynchronous memory transfer/transform api * * Copyright © 2006, Intel Corporation. * * Dan Williams <dan.j.williams@intel.com> * * with architecture considerations by: * Neil Brown <neilb@suse.de> * Jeff Garzik <jeff@garzik.org> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include <linux/kernel.h> #include <linux/async_tx.h> #ifdef CONFIG_DMA_ENGINE static enum dma_state_client dma_channel_add_remove(struct dma_client *client, struct dma_chan *chan, enum dma_state state); static struct dma_client async_tx_dma = { .event_callback = dma_channel_add_remove, /* .cap_mask == 0 defaults to all channels */ }; /** * dma_cap_mask_all - enable iteration over all operation types */ static dma_cap_mask_t dma_cap_mask_all; /** * chan_ref_percpu - tracks channel allocations per core/opertion */ struct chan_ref_percpu { struct dma_chan_ref *ref; }; static int channel_table_initialized; static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END]; /** * async_tx_lock - protect modification of async_tx_master_list and serialize * rebalance operations */ static spinlock_t async_tx_lock; static struct list_head async_tx_master_list = LIST_HEAD_INIT(async_tx_master_list); /* async_tx_issue_pending_all - start all transactions on all channels */ void async_tx_issue_pending_all(void) { struct dma_chan_ref *ref; rcu_read_lock(); list_for_each_entry_rcu(ref, &async_tx_master_list, node) ref->chan->device->device_issue_pending(ref->chan); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(async_tx_issue_pending_all); /* dma_wait_for_async_tx - spin wait for a transcation to complete * @tx: transaction to wait on */ enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) { enum dma_status status; struct dma_async_tx_descriptor *iter; struct dma_async_tx_descriptor *parent; if (!tx) return DMA_SUCCESS; /* poll through the dependency chain, return when tx is complete */ do { iter = tx; /* find the root of the unsubmitted dependency chain */ while (iter->cookie == -EBUSY) { parent = iter->parent; if (parent && parent->cookie == -EBUSY) iter = iter->parent; else break; } status = dma_sync_wait(iter->chan, iter->cookie); } while (status == DMA_IN_PROGRESS || (iter != tx)); return status; } EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); /* async_tx_run_dependencies - helper routine for dma drivers to process * (start) dependent operations on their target channel * @tx: transaction with dependencies */ void async_tx_run_dependencies(struct dma_async_tx_descriptor *tx) { struct dma_async_tx_descriptor *dep_tx, *_dep_tx; struct dma_device *dev; struct dma_chan *chan; list_for_each_entry_safe(dep_tx, _dep_tx, &tx->depend_list, depend_node) { chan = dep_tx->chan; dev = chan->device; /* we can't depend on ourselves */ BUG_ON(chan == tx->chan); list_del(&dep_tx->depend_node); tx->tx_submit(dep_tx); /* we need to poke the engine as client code does not * know about dependency submission events */ dev->device_issue_pending(chan); } } EXPORT_SYMBOL_GPL(async_tx_run_dependencies); static void free_dma_chan_ref(struct rcu_head *rcu) { struct dma_chan_ref *ref; ref = container_of(rcu, struct dma_chan_ref, rcu); kfree(ref); } static void init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan) { INIT_LIST_HEAD(&ref->node); INIT_RCU_HEAD(&ref->rcu); ref->chan = chan; atomic_set(&ref->count, 0); } /** * get_chan_ref_by_cap - returns the nth channel of the given capability * defaults to returning the channel with the desired capability and the * lowest reference count if the index can not be satisfied * @cap: capability to match * @index: nth channel desired, passing -1 has the effect of forcing the * default return value */ static struct dma_chan_ref * get_chan_ref_by_cap(enum dma_transaction_type cap, int index) { struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref; rcu_read_lock(); list_for_each_entry_rcu(ref, &async_tx_master_list, node) if (dma_has_cap(cap, ref->chan->device->cap_mask)) { if (!min_ref) min_ref = ref; else if (atomic_read(&ref->count) < atomic_read(&min_ref->count)) min_ref = ref; if (index-- == 0) { ret_ref = ref; break; } } rcu_read_unlock(); if (!ret_ref) ret_ref = min_ref; if (ret_ref) atomic_inc(&ret_ref->count); return ret_ref; } /** * async_tx_rebalance - redistribute the available channels, optimize * for cpu isolation in the SMP case, and opertaion isolation in the * uniprocessor case */ static void async_tx_rebalance(void) { int cpu, cap, cpu_idx = 0; unsigned long flags; if (!channel_table_initialized) return; spin_lock_irqsave(&async_tx_lock, flags); /* undo the last distribution */ for_each_dma_cap_mask(cap, dma_cap_mask_all) for_each_possible_cpu(cpu) { struct dma_chan_ref *ref = per_cpu_ptr(channel_table[cap], cpu)->ref; if (ref) { atomic_set(&ref->count, 0); per_cpu_ptr(channel_table[cap], cpu)->ref = NULL; } } for_each_dma_cap_mask(cap, dma_cap_mask_all) for_each_online_cpu(cpu) { struct dma_chan_ref *new; if (NR_CPUS > 1) new = get_chan_ref_by_cap(cap, cpu_idx++); else new = get_chan_ref_by_cap(cap, -1); per_cpu_ptr(channel_table[cap], cpu)->ref = new; } spin_unlock_irqrestore(&async_tx_lock, flags); } static enum dma_state_client dma_channel_add_remove(struct dma_client *client, struct dma_chan *chan, enum dma_state state) { unsigned long found, flags; struct dma_chan_ref *master_ref, *ref; enum dma_state_client ack = DMA_DUP; /* default: take no action */ switch (state) { case DMA_RESOURCE_AVAILABLE: found = 0; rcu_read_lock(); list_for_each_entry_rcu(ref, &async_tx_master_list, node) if (ref->chan == chan) { found = 1; break; } rcu_read_unlock(); pr_debug("async_tx: dma resource available [%s]\n", found ? "old" : "new"); if (!found) ack = DMA_ACK; else break; /* add the channel to the generic management list */ master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL); if (master_ref) { /* keep a reference until async_tx is unloaded */ dma_chan_get(chan); init_dma_chan_ref(master_ref, chan); spin_lock_irqsave(&async_tx_lock, flags); list_add_tail_rcu(&master_ref->node, &async_tx_master_list); spin_unlock_irqrestore(&async_tx_lock, flags); } else { printk(KERN_WARNING "async_tx: unable to create" " new master entry in response to" " a DMA_RESOURCE_ADDED event" " (-ENOMEM)\n"); return 0; } async_tx_rebalance(); break; case DMA_RESOURCE_REMOVED: found = 0; spin_lock_irqsave(&async_tx_lock, flags); list_for_each_entry_rcu(ref, &async_tx_master_list, node) if (ref->chan == chan) { /* permit backing devices to go away */ dma_chan_put(ref->chan); list_del_rcu(&ref->node); call_rcu(&ref->rcu, free_dma_chan_ref); found = 1; break; } spin_unlock_irqrestore(&async_tx_lock, flags); pr_debug("async_tx: dma resource removed [%s]\n", found ? "ours" : "not ours"); if (found) ack = DMA_ACK; else break; async_tx_rebalance(); break; case DMA_RESOURCE_SUSPEND: case DMA_RESOURCE_RESUME: printk(KERN_WARNING "async_tx: does not support dma channel" " suspend/resume\n"); break; default: BUG(); } return ack; } static int __init async_tx_init(void) { enum dma_transaction_type cap; spin_lock_init(&async_tx_lock); bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); /* an interrupt will never be an explicit operation type. * clearing this bit prevents allocation to a slot in 'channel_table' */ clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); for_each_dma_cap_mask(cap, dma_cap_mask_all) { channel_table[cap] = alloc_percpu(struct chan_ref_percpu); if (!channel_table[cap]) goto err; } channel_table_initialized = 1; dma_async_client_register(&async_tx_dma); dma_async_client_chan_request(&async_tx_dma); printk(KERN_INFO "async_tx: api initialized (async)\n"); return 0; err: printk(KERN_ERR "async_tx: initialization failure\n"); while (--cap >= 0) free_percpu(channel_table[cap]); return 1; } static void __exit async_tx_exit(void) { enum dma_transaction_type cap; channel_table_initialized = 0; for_each_dma_cap_mask(cap, dma_cap_mask_all) if (channel_table[cap]) free_percpu(channel_table[cap]); dma_async_client_unregister(&async_tx_dma); } /** * async_tx_find_channel - find a channel to carry out the operation or let * the transaction execute synchronously * @depend_tx: transaction dependency * @tx_type: transaction type */ struct dma_chan * async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx, enum dma_transaction_type tx_type) { /* see if we can keep the chain on one channel */ if (depend_tx && dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) return depend_tx->chan; else if (likely(channel_table_initialized)) { struct dma_chan_ref *ref; int cpu = get_cpu(); ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref; put_cpu(); return ref ? ref->chan : NULL; } else return NULL; } EXPORT_SYMBOL_GPL(async_tx_find_channel); #else static int __init async_tx_init(void) { printk(KERN_INFO "async_tx: api initialized (sync-only)\n"); return 0; } static void __exit async_tx_exit(void) { do { } while (0); } #endif void async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx, enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, dma_async_tx_callback cb_fn, void *cb_param) { tx->callback = cb_fn; tx->callback_param = cb_param; /* set this new tx to run after depend_tx if: * 1/ a dependency exists (depend_tx is !NULL) * 2/ the tx can not be submitted to the current channel */ if (depend_tx && depend_tx->chan != chan) { /* if ack is already set then we cannot be sure * we are referring to the correct operation */ BUG_ON(depend_tx->ack); tx->parent = depend_tx; spin_lock_bh(&depend_tx->lock); list_add_tail(&tx->depend_node, &depend_tx->depend_list); if (depend_tx->cookie == 0) { struct dma_chan *dep_chan = depend_tx->chan; struct dma_device *dep_dev = dep_chan->device; dep_dev->device_dependency_added(dep_chan); } spin_unlock_bh(&depend_tx->lock); /* schedule an interrupt to trigger the channel switch */ async_trigger_callback(ASYNC_TX_ACK, depend_tx, NULL, NULL); } else { tx->parent = NULL; tx->tx_submit(tx); } if (flags & ASYNC_TX_ACK) async_tx_ack(tx); if (depend_tx && (flags & ASYNC_TX_DEP_ACK)) async_tx_ack(depend_tx); } EXPORT_SYMBOL_GPL(async_tx_submit); /** * async_trigger_callback - schedules the callback function to be run after * any dependent operations have been completed. * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK * @depend_tx: 'callback' requires the completion of this transaction * @cb_fn: function to call after depend_tx completes * @cb_param: parameter to pass to the callback routine */ struct dma_async_tx_descriptor * async_trigger_callback(enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, dma_async_tx_callback cb_fn, void *cb_param) { struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *tx; if (depend_tx) { chan = depend_tx->chan; device = chan->device; /* see if we can schedule an interrupt * otherwise poll for completion */ if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask)) device = NULL; tx = device ? device->device_prep_dma_interrupt(chan) : NULL; } else tx = NULL; if (tx) { pr_debug("%s: (async)\n", __FUNCTION__); async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param); } else { pr_debug("%s: (sync)\n", __FUNCTION__); /* wait for any prerequisite operations */ if (depend_tx) { /* if ack is already set then we cannot be sure * we are referring to the correct operation */ BUG_ON(depend_tx->ack); if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR) panic("%s: DMA_ERROR waiting for depend_tx\n", __FUNCTION__); } async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param); } return tx; } EXPORT_SYMBOL_GPL(async_trigger_callback); module_init(async_tx_init); module_exit(async_tx_exit); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API"); MODULE_LICENSE("GPL"); |